首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main objective of this study is to assess regional landslide hazards in the Hoa Binh province of Vietnam. A landslide inventory map was constructed from various sources with data mainly for a period of 21 years from 1990 to 2010. The historic inventory of these failures shows that rainfall is the main triggering factor in this region. The probability of the occurrence of episodes of rainfall and the rainfall threshold were deduced from records of rainfall for the aforementioned period. The rainfall threshold model was generated based on daily and cumulative values of antecedent rainfall of the landslide events. The result shows that 15-day antecedent rainfall gives the best fit for the existing landslides in the inventory. The rainfall threshold model was validated using the rainfall and landslide events that occurred in 2010 that were not considered in building the threshold model. The result was used for estimating temporal probability of a landslide to occur using a Poisson probability model. Prior to this work, five landslide susceptibility maps were constructed for the study area using support vector machines, logistic regression, evidential belief functions, Bayesian-regularized neural networks, and neuro-fuzzy models. These susceptibility maps provide information on the spatial prediction probability of landslide occurrence in the area. Finally, landslide hazard maps were generated by integrating the spatial and the temporal probability of landslide. A total of 15 specific landslide hazard maps were generated considering three time periods of 1, 3, and 5 years.  相似文献   

2.
Modeling landslide susceptibility over large regions with fuzzy overlay   总被引:2,自引:0,他引:2  
Landslide susceptibility mapping is most effective if detailed surface and subsurface information can be combined with authoritative landslide catalogs or a deep understanding of local conditions. However, these types of homogeneous input data and catalogs are frequently not available over large areas. In this study, we model landslide susceptibility in Central America and the Caribbean islands by combining three globally available datasets and one regional dataset with fuzzy overlay. This primarily heuristic model provides the flexibility to test a range of different contributing variables and the capability to compare landslide inventories within the model framework that vary greatly in their size, spatiotemporal scope, and collection methods. We create a regional susceptibility map and evaluate its performance using receiver operating characteristics for both continuous and binned susceptibility values. This susceptibility map forms the basis for a near-real-time landslide hazard assessment system that couples susceptibility with rainfall and soil moisture triggers to estimate potential landslide activity at a regional scale. The application of this susceptibility model at the regional scale provides a foundation for transferring the methodology to other geographic areas.  相似文献   

3.
Particularly in the last decade, landslide susceptibility and hazard maps have been used for urban planning and site selection of infrastructures. Most of the procedures for preparing of landslide susceptibility maps need high-quality landslide inventory map. Although the rainfall and seismic activities are accepted as triggering factor for landslides, designation of the triggering factor for each landslide in the inventory is almost impossible when well-documented records are unavailable. Therefore, during preparation of landslide susceptibility map, whole landslide records in the inventory map are used together without classifying based on the triggering factors. Although seismic activity is accepted as a triggering factor, possible effect of the use of seismic activity on production of landslide susceptibility map was investigated in this study, and the subject is open to discussion. For this purpose, a series of stability analyses based on circular failure and infinite slope model were performed considering different pseudostatic conditions. The results of analyses show that gentle slopes have higher susceptibility to failure than steeper ones, even if their stability conditions (susceptibilities) are similar for static condition. The seismic forces acting on failure surfaces may not be sufficiently taken into consideration in the conventionally prepared landslide susceptibility maps. Employing the general decreasing trend in stability condition based on slope face angle and the seismic acceleration, a new procedure was introduced for preparing of the landslide susceptibility map for a scenario earthquake. The prediction performance of occurring landslides increased after the procedure was applied to the conventionally prepared landslide susceptibility map. According to the threshold independent spatial performance analyses of the proposed methodology and the produced landslide susceptibility maps, the area under ROC curve values were calculated as 0.801, 0.933, and 0.947 for the maps prepared by considering conventional method and scenario earthquakes having M w values of 5.5 and 7.5, respectively.  相似文献   

