首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
River water composition (major ion and 87Sr/86Sr ratio) was monitored on a monthly basis over a period of three years from a mountainous river (Nethravati River) of southwestern India. The total dissolved solid (TDS) concentration is relatively low (46 mg L−1) with silica being the dominant contributor. The basin is characterised by lower dissolved Sr concentration (avg. 150 nmol L−1), with radiogenic 87Sr/86Sr isotopic ratios (avg. 0.72041 at outlet). The composition of Sr and 87Sr/86Sr and their correlation with silicate derived cations in the river basin reveal that their dominant source is from the radiogenic silicate rock minerals. Their composition in the stream is controlled by a combination of physical and chemical weathering occurring in the basin. The molar ratio of SiO2/Ca and 87Sr/86Sr isotopic ratio show strong seasonal variation in the river water, i.e., low SiO2/Ca ratio with radiogenic isotopes during non-monsoon and higher SiO2/Ca with less radiogenic isotopes during monsoon season. Whereas, the seasonal variation of Rb/Sr ratio in the stream water is not significant suggesting that change in the mineral phase being involved in the weathering reaction could be unlikely for the observed molar SiO2/Ca and 87Sr/86Sr isotope variation in river water. Therefore, the shift in the stream water chemical composition could be attributed to contribution of ground water which is in contact with the bedrock (weathering front) during non-monsoon and weathering of secondary soil minerals in the regolith layer during monsoon. The secondary soil mineral weathering leads to limited silicate cation and enhanced silica fluxes in the Nethravati river basin.  相似文献   

2.
To better understand chemical weathering and controlling processes in the Yalong River of the eastern Tibetan Plateau, this study presents major ion concentrations and stable isotopes of the dissolved loads. The isotopic compositions (δ13C-DIC, δ34S and δ18O-SO4) of the dissolved loads are very useful to quantify solute sources and define the carbon budget related with chemical weathering in riverine systems. The isotopic composition of sulphate demonstrates that most of the sulphate is derived from sulphide oxidation, particularly in the upper reach of the Yalong River. The correlations between δ13C-DIC, water chemistry and isotopes of sulphate, suggest that the carbon dynamics are mainly affected by carbonate weathering by sulphuric acid and equilibration processes. Approximately 13% of the dissolved inorganic carbon in the Yalong River originates from carbonate weathering by strong acid. The CO2 consumption rates are estimated to be 2.8 × 105 mol/km2/yr and 0.9 × 105 mol/km2/yr via carbonate and silicate weathering in the Yalong River, respectively. In this study, the influence of sulphide oxidation and metamorphic CO2 on the carbon budget is estimated for the Yalong River draining the eastern Tibetan Plateau.  相似文献   

3.
《Applied Geochemistry》2006,21(4):580-613
To quantify and explain the contributions by pollution and chemical weathering to their composition, we studied the chemistries of springs and surface waters in the mountainous part of the Vouga River basin. Water samples were collected during a number of consecutive summer campaigns. Recharge rates were derived from monitored discharge rates within the basin. Very large contributions by meteoric, agricultural and domestic sources to the water chemistries were found, identified by the chloride, sulfate and nitrate concentrations: on average only 1/4 to 1/3 of the solutes could be attributed to chemical weathering. Two petrologic units characterize the river basin: granites and metasediments. The waters collected within metasediment units are distinct from those in granite terrain by a higher magnesium concentration. On that basis, it could be estimated that the Rio Vouga, when leaving the mountainous part of the basin, has for some 2/5 a signature determined by chemical weathering in the metasediments. The dominant primary minerals subject to chemical weathering are plagioclase (Pl) and biotite (in granite) or Pl and chlorite (in metasediment). Kaolinite, gibbsite and vermiculite are the major weathering products where annual precipitation (P) > 1000 mm y−1, and kaolinite, vermiculite and smectite where P was lower. Using an algorithm based on the ratio of dissolved silica to bicarbonate, the contributions of chemical weathering of primary minerals could be unraveled. The results show that in granite the export rate (as mol ha−1 y−1 wt%mineral−1) of oligoclase (Pl with An10–30) was 5.0 ± 2.6 and of biotite 3.2 ± 2.6, while in metasediment these rates for albite (Pl with An0–10) are 16.5 ± 8.9 and for chlorite are 0.5 ± 0.5. The observed decrease of dissolved silica in surface waters relative to springs was ascribed to (summer) uptake by aquatic biota.  相似文献   

