首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Nutrient inputs have degraded estuaries worldwide. We investigated the sources and effects of nutrient inputs by comparing water quality at shallow (< 2m deep) nearshore (within 200 m) locations in a total of 49 Chesapeake subestuaries and Mid-Atlantic coastal bays with differing local watershed land use. During July–October, concentrations of total nitrogen (TN), dissolved ammonium, dissolved inorganic N (DIN), and chlorophyll a were positively correlated with the percentages of cropland and developed land in the local watersheds. TN, DIN, and nitrate were positively correlated with the ratio of watershed area to subestuary area. Total phosphorus (TP) and dissolved phosphate increased with cropland but were not affected by developed land. The relationships among N, P, chlorophyll a, and land use suggest N limitation of chlorophyll a production from July–October. We compared our measurements inside the subestuaries to measurements by the Chesapeake Bay Program in adjacent estuarine waters outside the subestuaries. TP and dissolved inorganic P concentrations inside the subestuaries correlated with concentrations outside the subestuaries. However, water quality inside the subestuaries generally differed from that in adjacent estuarine waters. The concentration of nitrate was lower inside the subestuaries, while the concentrations of other forms of N, TP, and chlorophyll a were higher. This suggests that shallow nearshore waters inside the subestuaries import nitrate while exporting other forms of N as well as TP and chlorophyll a. The importance of local land use and the distinct biogeochemistry of shallow waters should be considered in managing coastal systems.  相似文献   

2.
We developed a synthesis using diverse monitoring and modeling data for Mattawoman Creek, Maryland, USA to examine responses of this tidal freshwater tributary of the Potomac River estuary to a sharp reduction in point-source nutrient loading rate. Oligotrophication of these systems is not well understood; questions concerning recovery pathways, threshold responses, and lag times remain to be clarified and eventually generalized for application to other systems. Prior to load reductions Mattawoman Creek was eutrophic with poor water clarity (Secchi depth <0.5 m), no submerged aquatic vegetation (SAV), and large algal stocks (50–100 μg L?1 chlorophyll-a). A substantial modification to a wastewater treatment plant reduced annual average nitrogen (N) loads from 30 to 12 g N m?2 year?1 and phosphorus (P) loads from 3.7 to 1.6 g P m?2 year?1. Load reductions for both N and P were initiated in 1991 and completed by 1995. There was no trend in diffuse N and P loads between 1985 and 2010. Following nutrient load reduction, NO2?+?NO3 and chlorophyll-a decreased and Secchi depth and SAV coverage and density increased with initial response lag times of one, four, three, one, and one year, respectively. A preliminary N budget was developed and indicated the following: diffuse sources currently dominate N inputs, estimates of long-term burial and denitrification were not large enough to balance the budget, sediment recycling of NH4 was the single largest term in the budget, SAV uptake of N from sediments and water provided a modest seasonal-scale N sink, and the creek system acted as an N sink for imported Potomac River nitrogen. Finally, using a comparative approach utilizing data from other shallow, low-salinity Chesapeake Bay ecosystems, strong relationships were found between N loading and algal biomass and between algal biomass and water clarity, two key water quality variables used as indices of restoration in Chesapeake Bay.  相似文献   

3.
Abundance of the prymnesiophyte Phaeocystis pouchetii was quantified via light microscopy at 2-week to monthly intervals in Massachusetts Bay (southern Gulf of Maine, NW Atlantic) during 1992–2012. Variability in the abundance and seasonal cycle of Phaeocystis are described and synoptic hydrographic, nutrient, and meteorological data were analyzed to identify factors that may influence Phaeocystis abundance. The maximum Phaeocystis abundance was 14?×?106 cells L?1 (10 Apr 2008). It was frequently (5 of 8 years) absent prior to year 2000, but not thereafter. Seasonally, it first appeared in February to early March, reached peak abundance in mid-April, and persisted until May or early June for a duration of 0–112 days (mean 34 days). A long-term alternation between Phaeocystis and centric diatom abundance was apparent, suggesting winter-spring selection of either Phaeocystis or centric diatoms. Phytoplankton community analysis suggested that blooms affected the rest of the phytoplankton community. Phaeocystis blooms were manifest as a substantial increase in particulate nutrients above normal levels. Phaeocystis blooms were preceded in February by a slightly elevated concentration of NO3 (9.3 vs. 6.5 μM when absent) and PO4 (0.99 vs. 0.79 μM when absent). Blooms were also preceded by elevated ratios of NO3/PO4, NO3/Si, and PO4/Si, and warmer, saltier waters reflecting reduced river discharge. The correlation with salinity and river discharge suggests that Phaeocystis bloom variability is partially determined by annually varying circulation processes that determine the degree of low nutrient, low salinity coastal water intrusion into Massachusetts Bay.  相似文献   