4.
The main purpose of this study is to develop a new hazard evaluation technique considering the current limitations, particularly for shallow landslides. For this purpose, the Buyukkoy catchment area, located in the East Black Sea Region in the east of Rize province and the south of Cayeli district, was selected as the study area. The investigations were executed in four different stages. These were (1) preparation of a temporal shallow landslide inventory of the study area, (2) assessment of conditioning factors in the catchment, (3) susceptibility analyses and (4) hazard evaluations and mapping. A total of 251 shallow landslides in the period of 1955–2007 were recognised using different data sources. A ‘Sampling Circle’ approach was proposed to define shallow landslide initiation in the mapping units in susceptibility evaluations. To accomplish the susceptibility analyses, the method of artificial neural networks was implemented. According to the performance analyses conducted using the training and testing datasets, the prediction and generalisation capacities of the models were found to be very high. To transform the susceptibility values into hazard rates, a new approach with a new equation was developed, taking into account the behaviour of the responsible triggering factor over time in the study area. In the proposed equation, the threshold value of the triggering factor and the recurrence interval are the independent variables. This unique property of the suggested equation allows the execution of more flexible and more dynamic hazard assessments. Finally, using the proposed technique, shallow landslide initiation hazard maps of the Buyukkoy catchment area for the return periods of 1, 2, 5, 10, 50 and 100 years were produced.  相似文献   

5.
Assessing landslide exposure in areas with limited landslide information   总被引:4,自引:2,他引:2  
Landslide risk assessment is often a difficult task due to the lack of temporal data on landslides and triggering events (frequency), run-out distance, landslide magnitude and vulnerability. The probability of occurrence of landslides is often very difficult to predict, as well as the expected magnitude of events, due to the limited data availability on past landslide activity. In this paper, a qualitative procedure for assessing the exposure of elements at risk is presented for an area of the Apulia region (Italy) where no temporal information on landslide occurrence is available. Given these limitations in data availability, it was not possible to produce a reliable landslide hazard map and, consequently, a risk map. The qualitative analysis was carried out using the spatial multi-criteria evaluation method in a global information system. A landslide susceptibility composite index map and four asset index maps (physical, social, economic and environmental) were generated separately through a hierarchical procedure of standardising and weighting. The four asset index maps were combined in order to obtain a qualitative weighted assets map, which, combined with the landslide susceptibility composite index map, has provided the final qualitative landslide exposure map. The resulting map represents the spatial distribution of the exposure level in the study area; this information could be used in a preliminary stage of regional planning. In order to demonstrate how such an exposure map could be used in a basic risk assessment, a quantification of the economic losses at municipal level was carried out, and the temporal probability of landslides was estimated, on the basis of the expert knowledge. Although the proposed methodology for the exposure assessment did not consider the landslide run-out and vulnerability quantification, the results obtained allow to rank the municipalities in terms of increasing exposure and risk level and, consequently, to identify the priorities for designing appropriate landslide risk mitigation plans.  相似文献   

6.
Shallow landslides induced by heavy rainfall events represent one of the most disastrous hazards in mountainous regions because of their high frequency and rapid mobility. Recent advancements in the availability and accessibility of remote sensing data, including topography, land cover and precipitation products, allow landslide hazard assessment to be considered at larger spatial scales. A theoretical framework for a landslide forecasting system was prototyped in this study using several remotely sensed and surface parameters. The applied physical model SLope-Infiltration-Distributed Equilibrium (SLIDE) takes into account some simplified hypotheses on water infiltration and defines a direct relation between factor of safety and the rainfall depth on an infinite slope. This prototype model is applied to a case study in Honduras during Hurricane Mitch in 1998. Two study areas were selected where a high density of shallow landslides occurred, covering approximately 1,200 km2. The results were quantitatively evaluated using landslide inventory data compiled by the United States Geological Survey (USGS) following Hurricane Mitch’s landfall. The agreement between the SLIDE modeling results and landslide observations demonstrates good predictive skill and suggests that this framework could serve as a potential tool for the future early landslide warning systems. Results show that within the two study areas, the values of rates of successful estimation of slope failure locations reached as high as 78 and 75%, while the error indices were 35 and 49%. Despite positive model performance, the SLIDE model is limited by several assumptions including using general parameter calibration rather than in situ tests and neglecting geologic information. Advantages and limitations of this physically based model are discussed with respect to future applications of landslide assessment and prediction over large scales.  相似文献   

