首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical groundwater flow and mass transport model was developed to predict the extent of impact from methyl tertiary butyl ether (MTBE) release on a down-gradient drinking water well field. An MTBE incident in Pascoag, Rhode Island, was used as a case study and the plume’s past and future development was simulated using scenario analysis. The numerical code used was GeoSys/Rockflow, which permits a coupled flow and transport simulation as one object, thus alleviating the need for simulating the MTBE fate with separate flow and transport codes. The numerical model was built on available hydrogeological and chemical data as well as on GIS information of the site. By comparing the simulated results with observed field data, it was found that the model could provide reliable results even when the simulated aquifer was simplified to a two-dimensional flow and transport domain. Finally, the calibrated model was used for exploring a location that may be suitable for a new well field. Despite the model limitations associated with uncertainties of data and simplifying assumptions, numerical modeling of this MTBE contaminated site proved a useful tool and provided guidance for future municipal well field operation strategies and aquifer remediation alternatives.  相似文献   

2.
山东淄博市大武水源地裂隙岩溶水中污染物运移的数值研究   总被引:11,自引:0,他引:11  
朱学愚  刘建立 《地学前缘》2001,8(1):171-178
在分析研究淄博市大武水源地裂隙岩溶含水层的水力性质和污染物运移特征的基础上 ,对裂隙岩溶水的水头和污染物运移进行数值研究。目前国内外对裂隙岩溶水进行数值计算时 ,通常用等价多孔介质模型 ,但裂隙岩溶介质和多孔介质有很大不同。裂隙岩溶介质的储水和导水空间为裂隙网络 ,导水系数大 ,地下水的实际平均流速比孔隙水大得多 ,但给水度和贮水系数小。当用等价多孔介质模型进行模拟时应考虑这些特点。对于污染物运移的模拟 ,要同时求解水头方程和对流弥散方程 ,可采用MODFLOW和MT3D软件进行模拟。研究区裂隙岩溶水水头的数值计算表明 ,等效多孔介质模型水头的拟合误差能满足国标GB/T144 97- 93的要求。各时段地下水水量均衡计算的精度也满足要求。对流弥散方程的数值计算 ,由于Peclet数高达 95 .6 7,对流占绝对优势 ,可能存在数值弥散和数值振荡 ,因而采用多种方法进行了比较。对于同一问题 ,同时采用上游有限差分法 (UFDM) ,混合的欧拉拉格朗日方法 (特征线法MOC、改进特征线法MMOC和混合特征线法HMOC) ,总变异消减法(TVD)进行计算 ,并比较其结果。结果表明 ,混合特征线法 (HMOC)和总变异消减法 (TVD)比较适合于对流占优势的运移问题计算。由于渗透系数K和有效孔隙度θ对溶质运移结果的影响很大 ,?  相似文献   

3.
Hydrogeological research was performed to establish the origin of organic-rich water in a Quaternary aquifer (Wielkopolska Buried Valley aquifer, Poland). The spatial distribution of such water was determined by means of multilevel sampling with a packer. The nature, spatial distribution and chemistry of the organic-rich water suggest hydraulic connection between the Quaternary aquifer and the underlying Neogene aquifer. This connection may be enabled by an old abandoned, improperly plugged well, and must therefore be considered as an artificial hydraulic connection between hydrogeologically separated aquifers. For the verification of this hypothesis, a groundwater contaminant transport model was constructed. The results of contaminant transport modeling allow the contaminant transport parameters (transverse and longitudinal dispersivity) to be identified in the field. The numerical groundwater model was used for the prognosis of organic-rich water remediation, and for specification of water-resource management principles in the region where organic-rich water occurs. The results of this research enable the verification of assumptions regarding complex groundwater flow conditions in the boundary zone of a buried valley.  相似文献   