4.
The uranium (U) content and 234U/238U activity ratio were determined for water samples collected from Korea's Han River in spring, summer, and winter 2006 to provide data that might constrain the origin of U isotope fractionation in river water and the link between U isotope systematics in river waters and the lithological nature of the corresponding bedrock. The large difference in the major dissolved loads between the two major branches of the Han River, the North Han River (NHR) and South Han River (SHR), is reflected in the contrasting U content and 234U/238U activity ratio between the tributaries: low U content (0.08–0.75 nM; average, 0.34 nM) and small 234U/238U activity ratio (1.03–1.22; average, 1.09) in the NHR; and high U content (0.65–1.98 nM; average, 1.44 nM) and large 234U/238U activity ratio (1.05–1.45; average, 1.24) in the SHR. The large spatial differences in U content and 234U/238U activity ratio are closely related to both lithological differences between the two tributaries and groundwater input. The low U content and small 234U/238U activity ratio in the NHR arise mainly from a combination of surface and meteoric weathering of the dominant silicate rocks in this branch and congruent dissolution of already weathered (secular equilibrium) materials. In contrast, the high U content and large 234U/238U activity ratio in the SHR are ascribed to the dissolution of carbonates and black shales along with significant inputs of deep groundwater.  相似文献   

5.
《Chemical Geology》2007,236(3-4):199-216
The chemical characteristics of freshwaters draining the silicate rocks in the northern part of Okinawa Island were studied to understand solute generation processes, and to determine rates of chemical weathering and CO2 consumption. It was observed that the water chemistry is highly influenced by marine aerosols, contributing more than 60% of total solute. Significant positive correlations observed for chloride versus dissolved silica and chloride versus bicarbonate suggest a strong influence of evapotranspiration on the seasonality of solute concentration. It was also found that chemical weathering has been highly advanced in which the dominant kaolinite minerals are being gibbsitized. Carbonic acid was found to be the major chemical weathering agent, releasing greater than 80% of weathering-derived dissolved cations and silica while the remaining portion was attributed to weathering by sulfuric acid generated via oxidation of pyrite contained in the rocks. The flux of basic cations, weathering-derived silica and CO2 consumption were relatively high due to favourable climatic condition, topography and high rate of mechanical erosion. Silicate weathering rates for basic cations were estimated to be 6.7–9.7 ton km 2 y 1. Carbon dioxide consumed by silicate weathering was 334–471 kmol km 2 y 1 which was slightly higher than that consumed by carbonate weathering. In general, divalent cations (Mg and Ca) and bicarbonate alkalinity derived from carbonate dissolution were higher than those from silicate weathering. As a consequence, the evolution of chemical species in the freshwaters of northern area of Okinawa Island to a large extent could be explained by mixing of two components, characterized by waters with Na+ and Cl as predominant species and waters enriched with Ca2+ and HCO3.  相似文献   

6.
Chemical weathering is an integral part of the earth surface processes, whose spatial patterns and controlling factors on continental scale are still not fully understood. Highlands of the Asian continent have been shown having some of the highest observed rates of chemical weathering yet reported. However, the paucity of river gauge data in many of these terrains has limited determination of chemical weathering budget in a continental scale. A dataset of three large watersheds throughout northern Xinjiang in Central Asia is used to empirically identify chemical weathering regimes and interpret the underlying controlling factors. Detailed analysis of major ion ratios and a forward model of mass budget procedure are presented to distinguish the relative significances and contributions of silicate, carbonate weathering and evaporite dissolution. The analytical results show that carbonic acid is the most important weathering agent to the studied watersheds. Silicate weathering contributes, on average, ∼17.8% (molar basis) of total cations on a basin wide scale with an order of Zhungarer > Erlqis > Yili, indicating that silicate weathering, however, does not seem to be intense in the study basins. Evaporite dissolution, carbonate weathering and precipitation input contribute 43.6%, 29.7% and 8.9% of the total dissolved cations on average for the whole catchment, respectively. The three main morphological and hydrological units are reflected in water chemistry. Rivers from the montane areas (recharge area) of the three watersheds are very dilute, dominated by carbonate and silicate weathering, whereas the rivers of piedmont areas as well as the rivers of the sedimentary platform (runoff area) are dominated by carbonate weathering, and rivers of desert plain in the central Zhungarer basin (discharge area) are dominated by evaporite dissolution and are SO4 rich. This spatial pattern indicates that, beside lithology, runoff conditions have significant role on the regional chemical weathering regimes. Chemical weathering processes in the areas appear to be significantly climate controlled, displaying a tight correlation with runoff and aridity. Carbonate weathering are mostly influenced by runoff, which is higher in the mountainous part of the studied basins. The identification of chemical weathering regimes from our study confirmed the weathering potential and complexity of temperate watersheds in arid environment and that additional studies of these terrains are warranted. However, because the dominant weathering reactions in the sedimentary platform of northern Xinjiang are of carbonates and evaporites rather than silicate minerals, and the climatic factors have important role on the rock weathering regimes, we think that weathering at the arid temperate drainage system (Central Asia) is maybe not an important long-term sink for atmospheric CO2, if the future climate has no great change.  相似文献   