4.
Increased frequency and severity of droughts, as well as growing human freshwater demands, in the Apalachicola-Chattahoochee-Flint River Basin are expected to lead to a long-term decrease in freshwater discharge to Apalachicola Bay (Florida). To date, no long-term studies have assessed how river discharge variability affects the Bay’s phytoplankton community. Here a 14-year time series was used to assess the influence of hydrologic variability on the biogeochemistry and phytoplankton biomass in Apalachicola Bay. Data were collected at 10 sites in the bay along the salinity gradient and include drought and storm periods. Riverine dissolved inorganic nitrogen and phosphate inputs were correlated to river discharge, but chlorophyll a (Chl a) was similar between periods of drought and average/above-average river discharge in most of the Bay. Results suggest that the potentially negative impact of decreased riverine nutrient input on Bay phytoplankton biomass is mitigated by the nutrient buffering capacity of the estuary. Additionally, increased light availability, longer residence time, and decreased grazing pressures may allow more Chl a biomass to accumulate during drought. In contrast to droughts, tropical cyclones and subsequent increases in river discharge increased flushing and reduced light penetration, leading to reduced Chl a in the Bay. Analysis of the time series revealed that Chl a concentrations in the Bay do not directly mirror the effect of riverine nutrient input, which is masked by multiple interacting mechanisms (i.e., nutrient loading and retention, grazing, flushing, light penetration) that need to be considered when projecting the response of Bay Chl a to changes in freshwater input.  相似文献   

5.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

6.
Seagrass populations have been declining globally, with changes attributed to anthropogenic stresses and, more recently, negative effects of global climate change. We examined the distribution of Zostera marina (eelgrass) dominated beds in the York River, Chesapeake Bay, VA over an 8-year time period. Using a temperature-dependent light model, declines in upriver areas were associated with higher light attenuation, resulting in lower light availability relative to compensating light requirements of Z. marina compared with downriver areas. An inverse relationship was observed between SAV growth and temperature with a change between net bed cover increases and decreases for the period of 2004–2011 observed at approximately 23 °C. Z. marina-dominated beds in the lower river have been recovering from a die-off event in 2005 and experienced another near complete decline in 2010, losing an average of 97 % of coverage of Z. marina from June to October. These 2010 declines were attributed to an early summer heat event in which daily mean water temperatures increased from 25 to 30 °C over a 2-week time period, considerably higher than previous years when complete die-offs were not observed. Z. marina recovery from this event was minimal, while Ruppia maritima (widgeongrass) expanded its abundance. Water temperatures are projected to continue to increase in the Chesapeake Bay and elsewhere. These results suggest that short-term exposures to rapidly increasing temperatures by 4–5 °C above normal during summer months can result in widespread diebacks that may lead to Z. marina extirpation from historically vegetated areas, with the potential replacement by other species.  相似文献   

7.
8.
As part of our study of the components of the hierarchic quadruple system ADS 11061, we acquired spectroscopic observations of the binary 40 Dra. Echelle spectra showing the separation of the components’ lines were obtained in the spectral range 3700–9200 Å. Effective temperatures and surface gravities were derived for the components from BV photometry and the hydrogen-line profiles. The components of the 40 Dra system have parameters close to T eff a = 6420 K, log g a = 4.17, T eff b = 6300 K, and log g b = 4.20. We find the microturbulence velocity in the component atmospheres to be V t = 2.6 km/s. The abundances of iron, carbon, nitrogen, and oxygen in the atmospheres of both components are estimated to be log N(Fe)a = 7.50, log N(Fe)b = 7.46, log N(C)a = 8.39, log N(C)b = 8.45, log N(N)a = 8.12, log(N)b = 8.15, log N(O)a = 8.77, log N(O)b = 8.74.  相似文献   