4.
The migration of contaminant through soil is usually modeled using the advection‐dispersion equation and assumes that the porous media is stationary without introducing a constitutive equation to represent soil structure. Consequently, time‐dependent deformation induced by soil consolidation or physical remediation is not considered, despite the need to consider these variables during planning for the remediation of contaminated ground, the prediction of contaminated groundwater movement, and the design of engineered landfills. This study focuses on the numerical modeling of solute transfer during consolidation as a first step to resolve some of these issues. We combine a coupling theory‐based mass conservation law for soil‐fluid‐solute phases with finite element modeling to simulate solute transfer during deformation and groundwater convection. We also assessed the sensitivity of solute transfer to the initial boundary conditions. The modeling shows the migration of solute toward the ground surface as a result of ground settlement and the dissipation of excess pore water pressure. The form of solute transport is dependent on the ground conditions, including factors such as the loading schedule, contamination depth, and water content. The results indicate that an understanding of the interaction between coupling phases is essential in predicting solute transfer in ground deformation and could provide an appropriate approach to ground management for soil remediation.  相似文献   

5.
Interaction of various physical, chemical and biological transport processes plays an important role in deciding the fate and migration of contaminants in groundwater systems. In this study, a numerical investigation on the interaction of various transport processes of BTEX in a saturated groundwater system is carried out. In addition, the multi-component dissolution from a residual BTEX source under unsteady flow conditions is incorporated in the modeling framework. The model considers Benzene, Toluene, Ethyl Benzene and Xylene dissolving from the residual BTEX source zone to undergo sorption and aerobic biodegradation within the groundwater aquifer. Spatial concentration profiles of dissolved BTEX components under the interaction of various sorption and biodegradation conditions have been studied. Subsequently, a spatial moment analysis is carried out to analyze the effect of interaction of various transport processes on the total dissolved mass and the mobility of dissolved BTEX components. Results from the present numerical study suggest that the interaction of dissolution, sorption and biodegradation significantly influence the spatial distribution of dissolved BTEX components within the saturated groundwater system. Mobility of dissolved BTEX components is also found to be affected by the interaction of these transport processes.  相似文献   

6.
The movement of chemicals through soil to groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. The study of the effects of different factors involved in transport phenomena can provide valuable information to find the best remediation approaches. Numerical models are increasingly being used for predicting or analyzing solute transport processes in soils and groundwater. This article presents the development of a stochastic finite element model for the simulation of contaminant transport through soils with the main focus being on the incorporation of the effects of soil heterogeneity in the model. The governing equations of contaminant transport are presented. The mathematical framework and the numerical implementation of the model are described. The comparison of the results obtained from the developed stochastic model with those obtained from a deterministic method and some experimental results shows that the stochastic model is capable of predicting the transport of solutes in unsaturated soil with higher accuracy than deterministic one. The importance of the consideration of the effects of soil heterogeneity on contaminant fate is highlighted through a sensitivity analysis regarding the variance of saturated hydraulic conductivity as an index of soil heterogeneity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
卢文喜  罗建男  辛欣  陈社明 《地球科学》2012,37(5):1075-1081
根据含水层中水、表面活性剂和DNAPLs的运移规律和相互作用机理, 建立三维多相流数值模拟模型, 用以模拟表面活性剂强化的DNAPLs污染含水层的修复过程.将所建立的模型应用于一个被PCE污染的非均质含水层中, 并分别对污染物的污染过程以及修复过程进行模拟.研究结果表明: 数值模拟模型给出了表面活性剂强化含水层修复过程中非水相流体迁移转化的数学描述, 能够在短时间内、参数有限的条件下真实地刻画DNAPLs在含水层中的运移规律, 并能有效地模拟表面活性剂的修复过程.此外, 模拟结果显示, 由于表面活性剂对PCE的增溶增流作用, 有效地提高了PCE在水中的溶解性和迁移性, 其修复40 d的去除率达到63.5%, 与抽出处理法(去除率为31.8%)相比修复效果明显增强.   相似文献   