7.
The Hanjiang River, the largest tributaries of the Changjiang (Yangtze) River, is the water source area of the Middle Route of China’s South-to-North Water Transfer Project. The chemical and strontium isotopic compositions of the river waters are determined with the main purpose of understanding the contribution of chemical weathering processes and anthropogenic inputs on river solutes, as well as the associated CO2 consumption in the carbonate-dominated basin. The major ion compositions of the Hanjiang River waters are characterized by the dominance of Ca2+ and HCO3 , followed by Mg2+ and SO4 2−. The increase in TDS and major anions (Cl, NO3 , and SO4 2−) concentrations from upstream to downstream is ascribed to both extensive influences from agriculture and domestic activities over the Hanjiang basin. The chemical and Sr isotopic analyses indicate that three major weathering sources (dolomite, limestone, and silicates) contribute to the total dissolved loads. The contributions of the different end-members to the dissolved load are calculated with the mass balance approach. The calculated results show that the dissolved load is dominated by carbonates weathering, the contribution of which accounts for about 79.4% for the Hanjiang River. The silicate weathering and anthropogenic contributions are approximately 12.3 and 6.87%, respectively. The total TDS fluxes from chemical weathering calculated for the water source area (the upper Hanjiang basin) and the whole Hanjiang basin are approximately 3.8 × 106 and 6.1 × 106 ton/year, respectively. The total chemical weathering (carbonate and silicate) rate for the Hanjiang basin is approximately 38.5 ton/km2/year or 18.6 mm/k year, which is higher than global mean values. The fluxes of CO2 consumption by carbonate and silicate weathering are estimated to be 56.4 × 109 and 12.9 × 109 mol/year, respectively.  相似文献   

8.
The Alaknanda and Bhagirathi rivers flow through the Higher and Lesser Himalayas and confluence at Devprayag, which represents the origin of the Ganga (or Ganges) river. In the present study, a vast number of temporal and spatial samples of the river waters were collected and analyzed for major cations and anions. In addition, more recent and time series water flow data have been obtained and based on these inputs, a more refined dissolved flux rates have been estimated. The Alaknanda and Bhagirathi rivers show significant variations in chemical compositions during different seasons. Carbonate rock weathering is responsible for more than 70% of the chemical compositions in the river waters. The chemical weathering rates show seasonal variations and are much higher during non-monsoon season. The dissolved flux of Alaknanda river is much higher (1.80 × 106 tons yr?1) as compared to the Bhagirathi river (0.34 × 106 tons yr?1). The chemical weathering rates in the basin vary between 85 and 155 tons km?2 yr?1, which is significantly higher compared to the global average of ~24 tons km?2 yr?1.  相似文献   

9.
10.
Based on the concepts (a) that the stable C and O isotopes combined with the Sr isotope ratios of fracture fills should reflect the source groundwater from which the solid phases precipitated and (b) that U-series disequilibria (USD) enable the calculation of residence time for the U by using Fe oxides as the best candidate, an “isotopic toolbox” was applied to fracture fill from the crystalline basement of the Vienne district. The fracture fills are formed mainly of carbonates, clays and Fe oxides. The isotope data indicate two main generations of carbonate that originated from hydrothermal circulation and equilibrium with present-day groundwaters but the Sr isotope ratios highlight another component with a higher 87Sr/86Sr ratio reflecting the complexity of the water–rock interactions.For the USD, the Fe-hydroxides located at 207 m depth yield an age of 102 ± 5 ka (St. Germain I interglacial stage), whereas those located at 277 m and 300 m yield respective ages of 173 ± 15 ka and 181 ± 10 ka. These corresponding to the transition between the penultimate glacial period (isotopic stage 6) and the end of the preceding interglacial stage (isotopic sub-stage 7a). Investigating water–rock interaction (87Sr/86Sr, 18O, 13C, USD) in the fracture-fill minerals from the crystalline basement has shown that such an approach is relevant to developing an understanding of how the groundwater system has changed over time.  相似文献   