7.
提高降雨型滑坡危险性预警精度和空间辨识度具有重要意义.以江西宁都县1980—2001年156个降雨型滑坡为例,首先基于传统的EE-D(early effective rainfall-rainfall duration)阈值法计算不同降雨诱发滑坡的时间概率级别;然后以各级别临界降雨阈值曲线对应的时间概率为因变量,并以对应的前期有效降雨量(early effective rainfall,EE)和降雨历时(D)为自变量,采用逻辑回归拟合出上述因变量与自变量之间的非线性关系,得到降雨诱发滑坡的连续概率值;之后对比C5.0决策树和多层感知器的滑坡易发性预测性能;最后利用降雨诱发滑坡的连续概率值与易发性图相耦合以实现连续概率滑坡危险性预警.结果显示:(1)宁都降雨型滑坡连续概率值的逻辑回归方程为1/P=1+e4.062+0.747 4×D-0.079 44×EE,其拟合优度为0.983;(2)2002—2003年的20处用于连续概率阈值测试的降雨型滑坡大都落在连续概率值大于0.7的区域,只有4处落在小于0.7的区域;(3)C5.0决策树预测滑坡易发性的精度显著高于多层感知器;(4)近5年的4次降雨型滑坡的连续概率危险性值都在0.8以上,且高和极高预警区的面积较传统滑坡危险性分区更小.可见连续概率滑坡危险性预警法相较于传统危险性分区法具有更高的预警精度和空间辨识度,且通过叠加滑坡易发性图及其临界降雨阈值可开展实时滑坡危险性预警制图.   相似文献   

8.
The increased socio-economic significance of landslides has resulted in the application of statistical methods to assess their hazard, particularly at medium scales. These models evaluate where, when and what size landslides are expected. The method presented in this study evaluates the landslide hazard on the basis of homogenous susceptible units (HSU). HSU are derived from a landslide susceptibility map that is a combination of landslide occurrences and geo-environmental factors, using an automated segmentation procedure. To divide the landslide susceptibility map into HSU, we apply a region-growing segmentation algorithm that results in segments with statistically independent spatial probability values. Independence is tested using Moran’s I and a weighted variance method. For each HSU, we obtain the landslide frequency from the multi-temporal data. Temporal and size probabilities are calculated using a Poisson model and an inverse-gamma model, respectively. The methodology is tested in a landslide-prone national highway corridor in the northern Himalayas, India. Our study demonstrates that HSU can replace the commonly used terrain mapping units for combining three probabilities for landslide hazard assessment. A quantitative estimate of landslide hazard is obtained as a joint probability of landslide size, of landslide temporal occurrence for each HSU for different time periods and for different sizes.  相似文献   

9.
Landslides are a significant hazard in many parts of the world and represent an important geohazard in China. Rainfall is the primary triggering agent for landslides and often used for prediction slope failures. However, the relationship between rainfall and landslide occurrences is very complex. Great efforts have been made on the study of regional rainfall-induced landslide forecasting models in recent years; still, there is no commonly accepted method for rainfall-induced landslide prediction. In this paper, the quantitative antecedent soil water status (ASWS) model is applied to investigate the influence of daily and antecedent rainfall on the triggering of landslides and debris flows. The study area is Wudu County in Gansu Province, an area which exhibits frequent landslide occurrences. The results demonstrate a significant influence of high intensity rainfall events on landslide triggering. Still, antecedent rainfall conditions are very important and once a threshold of approximately 20 mm is exceeded, landslides and debris flows can occur even without additional rainfall. The study presented could also facilitate the implementation of a regional forecasting scheme once additional validation has been carried out.  相似文献   

10.
Landslide hazard in a region limited to data from a regional scale about triggering factors is assessed via cross tabulation between determining factors and landslides with recent activity. Firstly, landslide susceptibility was evaluated and validated through a bivariate statistical method between the previously identified stability conditioning factors and the mapped landslides. In this way, the most susceptible areas for assessing landslide hazards were selected. The main problem to solve in this type of research is the landslide activity. For this purpose, several techniques were applied: news reports, differential interferometric synthetic aperture radar, digital photogrammetry, light detection and ranging, photointerpretation, and dendrochronology. Both the strong and weak points of these techniques are also mentioned. The landslide return period was computed via the association between landslide activity and triggering factors, in this case annual rainfall. Finally, landslide hazard was mapped solely based on landslides with recent activity and their computed return period. The relationship between landslide occurrence and triggering factors shows that, according to both the considered assumptions and the observations made, deep-seated landslides are triggered or reactivated together with superficial landslides once every 18 years, while superficial landslides as flows or falls occur once every 5 years. The results show that there is generally a low landslide hazard in the study zone, especially when compared to landslide susceptibility. This means that landslides are mainly dormant from a natural evolution point of view, but could be reactivated as a result of geomorphological, climate, or human changes. In any case, the landslide hazard is successfully assessed, with a prediction of a 6% annual probability of a high hazard in 5% of the area, intersecting with the main infrastructures of the region; thus, control strategies are justified in order to avoid damage in extraordinary rainfall periods.  相似文献   