8.
9.
含水层非均质性的刻画是模拟地下水中污染物运移的关键。以渗透系数为研究对象,构建了综合集合卡尔曼滤波方法、有效电阻率模型与地下水运移模型的同化框架,通过融合地球物理观测数据与污染物浓度观测数据来推估渗透系数的空间分布。基于理想算例,验证了该同化框架刻画含水层非均质渗透系数场的有效性,并针对不同初始参数信息与观测类型对比了耦合与非耦合水文地球物理方法的适用性。研究结果表明:基于集合卡尔曼滤波方法同化多种类型的观测数据,可有效地推估非均质参数空间分布。当初始信息较准确时,耦合方法的参数推估精度更高;初始信息存在偏差时,非耦合方法有更好的同化效果。由于非耦合方法计算成本较低且对初始信息缺失时适用性更强,在实际应用中可先基于非耦合方法初步估计参数,再利用耦合方法进一步提高参数推估精度。融合多种类型观测数据可有效提高参数推估效果。  相似文献   

10.
In this paper, the hydraulic characteristics of the fracture-karst aquifer and the distribution patterns of petrochemical contaminants are studied. Then, a numerical model using the mixed Eulerian-Lagrangian approach is constructed to predict the distribution and transport of petrochemical compounds in groundwater. The results of numerical modelling and sensitivity analysis show that it may be a workable way for aquifer remediation to combine contamination sources control and capture zone establishment.  相似文献   

11.
地下水和土壤环境中雌激素运移和归宿的研究进展   总被引:1,自引:0,他引:1  
环境内分泌干扰物已成为引起全球关注的环境问题;地下水和包气带土壤中雌激素的富集、运移和归宿关系到人类和生态健康。本文通过对环境雌激素的性质、分类、检测方法等方面进行综述,揭示其对生物体乃至环境的多种危害和风险,针对地下水和土壤环境特征分析其迁移转化过程、理解其控制和治理技术方法,进而为降低雌激素的生态和环境风险提供指导。通过论述研究环境雌激素的重要意义,提出对雌激素对地下水系统污染防控可能研究领域进行系统展望。  相似文献   

12.
Sediment capping is a remedial option for managing contaminated sediments that involves the artificial placement of a layer of material over a contaminated area. Sorbent materials such as activated C and coke can be used to amend sand caps to improve cap performance. In this study, analytical and numerical modelling approaches were compared for predicting contaminant fate and transport in sediment caps using several diffusion-controlled and advection-dominated contaminant transport scenarios. An analytical tool was used to predict cap performance at steady-state. These results were compared with the results from the numerical CoReTranS model in which the effective diffusivity and degradation rates were modelled as discontinuous functions at a prescribed bioturbation depth. The numerical approach was also applied to modelling a sorptive cap. It was shown that, while the analytical approach can be used to predict steady-state contaminant transport, the numerical approach is needed to evaluate multiple sediment layers with different transport and sorption characteristics and to examine the transient performance between the time that the single layer transient is applicable (i.e., before penetration of the cap containment layer) and until steady-state in the upper layer. For the 30 cm thick sand cap that was considered in this study, the predicted time to reach steady-state conditions for a diffusion-controlled scenario is 1 ka. For an advection-dominated transport, the time to reach steady-state conditions is reduced to 100 a. The activated C-amended sand cap was more effective in isolating the contaminant within the sorbent layer for a sustained period of time (∼100 a). Results from both modelling approaches showed that capping can effectively reduce contaminant flux to the overlying water with critical variables being cap thickness, groundwater velocity, and sediment sorptivity.  相似文献   