11.
In this paper we report the Sr isotope signatures, and Sr, Al and Na concentrations of 30 surface waters (lakes/ponds and rivers/creeks) and 19 soil sample extracts from the island of Bornholm (Denmark) and present a categorized 87Sr/86Sr value distribution map that may serve as a base for provenance studies, including archaeological migration and authenticity proof for particular food products. The Sr isotopic compositions of surface waters range from 87Sr/86Sr = 0.7097–0.7281 (average 0.7175 ± 0.0049; 1σ), whereas 0.1 M HNO3, 0.05 M HNO3, and 0.01 M CaCl2 soil extracts range from 87Sr/86Sr = 0.7095–0.7197 and define somewhat lower but statistically indistinguishable averages of 0.7125 ± 0.003 (1s). These compositions are lower than the values expected from the Precambrian granitoid basement (87Sr/86Sr = 0.758–0.944), and from the overlying, mainly clastic Paleozoic sediments. Combined Sr isotope composition vs. Sr, Na and Al concentration relationships of soil extracts imply that lowering of the isotopic composition of leachable Sr on Bornholm results as a consequence of significant admixture to this fraction of Sr deposited as marine salts (aerosols), and that rainwater only has a minor influence on the Sr budget of the surface waters. Positively correlated Al/Na and [1/Sr] vs. 87Sr/86Sr relationships in soil extracts and surface waters indicate that the surface run-off on Bornholm is characterized by two predominant sources, namely marine aerosols (sea salts) with high Sr and low 87Sr/86Sr values, and a source with lower [Sr] delivering radiogenic Sr to the surface waters, which we equate with Sr leached from the products of mineral weathering (soils).A feasibility study for using Sr isotopic compositions of surface waters and soil extracts as a proxy for bioavailable Sr signatures was performed with a few samples collected in the vicinity of the eleventh century AD Ndr. Grødbygård cemetery site in SW Bornholm, from where Sr isotope compositions of modern fauna samples and tooth enamel of humans buried in the cemetery have been reported. Waters and soil extracts studied herein from around this site range from 87Sr/86Sr = 0.7104–0.7166 and correspond to Sr compositions extracted from snail shells in this area which span a range of 87Sr/86Sr = 0.7095–0.7160. Some human tooth enamel is characterized by more radiogenic values (87Sr/86Sr up to 0.718) which points to a possible provenance of these humans from the granite–gneiss terrain in the north of the island and/or to immigration of these humans in their childhood from other places (for example from mainland Sweden) to Bornholm. If the total compositional range of 87Sr/86Sr = 0.709–0.718 (n = 44) recorded in human enamel from the Ndr. Grødbygård site is considered representative for the variation of bioavailable Sr on Bornholm, then our soil leachate and surface water data entirely covers this range. We therefore propose that the combination of Sr isotope analyses of surface waters and soil leachates are an easy, fast and relatively cost efficient way to characterize a local bioavailable 87Sr/86Sr signature, and consequently propose that the overall average of 87Sr/86Sr = 0.7153 ± 0.0048 (1σ; n = 50) can be taken as a band for bioavailable Sr fractions suitable to discriminate between local and non-local signatures in provenance studies in the field of archaeology and for food and plant authenticity control in agricultural applications.  相似文献   