9.
The properties of the source spectra of local shallow-focus earthquakes on Kamchatka in the range of magnitudes M w = 3.5–6.5 are studied using 460 records of S-waves obtained at the PET station. The family of average source spectra is constructed; the spectra are used to study the relationship between M w and the key quasi-dimensionless source parameters: stress drop Δσ and apparent stress σa. It is found that the parameter Δσ is almost stable, while σa grows steadily as the magnitude M w increases, indicating that the similarity is violated. It is known that at sufficiently large M w the similarity hypothesis is approximately valid: both parameters Δσ and σa do not show any noticeable magnitude dependence. It has been established that M w ≈ 5.7 is the threshold value of the magnitude when the change in regimes described occurs for the conditions on Kamchatka.  相似文献   

10.
For petrological calculations, including geothermobarometry and the calculation of phase diagrams (for example, PT petrogenetic grids and pseudosections), it is necessary to be able to express the activity–composition (ax) relations of minerals, melt and fluid in multicomponent systems. Although the symmetric formalism—a macroscopic regular model approach to ax relations—is an easy-to-formulate, general way of doing this, the energetic relationships are a symmetric function of composition. We allow asymmetric energetics to be accommodated via a simple extension to the symmetric formalism which turns it into a macroscopic van Laar formulation. We term this the asymmetric formalism (ASF). In the symmetric formalism, the ax relations are specified by an interaction energy for each of the constituent binaries amongst the independent set of end members used to represent the phase. In the asymmetric formalism, there is additionally a "size parameter" for each of the end members in the independent set, with size parameter differences between end members accounting for asymmetry. In the case of fluid mixtures, for example, H2O–CO2, the volumes of the end members as a function of pressure and temperature serve as the size parameters, providing an excellent fit to the ax relations. In the case of minerals and silicate liquid, the size parameters are empirical parameters to be determined along with the interaction energies as part of the calibration of the ax relations. In this way, we determine the ax relations for feldspars in the systems KAlSi3O8–NaAlSi3O8 and KAlSi3O8–NaAlSi3O8–CaAl2Si2O8, for carbonates in the system CaCO3–MgCO3, for melt in the melting relationships involving forsterite, protoenstatite and cristobalite in the system Mg2SiO4–SiO2, as well as for fluids in the system H2O–CO2. In each case the ax relations allow the corresponding, experimentally determined phase diagrams to be reproduced faithfully. The asymmetric formalism provides a powerful and flexible way of handling ax relations of complex phases in multicomponent systems for petrological calculations.  相似文献   

11.
The objective of this study was to examine the interaction between the Atchafalaya River and the Atchafalaya Delta estuarine complex. Measurements of suspended sediments, inorganic nutrients (NO3 ?, NH4 +, PO4 3?), chlorophylla (chla), and-salinity were taken monthly from December 1996 to January 1998. These data were compiled by season, and the Atchafalaya River plume data were also analyzed using the Generalized Additive Model technique. There were significant decreases in NO3 ? concentrations during summer, fall, and winter as river water passed through the estuary, that were attributable to chemical and biological processes rather than dilution with ambient water. In some regions there were higher chla concentrations during summer and fall compared to winter and spring, when river discharge and the introduction of inorganic nutrients were highest, suggesting biological processes were active during this study. The presence of NH4 +, as a percentage of available dissolved inorganic nitrogen, increased with distance from the Atchafalaya River, indicative of remineralization processes and NO3 ? reduction. Mean PO4 3? concentrations were often higher in the estuarine regions compared to the Atchafalaya River. During summer total suspended solid (TSS) concentrations increased with distance from the river mouth, suggesting a turbidity maximum. Highest chla concentrations were found in the bayous and shallow water bodies of the Terrebonne marshes, as were the lowest TSS concentrations. The low chla concentrations found in other areas of this study, despite high inorganic nutrient concentrations, suggest light limitation as the major control of phytoplankton growth. Salinity reached near seawater concentrations at the outer edge of the Atchafalaya River plume, but much lower salinities (<10 psu) were observed at all other regions. The Atchafalaya Delta estuarine complex buffers the impact of the Atchafalaya River on the Louisiana coastal shelf zone, with a 41% of 47% decrease in Atchafalaya River NO3 ? concentrations before reaching Gulf waters.  相似文献   