13.
Arsenic (As) contamination in groundwater in mineralized areas typically results from the oxidation of As-rich sulfide minerals in aquifers, from hydrothermal alteration of geothermal systems, or as a result of anthropogenic influences such as mining activity. The primary goal of this study was to determine the spatial and temporal variance in As concentrations in shallow groundwater in a mineralized area and to identify the main As source controlling the concentration patterns. To this end, a combination of a geostatistical technique for space–time modeling of As concentrations and a numerical simulation, which models the transport of As in groundwater, is implemented. A study site in North Sulawesi, Sulawesi Island, Indonesia was selected as it was suitable for investigating the importance of fault lines and metal mining on As contamination. Initially, stable isotope analysis was used to ascertain the groundwater source and the mixing mechanism of the shallow and deep groundwater. Geostatistical modeling revealed consistent general patterns of As concentrations during the past 10 years, with high concentrations found along a NW–SE axis. By matching the geostatistical results with the distributions of As concentrations obtained through transport modeling, the deep-seated hydrothermal system along the fault zone was found to be the major As source. Wastewater from the mine was also observed to be a local As source. Another important influence on the As concentration pattern was a river, which acted as a boundary to separate the groundwater systems into two regions.  相似文献   

14.
放射性废物处置研究进展   总被引:1,自引:0,他引:1  
放射性废物的处置是制约核能可持续发展的关键因素,目前已成为国际社会关注的热点问题之一.针对处置场地核素运移污染的风险问题,对放射性废物的处置及其选址、核素运移试验和核素运移模型进行了回顾和论述.指出采用多重屏障系统进行放射性废物的处置,其安全性是可以得到保障的;处置场的选址应遵循就近原则,并应从环境水文地质的角度来构建...  相似文献   

15.
魏恒  肖洪浪 《冰川冻土》2013,35(6):1582-1589
在地下水的相关研究中,农药和石油等地下水污染、土地盐碱化、海水入侵等诸多实际问题主要的研究方法都涉及地下水溶质迁移模拟. 相比地下水水流模拟的相对完善,对溶质迁移的模拟比较薄弱且迁移过程本身复杂性较高,目前地下水溶质迁移的研究工作还处在全面发展的阶段. 文中阐述了反映地下水溶质迁移机理和过程的数学模型,综述了溶质迁移模拟在地下水污染物防治、土地盐碱化、海水入侵、石油和放射性废物扩散等问题的诸多应用,归类了目前溶质迁移模拟所使用的对流迁移、对流-弥散模拟等主要数值方法,并对这些方法的优缺点和应用实例做了总结. 最后,分析了目前溶质迁移模拟中存在的不足,展望了未来在参数确定、裂隙介质运移机理和多相介质条件下运移模拟可能取得的突破.  相似文献   

16.
Tsang  CF 《地球科学》2000,25(5):443-450
对大空间尺度和长时间跨度的地下水流动及污染物质运移进行预测的需求, 使水文地质研究面临异乎寻常的挑战.这些需求来自于对核废料地质储放方法的安全性评价、地下水污染状况评价及其治理方案的选择.流动系统的非均质性是地下水流动及物质运移模拟中最主要的困难之一, 这种困难来自对非均质系统进行特征描述(通过原位观测实现)、概念化及模拟.评述了非均质介质中流动运移模拟的一些重要问题与挑战, 讨论了解决的途径.讨论的主题包括: 动力流动的沟道化, 示踪剂穿透曲线, 裂隙岩石中流体流动的多尺度, 观测的不同尺度, 模拟、预测与非均质性以及系统特征描述和预测性模拟的分析.   相似文献   