12.
The Tianqiao Pb–Zn deposit in the western Yangtze Block, southwest China, is part of the Sichuan–Yunnan–Guizhou (SYG) Pb–Zn metallogenic province. Ore bodies are hosted in Devonian and Carboniferous carbonate rocks, structurally controlled by a thrust fault and anticline, and carried about 0.38 million tons Pb and Zn metals grading > 15% Pb + Zn. Both massive and disseminated Pb–Zn ores occur either as veinlets or disseminations in dolomitic rocks. They are composed of ore minerals, pyrite, sphalerite and galena, and gangue minerals, calcite and dolomite. δ34S values of sulfide minerals range from + 8.4 to + 14.4‰ and display a decreasing trend from pyrite, sphalerite to galena (δ34Spyrite > δ34Ssphalerite > δ34Sgalena). We interpret that reduced sulfur derived from sedimentary sulfate (gypsum and barite) of the host Devonian to Carboniferous carbonate rocks by thermal–chemical sulfate reduction (TSR). δ13CPDB and δ18OSMOW values of hydrothermal calcite range from –5.3 to –3.4‰ and + 14.9 to + 19.6‰, respectively, and fall in the field between mantle and marine carbonate rocks. They display a negative correlation, suggesting that CO2 in the hydrothermal fluid was a mixture origin of mantle, marine carbonate rocks and sedimentary organic matter. Sulfide minerals have homogeneous and low radiogenic Pb isotope compositions (206Pb/204Pb = 18.378 to 18.601, 207Pb/204Pb = 15.519 to 15.811 and 208Pb/204Pb = 38.666 to 39.571) that are plotted in the upper crust Pb evolution curve and overlap with that of Devonian to Carboniferous carbonate rocks and Proterozoic basement rocks in the SYG province. Pb isotope compositions suggest derivation of Pb metal from mixed sources. Sulfide minerals have 87Sr/86Sr ratios ranging from 0.7125 to 0.7167, higher than Sinian to Permian sedimentary rocks and Permian Emeishan flood basalts, but lower than basement rocks. Again, Sr isotope compositions are supportive of a mixture origin of Sr. They have an Rb–Sr isotopic age of 191.9 ± 6.9Ma, possibly reflecting the timing of Pb–Zn mineralization. C–O–S–Pb–Sr isotope compositions of the Tianqiao Pb–Zn deposit indicate a mixed origin of ore-forming fluids, which have Pb–Sr isotope homogenized before the mineralization. The Permian flood basalts acted as an impermeable layer for the Pb–Zn mineralization hosted in the Devonian–Carboniferous carbonate rocks.  相似文献   

13.
The dissolution kinetics of carbonate rocks sampled from the Keg River Formation in Northeast British Columbia were measured at 50 bar pCO2 and 105 °C, in both natural and synthetic brines of 0.4 M ionic strength. Natural brines yielded reaction rates of −12.16 ± 0.11 mol cm−2 s−1 for Log RCa, and −12.64 ± 0.05 for Log RMg. Synthetic brine yielded faster rates of reaction than natural brines. Experiments performed on synthetic brines, spiked with 10 mmol of either Sr or Zn, suggest that enhanced reaction rates observed in synthetic brines are due to a lack of trace ion interaction with mineral surfaces. Results were interpreted within the surface complexation model framework, allowing for the discrimination of reactive surface sites, most importantly the hydration of the >MgOH surface site. Dissolution rates extrapolated from experiments predict that CO2 injected into the Keg River Formation will dissolve a very minor portion of rock in contact with affected formation waters.  相似文献   