11.
The constant threat from landslides in the northeastern part of Istria, Croatia, calls for the need to apply accurate and reliable methods in landslide hazard assessment in order to prevent landslide damage and to set an early warning system if necessary. Furthermore, landslide susceptibility and hazard assessment enable optimal area management and regional urban planning. The study area is in the northeastern and central part of the Istrian Peninsula, well known as an area of frequent, small and shallow slope instability phenomena. Landslide susceptibility assessment in the area around the city of Buzet was performed using a deterministic landslide susceptibility model in the LS-RAPID software. LS-RAPID was developed to analyze stability at one single location, but the performed analysis has shown that LS-RAPID can be used as a powerful tool in landslide susceptibility and hazard assessment on regional scale. The objective of this paper is to establish the influence of the runout potential on the enlargement of the landslide-susceptible zones, due to expansion of the failure area around the initial failure zone. Performed analysis of rainfall return periods shows the frequency of landslide occurrence and provides the possible correlation with the time component of landslide hazard in the area.  相似文献   

12.
The article deals with a tool for landslides susceptibility assessment as a function of the hydrogeological setting at different scales. The study has been applied to a test area located in Southern Italy. First, a 3D groundwater flow model was implemented for a large-scale area. The simulation of several groundwater conditions compared with the landslide activity map allows drawing a hydrogeological susceptibility map. Then, a slope scale analysis was carried out for the Cavallerizzo landslide. For this purpose, a 2D groundwater parametrical modeling was coupled with a slope stability analysis; the simulation was carried out by changing the values of the main hydrogeological parameters (recharge, groundwater supply level, etc.). The results enabled to connect the slope instability to some hydrogeological characteristics that are easy to survey and to monitor (e.g., rainfall, piezometrical level, and spring discharge), pointing out the hazard thresholds with regards to different triggering phenomena.  相似文献   

13.
Satellite remote sensing data has significant potential use in analysis of natural hazards such as landslides. Relying on the recent advances in satellite remote sensing and geographic information system (GIS) techniques, this paper aims to map landslide susceptibility over most of the globe using a GIS-based weighted linear combination method. First, six relevant landslide-controlling factors are derived from geospatial remote sensing data and coded into a GIS system. Next, continuous susceptibility values from low to high are assigned to each of the six factors. Second, a continuous scale of a global landslide susceptibility index is derived using GIS weighted linear combination based on each factor’s relative significance to the process of landslide occurrence (e.g., slope is the most important factor, soil types and soil texture are also primary-level parameters, while elevation, land cover types, and drainage density are secondary in importance). Finally, the continuous index map is further classified into six susceptibility categories. Results show the hot spots of landslide-prone regions include the Pacific Rim, the Himalayas and South Asia, Rocky Mountains, Appalachian Mountains, Alps, and parts of the Middle East and Africa. India, China, Nepal, Japan, the USA, and Peru are shown to have landslide-prone areas. This first-cut global landslide susceptibility map forms a starting point to provide a global view of landslide risks and may be used in conjunction with satellite-based precipitation information to potentially detect areas with significant landslide potential due to heavy rainfall.  相似文献   

14.
Liu  Chun  Li  Weiyue  Wu  Hangbin  Lu  Ping  Sang  Kai  Sun  Weiwei  Chen  Wen  Hong  Yang  Li  Rongxing 《Natural Hazards》2013,69(3):1477-1495

Landslides are occurring more frequently in China under the conditions of extreme rainfall and changing climate, according to News reports. Landslide hazard assessment remains an international focus on disaster prevention and mitigation, and it is an important step for compiling and quantitatively characterizing landslide damages. This paper collected and analyzed the historical landslide events data of the past 60 years in China. Validated by the frequencies and distributions of landslides, nine key factors (lithology, convexity, slope gradient, slope aspect, elevation, soil property, vegetation coverage, flow, and fracture) are selected to construct landslide susceptibility (LS) empirical models by back-propagation artificial neural network method. By integrating landslide empirical models with surface multi-source geospatial and remote sensing data, this paper further performs a large-scale LS assessment throughout China. The resulting landslide hazard assessment map of China clearly illustrates the hot spots of the high landslide potential areas, mostly concentrated in the southwest. The study implements a complete framework of multi-source data collecting, processing, modeling, and synthesizing that fulfills the assessment of LS and provides a theoretical basis and practical guide for predicting and mitigating landslide disasters potentially throughout China.