17.
Monitored natural attenuation can be a viable option for remediation of groundwater contamination by BTEX compounds. Under the field conditions, the rate of contaminant mass attenuation through natural processes, such as biodegradation, to a large extent affected by the groundwater flow regime, which is primarily controlled by the aquifer heterogeneity. Numerical simulation techniques were used to describe quantitatively the relationship between biodegradation rate of BTEX and aquifer heterogeneity. Different levels of aquifer heterogeneity were described by random hydraulic conductivity fields (K) having different statistical parameters, the coefficient of variation (CV) and the correlation length (h). The Turning Bands Algorithm was used to generate such K fields. Visual MODFLOW/RT3D was used to simulate the fate and transport of dissolved BTEX plume within heterogeneous aquifers. The multispecies reactive transport approach described BTEX degradation using multiple terminal electron-accepting processes. First-order biodegradation rate constants were calculated from simulated BTEX plumes in heterogeneous flow fields. The results showed that aquifer heterogeneity significantly affected biodegradation rate; it decreased with increasing CV when h was in the range of up to 12 m, whereas it increased with increasing CV when h was greater than about 12 m. For well characterized aquifers, this finding could be of great value in assessing the effectiveness of natural attenuation during feasibility studies at BTEX contaminated sites.  相似文献   

18.
针对非饱和带中油类污染物时空分布的研究,室内实验很难定量分析运移机理,野外检测成本高且破坏地层。数值模拟法作为一种应用广且成熟的方法,可以用来分析油类污染物在非饱和带中的运移规律。为了研究单井抽提及原位冲洗修复时,含单裂隙非饱和带中轻非水相流体(Light non-aqueous phase liquids,LNAPL)的时空变化规律,建立了数值模型,分析不同条件下LNAPL的修复效果及时空变化规律。模拟结果发现,LNAPL注入时优先流入裂隙,停止注入时优先流出裂隙。单井抽提修复模拟表明,抽提流量越大,修复效率越高。原位冲洗技术能有效补充地下水,防止产生新的环境问题;注水井起到“冲洗”及稀释污染物的作用,模拟最优方案修复面积达到96%,修复率达到75%,LNAPL饱和度控制在约0.05;对比分析发现,注水井布设在污染物范围的上边界时修复效果最好,能有效“冲洗”污染物并携带至抽提井中抽出地表。该研究为受轻油污染的土壤及地下水修复提供了科学的理论依据及有效的评估方法。  相似文献   

19.
[研究目的]:中国地下水污染调查和修复日益受到科学界的重视,了解和掌握地下水污染修复方法和技术有助于对污染场地进行科学修复.[研究方法]:本文在系统分析国内外地下水污染修复案例的基础上,对中国地下水污染修复现场实施的技术方法进行总结.[研究结果]:结合中国区域经济发展特征和地下水污染调查评价成果认为,复杂的水文地质条件...  相似文献   

20.
Precise and efficient numerical simulation of transport processes in subsurface systems is a prerequisite for many site investigation or remediation studies. Random walk particle tracking (RWPT) methods have been introduced in the past to overcome numerical difficulties when simulating propagation processes in porous media such as advection-dominated mass transport. Crucial for the precision of RWPT methods is the accuracy of the numerically calculated ground water velocity field. In this paper, a global node-based method for velocity calculation is used, which was originally proposed by Yeh (Water Resour Res 7:1216–1225, 1981). This method is improved in three ways: (1) extension to unstructured grids, (2) significant enhancement of computational efficiency, and (3) extension to saturated (groundwater) as well as unsaturated systems (soil water). The novel RWPT method is tested with numerical benchmark examples from the literature and used in two field scale applications of contaminant transport in saturated and unsaturated ground water. To evaluate advective transport of the model, the accuracy of the velocity field is demonstrated by comparing several published results of particle pathlines or streamlines. Given the chosen test problem, the global node-based velocity estimation is found to be as accurate as the CK method (Cordes and Kinzelbach in Water Resour Res 28(11):2903–2911, 1992) but less accurate than the mixed or mixed-hybrid finite element methods for flow in highly heterogeneous media. To evaluate advective–diffusive transport, a transport problem studied by Hassan and Mohamed (J Hydrol 275(3–4):242–260, 2003) is investigated here and evaluated using different numbers of particles. The results indicate that the number of particles required for the given problem is decreased using the proposed method by about two orders of magnitude without losing accuracy of the concentration contours as compared to the published numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号