14.
The Neoproterozoic (593–532 Ma) Dahongliutan banded iron formation (BIF), located in the Tianshuihai terrane (Western Kunlun orogenic belt), is hosted in the Tianshuihai Group, a dominantly submarine siliciclastic and carbonate sedimentary succession that generally has been metamorphosed to greenschist facies. Iron oxide (hematite), carbonate (siderite, ankerite, dolomite and calcite) and silicate (muscovite) facies are all present within the iron-rich layers. There are three distinctive sedimentary facies BIFs, the oxide, silicate–carbonate–oxide and carbonate (being subdivided into ankerite and siderite facies BIFs) in the Dahongliutan BIF. They demonstrate lateral and vertical zonation from south to north and from bottom to top: the carbonate facies BIF through a majority of the oxide facies BIF into the silicate–carbonate–oxide facies BIF and a small proportion of the oxide facies BIF.The positive correlations between Al2O3 and TiO2, Sc, V, Cr, Rb, Cs, Th and ∑REE (total rare earth element) for various facies of BIFs indicate these chemical sediments incorporate terrigenous detrital components. Low contents of Al2O3 (<3 wt%), TiO2 (<0.15 wt%), ∑REE (5.06–39.6 ppm) and incompatible HFSEs (high field strength elements, e.g., Zr, Hf, Th and Sc) (<10 ppm), and high Fe/Ti ratios (254–4115) for a majority of the oxide and carbonate facies BIFs suggest a small clastic input (<20% clastic materials) admixtured with their original chemical precipitates. The higher abundances of Al2O3 (>3 wt%), TiO2, Zr, Th, Cs, Sc, Cr and ∑REE (31.2–62.9 ppm), and low Fe/Ti ratios (95.2–236) of the silicate–carbonate–oxide facies BIF are consistent with incorporation of higher amounts of clastic components (20%–40% clastic materials). The HREE (heavy rare earth element) enrichment pattern in PAAS-normalized REE diagrams exhibited by a majority of the oxide and carbonate facies BIFs shows a modern seawater REE signature overprinted by high-T (temperature) hydrothermal fluids marked by strong positive Eu anomalies (Eu/Eu1PAAS = 2.37–5.23). The low Eu/Sm ratios, small positive Eu anomaly (Eu/Eu1PAAS = 1.10–1.58) and slightly MREE (middle rare earth element) enrichment relative to HREE in the silicate–carbonate–oxide facies BIF and some oxide and carbonate facies BIFs indicate higher contributions from low-T hydrothermal sources. The absence of negative Ce anomalies and the high Fe3+/(Fe3+/Fe2+) ratios (0.98–1.00) for the oxide and silicate–carbonate–oxide BIFs do not support ocean anoxia. The δ13CV-PDB (−4.0‰ to −6.6‰) and δ18OV-PDB (−14.0‰ to −11.5‰) values for siderite and ankerite in the carbonate facies BIF are, on average, ∼6‰ and ∼5‰ lower than those (δ13CV-PDB = −0.8‰ to + 3.1‰ and δ18OV-PDB = −8.2‰ to −6.3‰) of Ca–Mg carbonates from the silicate–carbonate–oxide facies BIF. This feature, coupled with the negative correlations between FeO, Eu/Eu1PAAS and δ13CV-PDB, imply that a water column stratified with regard to the isotopic omposition of total dissolved CO2, with the deeper water, from which the carbonate facies BIF formed, depleted in δ13C that may have been derive from hydrothermal activity.Integration of petrographic, geochemical, and isotopic data indicates that the silicate–carbonate–oxide facies BIF and part of the oxide facies BIF precipitated in a near-shore, oxic and shallow water environment, whereas a majority of the oxide and carbonate facies BIFs deposited in anoxic but Fe2+-rich deeper waters, closer to submarine hydrothermal vents. High-T hydrothermal solutions, with infusions of some low-T hydrothermal fluids, brought Fe and Si onto a shallow marine, variably mixed with detrital components from seawaters and fresh waters carrying continental landmass and finally led to the alternating deposition of the Dahongliutan BIF during regression–transgression cycles.The Dahongliutan BIF is more akin to Superior-type rather than Algoma-type and Rapitan-type BIF, and constitutes an additional line of evidence for the widespread return of BIFs in the Cryogenian and Ediacaran reflecting the recurrence of anoxic ferruginous deep sea and anoxia/reoxygenation cycles in the Neoproterozoic. In combination with previous studies on other Fe deposits in the Tianshuihai terrane, we propose that a Fe2+-rich anoxic basin or deep sea probably existed from the Neoproterozoic to the Early Cambrian in this area.  相似文献   

15.
Lithium (Li) is a fluid-mobile element and δ7Li in secondary deposits represents an excellent proxy for silicate weathering and authigenic mineral formation. The soil samples from 1205 to 1295 cm in the Weinan profile, one of the best developed loess-paleosol sequences covering the last glacial–interglacial climatic cycle, were collected and chemically separated into detritus and carbonate fractions for subsequent analyses of Li, δ7Li, major and trace elements. Other desert specimens (i.e., Qaidam Desert, Tengger Desert, Badain Juran Desert and Taklimakan Desert) near the Chinese Loess Plateau (CLP) and various standard clays were analyzed for assisting provenance determination. The Li and δ7Li distributions in the detritus are rather homogeneous, 1.4–2.0 μg/g and +2.5‰ to +4.7‰, respectively, compared with the carbonate fraction. The detrital δ7Li varies systematically with magnetic susceptibility and grain size changes, reflecting significant Li isotopic variation associated with sources and mineralogy of detrital material. On the other hand, Li and δ7Li in carbonates show large changes, 781–963 ng/g and −4.1‰ to +10.2‰, respectively. These carbonate δ7Li correlated well with the estimated index of chemical weathering, as a result of Li mobilization and soil formation during chemical weathering.  相似文献   