  相似文献   

15.
The purpose of this study is to produce a landslide susceptibility map for the lower Mae Chaem watershed, northern Thailand using a Geographic Information System (GIS) and remotely sensed images. For this purpose, past landslide locations were identified from satellite images and aerial photographs accompanied by the field surveys to create a landslide inventory map. Ten landslide-inducing factors were used in the susceptibility analysis: elevation, slope angle, slope aspect, lithology, distance from lineament, distance from drainage, precipitation, soil texture, land use/land cover (LULC), and NDVI. The first eight factors were prepared from their associated database while LULC and NDVI maps were generated from Landsat-5 TM images. Landslide susceptibility was analyzed and mapped using the frequency ratio (FR) model that determines the level of correlation between locations of past landslides and the chosen factors and describes it in terms of frequency ratio index. Finally, the output map was validated using the area under the curve (AUC) method where the success rate of 80.06% and the prediction rate of 84.82% were achieved. The obtained map can be used to reduce landslide hazard and assist with proper planning of LULC in the future.  相似文献   

16.
This paper addresses the temporal variation of rainfall-triggered landslide hazard within the broader context of natural risk evolution. Analysis of a sequence of aerial photos covering a period of 60 years allowed the establishment of a record of landsliding for a site in the Wellington region, New Zealand. The data show one very dominant peak in the magnitude of landslide occurrence in the late 1970s, followed by a continuous decrease. Landslide hazard can be expressed by the frequency and magnitude of the landslide events, with the total surface area affected used as a surrogate for magnitude. However, the distinct decline of landslide magnitude through time from the 1980s onwards indicates that landslide hazard may change with time. This possibility is further explored by correlating potential landslide triggering storms with the magnitude of the landslide event, using the ‘Antecedent Soil Water Status’ model in combination with daily rainfall. The relation between magnitudes of rainfall and magnitudes of landslide events is found to be weak, suggesting that a given ‘Critical Water Content’ (antecedent soil water status and rainfall on the day) does not produce similar magnitudes of landsliding. Furthermore, the study shows that reactivation of previous landslides before the peak landslide occurrence of the late 1970s is low, while the situation is reversed after this peak and reactivation in the subsequent years plays a larger role. It is concluded that the pattern of landsliding cannot be explained by the pattern of rainfall and other factors are controlling the variation of landslide hazard in time. A possible explanation is a change of the geomorphological system with time, instigated by a massive period of landsliding (the late 1970s peak). Subsequent sediment exhaustion of source areas resulting from this period appears to alter the system’s subsequent reaction to an external trigger such as rainfall. The study demonstrates that landslide hazard analysis in general should not rely on the integral of the frequency–magnitude relationship only, but should include potential non-linear changes of system settings to increase the understanding of future system behaviour, and therefore hazard and risk.
Gabi HufschmidtEmail:
  相似文献   

17.
Owing to fragile geo-morphology, extreme climatic conditions, and densely populated settlements and rapid development activities, West Java Province is the most landslide hazardous area in Indonesia. So, a landslide risk map for this province bears a great importance such as for land-use planning. It is however widely accepted that landslide risk analysis is often difficult because of the difficulties involved in landslide hazard assessment and estimation of consequences of future landslide events. For instance, lack of multi-temporal inventory map or records of triggering events is often a major problem in landslide hazard mapping. In this study, we propose a simple technique for converting a landslide susceptibility map into a landslide hazard map, which we have employed for landslide risk analysis in one ideally hazardous part of volcanic mountains in West Java Province. The susceptibility analysis was carried out through correlation between past landslides and eight spatial parameters related to instability, i.e. slope, aspect, relative relief, distance to river, geological units, soil type, land use and distance to road. The obtained susceptibility map was validated using cross-time technique, and was collaborated with the frequency-area statistics to respond to ‘when landslide will occur’ and ‘how large it will be’. As for the judgment of the consequences of future landslides, expert opinion was used considering available literature and characteristic of the study area. We have only considered economic loss in terms of physical damage of buildings, roads and agricultural lands for the landslide risk analysis. From this study, we understand the following: (1) the hazard map obtained from conversion of the susceptibility map gives spatial probability and the area of an expected landslide will be greater than 500m2 in the next 2 years, (2) the landslide risk map shows that 24% of the total area is in high risk; 30% in moderate risk; 45% in low risk and no risk covers only 1% of the total area, and (3) the loss will be high in agricultural lands, while it will be low in the road structures and buildings.  相似文献   