16.
Granulite grade marble layers interlayered with metapelitic granulites from Lützow Holm Bay, East Antarctica, provide insight into fluid–rock interactions during burial to and exhumation from lower crustal levels. Sub-millimeter scale strontium, oxygen and carbon isotope variations along with LA-ICPMS trace element geochemistry and mineral chemistry of texturally characterized carbonates and associated minerals helped to reconstruct the multistage metamorphic fluid history.Fluid–rock interaction dating back to prograde metamorphism are still preserved in consistently low oxygen and high strontium isotope compositions (δ18O = 12‰; 87Sr/86Sr(550Ma) = 0.7248) within a massif dolomitic marble layer that escaped significant later metasomatism. In most marbles, total re-crystallization and isotopic resetting occurred in the presence of “externally derived” hyper-saline fluids that circulated along the carbonate layers during the early stages of prograde metamorphism. This leads to a trend of increased radiogenic Sr in marbles towards the value of associated metapelitic rocks that have 87Sr/86Sr(550Ma) of 0.764.LA-ICPMS studies on trace elements in carbonate and associated silicate minerals at different textural settings, distinguished using cathodoluminescence microscopy, revealed multiple metasomatic events during retrograde metamorphism. Trace element contents of Ba, Sr, Pb and U gave compelling evidence for metasomatic alteration that postdate the exsolution of carbonate at ~ 600 ºC, which can be correlated with the fluids released from the crystallization of anatectic melts and pegmatites. Subsequently, meteoric fluid infiltration occurred at a shallower level of the crust and caused extreme oxygen isotopic heterogeneity (δ18O = 14.7 ~ ? 4.9‰) and imprinted high concentration of fluid mobile elements. Taken together our results emphasize the importance of integrating textural and chemical heterogeneities to reveal the multiple episodes of fluid–rock interaction processes in a dynamic continental crust, which has major implications on migration of fluids and material and help in formulating models on the geodynamic evolution of crust.  相似文献   

17.
The Tonglushan ore district in the Middle–Lower Yangtze River Valley metallogenic belt includes the Tonglushan Cu–Fe, the Jiguanzui Au–Cu, and the Taohuazui Au–Cu skarn deposits. They are characterized by NE-striking ore bodies and hosted at the contact of Triassic carbonate rocks and Late Mesozoic granitoid deposits. New Sensitive High-Resolution Ion Microprobe (SHRIMP) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA–ICP-MS) zircon U–Pb, molybdenite Re–Os, and phlogopite 40Ar–39Ar ages indicate that these skarn deposits formed between 140.3 ± 1.1 and 137.3 ± 2.4 Ma. These dates are identical to the zircon U–Pb ages for host quartz diorites ranging from 140 ± 2 to 139 ± 1 Ma. These results confirm that both skarn mineralization and related intrusions were initiated during the Early Cretaceous. The high rhenium contents (261.4–1152 μg/g) of molybdenites indicate that a metasomatic mantle fluid was involved in the ore-forming process of these skarn ore systems. This conclusion is consistent with previously published constraints from sulfur, deuterium, and oxygen isotope compositions, and the geochemical signatures, and Sr–Nd isotopic data of the mineralization-hosting intrusions. Geological and geochronological evidence demonstrates that there were two igneous events in the Tonglushan ore district. The first resulted in the emplacement of quartz diorite during the Early Cretaceous (140 ± 2 to 139 ± 1 Ma), and the second is characterized by the eruption of volcanic rocks during the mid-Early Cretaceous (130 ± 2 to 124 ± 2 Ma). The former is spatially, temporally and genetically associated with skarn gold-bearing mineralization (140.3 ± 1.1 to 137.3 ± 2.4 Ma). The recognition of these two igneous events invalidates previous models that proposed continuous magmatism and associated mineral deposits in the Middle–Lower Yangtze River Valley metallogenic belt.  相似文献   

18.
Dissolved and particulate Zn and Ni concentrations were determined at 76 locations along the Yangtze River basin from the headwaters to the estuary during flood and dry seasons. Spatial and temporal variations of Zn and Ni were investigated and six major source zones were identified. The Three Gorges Dam (TGD) blocked most of the suspended loads and extremely low concentration of Zn and Ni were observed downstream of the dam. Dissolved (ranging from 0.062 to 8.0 μg L−1) and particulate (ranging from 12 to 110 mg kg−1) Ni showed similar levels of concentrations during flood and dry seasons, whereas dissolved (ranging from 0.43 to 49 μg L−1) and particulate (ranging from 54 to 1100 mg kg−1) Zn were slightly and much lower in the flood season than dry season, respectively. This was attributed to the increased water discharge during the flood season causing a dilution effect and sediment resuspension. In the flood season, average concentrations of Zn and Ni were higher in the main channel than in tributaries, due to soil erosion and mining activities providing the dominant inputs. The situation was opposite in the dry season, attributed to the contribution of municipal sewage, industrial activities, and waste disposal. During the flood season, dissolved Zn and Ni concentrations were negatively correlated with pH. Water and suspended particulate matter (SPM) from the upper reaches, middle reaches, and lower reaches of the Yangtze River were characterized by their Zn and Ni concentrations. The Panzhihua, Nanling and Tongling mining areas were considered as the most important source zones of particulate Zn and Ni. The Chongqing region, Wuhan region and the Yangtze River Delta provided most of the dissolved Zn and Ni inputs into the river. Annual net flux of Zn (10–72 × 105 kg a−1) and Ni (5.0–19 × 105 kg a−1) in each source zone were estimated according to their respective influent and effluent fluxes. Contributions of the source zones to Zn and Ni transport decreased from the upper reaches to the lower reaches.  相似文献   