18.
Landslides are one of the most frequent and common natural hazards in Malaysia. Preparation of landslide susceptibility maps is one of the first and most important steps in the landslide hazard mitigation. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. For this reason, a number of different approaches have been used, including direct and indirect heuristic approaches, deterministic, probabilistic, statistical, and data mining approaches. Moreover, these landslides can be systematically assessed and mapped through a traditional mapping framework using geoinformation technologies. Since the early 1990s, several mathematical models have been developed and applied to landslide hazard mapping using geographic information system (GIS). Among various approaches, fuzzy logic relation for mapping landslide susceptibility is one of the techniques that allows to describe the role of each predisposing factor (landslide-conditioning parameters) and their optimal combination. This paper presents a new attempt at landslide susceptibility mapping using fuzzy logic relations and their cross application of membership values to three study areas in Malaysia using a GIS. The possibility of capturing the judgment and the modeling of conditioning factors are the main advantages of using fuzzy logic. These models are capable to capture the conditioning factors directly affecting the landslides and also the inter-relationship among them. In the first stage of the study, a landslide inventory was complied for each of the three study areas using both field surveys and airphoto studies. Using total 12 topographic and lithological variables, landslide susceptibility models were developed using the fuzzy logic approach. Then the landslide inventory and the parameter maps were analyzed together using the fuzzy relations and the landslide susceptibility maps produced. Finally, the prediction performance of the susceptibility maps was checked by considering field-verified landslide locations in the studied areas. Further, the susceptibility maps were validated using the receiver-operating characteristics (ROC) success rate curves. The ROC curve technique is based on plotting model sensitivity—true positive fraction values calculated for different threshold values versus model specificity—true negative fraction values on a graph. The ROC curves were calculated for the landslide susceptibility maps obtained from the application and cross application of fuzzy logic relations. Qualitatively, the produced landslide susceptibility maps showed greater than 82% landslide susceptibility in all nine cases. The results indicated that, when compared with the landslide susceptibility maps, the landslides identified in the study areas were found to be located in the very high and high susceptibility zones. This shows that as far as the performance of the fuzzy logic relation approach is concerned, the results appeared to be quite satisfactory, the zones determined on the map being zones of relative susceptibility.  相似文献   

19.
四川雅安市雨城区地质灾害预警系统研究   总被引:1,自引:0,他引:1  
侯圣山  李昂  周平根 《地学前缘》2007,14(6):160-165
区域地质灾害的敏感性评价与诱发因素评价是区域群发性地质灾害预警预报的基础。文中以四川雅安市雨城区为例,系统介绍了区域地质灾害预警预报的方法。在区域地质灾害敏感性评价及区域降雨监测的基础上,研究了降雨诱发区域群发性地质灾害的规律,得出了地质灾害降雨阈值。研究了降雨诱发地质灾害预警预报的方法,建立了大中比例尺的地质灾害预警预报系统,并在四川雅安雨城区开展了系统运行。文中论述的方法可以用于县(市)级的地质灾害预警预报工作。模拟运行及实际运行效果表明,本方法效果较好,能够在类似区域进行推广。  相似文献   

20.
Landslide hazard or susceptibility assessment is based on the selection of relevant factors which play a role on the slope instability, and it is assumed that landslides will occur at similar conditions to those in the past. The selected statistical method compares parametric maps with the landslide inventory map, and results are then extrapolated to the entire evaluated territory with a final product of landslide hazard or susceptibility map. Elements at risk are defined and analyzed in relation with landslide hazard, and their vulnerability is thus established. The landslide risk map presents risk scenarios and expected financial losses caused by landslides, and it utilizes prognoses and analyses arising from the landslide hazard map. However, especially the risk scenarios for future in a selected area have a significant importance, the literature generally consists of the landslide susceptibility assessment and papers which attempt to assess and construct the map of the landslide risk are not prevail. In the paper presented herein, landslide hazard and risk assessment using bivariate statistical analysis was applied in the landslide area between Hlohovec and Sered?? cities in the south-western Slovakia, and methodology for the risk assessment was explained in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号