19.
It is widely accepted that chemical weathering of Ca–silicate rocks could potentially control long-term climate change by providing feedback interaction with atmospheric CO2 drawdown by means of precipitation of carbonate, and that in contrast weathering of carbonate rocks has not an equivalent impact because all of the CO2 consumed in the weathering process is returned to the atmosphere by the comparatively rapid precipitation of carbonates in the oceans. Here, it is shown that the rapid kinetics of carbonate dissolution and the importance of small amounts of carbonate minerals in controlling the dissolved inorganic C (DIC) of silicate watersheds, coupled with aquatic photosynthetic uptake of the weathering-related DIC and burial of some of the resulting organic C, suggest that the atmospheric CO2 sink from carbonate weathering may previously have been underestimated by a factor of about 3, amounting to 0.477 Pg C/a. This indicates that the contribution of silicate weathering to the atmospheric CO2 sink may be only 6%, while the other 94% is by carbonate weathering. Therefore, the atmospheric CO2 sink by carbonate weathering might be significant in controlling both the short-term and long-term climate changes. This questions the traditional point of view that only chemical weathering of Ca–silicate rocks potentially controls long-term climate change.  相似文献   

20.
Exploration of unconventional natural gas reservoirs such as impermeable shale basins through the use of horizontal drilling and hydraulic fracturing has changed the energy landscape in the USA providing a vast new energy source. The accelerated production of natural gas has triggered a debate concerning the safety and possible environmental impacts of these operations. This study investigates one of the critical aspects of the environmental effects; the possible degradation of water quality in shallow aquifers overlying producing shale formations. The geochemistry of domestic groundwater wells was investigated in aquifers overlying the Fayetteville Shale in north-central Arkansas, where approximately 4000 wells have been drilled since 2004 to extract unconventional natural gas. Monitoring was performed on 127 drinking water wells and the geochemistry of major ions, trace metals, CH4 gas content and its C isotopes (δ13CCH4), and select isotope tracers (δ11B, 87Sr/86Sr, δ2H, δ18O, δ13CDIC) compared to the composition of flowback-water samples directly from Fayetteville Shale gas wells. Dissolved CH4 was detected in 63% of the drinking-water wells (32 of 51 samples), but only six wells exceeded concentrations of 0.5 mg CH4/L. The δ13CCH4 of dissolved CH4 ranged from −42.3‰ to −74.7‰, with the most negative values characteristic of a biogenic source also associated with the highest observed CH4 concentrations, with a possible minor contribution of trace amounts of thermogenic CH4. The majority of these values are distinct from the reported thermogenic composition of the Fayetteville Shale gas (δ13CCH4 = −35.4‰ to −41.9‰). Based on major element chemistry, four shallow groundwater types were identified: (1) low (<100 mg/L) total dissolved solids (TDS), (2) TDS > 100 mg/L and Ca–HCO3 dominated, (3) TDS > 100 mg/L and Na–HCO3 dominated, and (4) slightly saline groundwater with TDS > 100 mg/L and Cl > 20 mg/L with elevated Br/Cl ratios (>0.001). The Sr (87Sr/86Sr = 0.7097–0.7166), C (δ13CDIC = −21.3‰ to −4.7‰), and B (δ11B = 3.9–32.9‰) isotopes clearly reflect water–rock interactions within the aquifer rocks, while the stable O and H isotopic composition mimics the local meteoric water composition. Overall, there was a geochemical gradient from low-mineralized recharge water to more evolved Ca–HCO3, and higher-mineralized Na–HCO3 composition generated by a combination of carbonate dissolution, silicate weathering, and reverse base-exchange reactions. The chemical and isotopic compositions of the bulk shallow groundwater samples were distinct from the Na–Cl type Fayetteville flowback/produced waters (TDS ∼10,000–20,000 mg/L). Yet, the high Br/Cl variations in a small subset of saline shallow groundwater suggest that they were derived from dilution of saline water similar to the brine in the Fayetteville Shale. Nonetheless, no spatial relationship was found between CH4 and salinity occurrences in shallow drinking water wells with proximity to shale-gas drilling sites. The integration of multiple geochemical and isotopic proxies shows no direct evidence of contamination in shallow drinking-water aquifers associated with natural gas extraction from the Fayetteville Shale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号