12.
The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (= 16.753(4), = 13.797(3) and = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V 0 = 1,155(4) Å3, K T0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a 3, b 3, c 3) for the volume. The refined axial-EoS parameters are: a 0 = 16.701(44) Å, K T0a = 14(2) GPa (βa = 0.024(3) GPa?1), K′ a = 6.2(8) for the a-axis; b 0 = 13.778(20) Å, K T0b = 21(3) GPa (βb = 0.016(2) GPa?1), K′ b = 10(2) for the b-axis; c 0 = 5.018(7) Å, K T0c = 33(3) GPa (βc = 0.010(1) GPa?1), K′ c = 3.2(8) for the c-axis (K T0a:K T0b:K T0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes.  相似文献   

13.
The results of photometric observations of the dwarf nova GY Cnc in the Rc filter acquired in 2013–2015 (~3900 orbital cycles, 19 nights in total) are presented, including observations during its outburst in April 2014. The binary’s orbital elements have been refined. The orbital period has changed only insignificantly during the ~30 000Porb since the earlier observations; no systematic O–C variations were detected, only fluctuations within 0.004d on time scales of 1500–2000Porb. A “combined” model is used to solve for the parameters of GY Cnc during two states of the system. The flux from the white dwarf is negligible due to the star’s small size. The temperature of the donor star, T2 ~ 3667 K (Sp M0.2 V), varies between 3440 and 3900 K (Sp K8.8–M1.7 V). The semi-major axis of the disk is a ~ 0.22a0, on average. In quiescence, a varies within ~40%. The disk has a considerable eccentricity (e ~ 0.2?0.3) for a < 0.2a0. The disk shape becomes more circular (e < 0.1) with increasing a. The outburst of GY Cnc was associated with increased luminosity of the disk due to the parameter αg (related to the viscosity of the disk material) decreasing to 0.1–0.2 and the temperature in the inner parts of the disk increasing twofold, to Tin ~ 95 000 K. These changes were apparently due to the infall of matter onto the surface of the white dwarf as the outburst developed. All parameters of the accretion disk in quiescence display considerable variations about their mean values.  相似文献   

14.
We obtained speckle interferometric and spectroscopic observations of the system 41 Dra during its periastron passage in 2001. The components’ lines are resolved in the spectral interval 3700–9200 Å. The observed wavelength dependence of the brightness difference between the components is used to estimate the B-V indices separately for each of the components: B-V = 0.511 for component a and B-V = 0.502 for component b. We derived improved effective temperatures of the components from their B-V values and hydrogen-line profiles. The observations can be described with the parameters for the components T eff a = 6370 K, log ga = 4.05 and T eff b = 6410 K, log gb = 4.20. The iron, carbon, nitrogen, and oxygen abundances in the atmospheres of the components are log N(Fe)a = 7.55, log N(Fe)b = 7.60, log N(C)a = 8.52, log N(C)b = 8.58, log N(N)a = 8.05, log N(N)b = 7.99, log N(O)a = 8.73, log N(O)b = 8.76.  相似文献   

15.
Optically homogeneous augite xenocrysts, closely associated with spinel–peridotite nodules, occur in alkali basalts from Hannuoba (Hebei province, China). They were studied by electron and X-ray diffraction to define the occurrence and significance of pigeonite exsolution microtextures. Sub-calcic augite (Wo34) exsolved into En62–62Fs25–21Wo13–17 pigeonite and En46–45Fs14–14Wo40–42 augite, as revealed by TEM through diffuse coarser (001) lamellae (100–300 Å) and only incipient (100) thinner ones (<70 Å). C2/c augite and P21/c pigeonite lattices, measured by CCD-XRD, relate through a(Aug)?a(Pgt), b(Aug)?b(Pgt), c(Aug)≠c(Pgt) [5.278(1) vs 5.189(1)Å] and β(Aug)≠β(Pgt) [106.55(1) vs 108.55(2)°]. Cell and site volumes strongly support the hypothesis that the augite xenocrysts crystallised at mantle depth from alkaline melts. After the augite xenocrysts entered the magma, (001) lamellae first formed by spinodal decomposition at a Tmin of about 1,100 °C, and coarsened during very rapid transport to the surface; in a later phase, possibly on cooling, incipient (100) lamellae then formed.  相似文献   

16.
Larvae of Atlantic croaker Micropogonias undulatus enter Mid-Atlantic Bight estuaries annually between September and February. A high prevalence of ectoparasitic crustacean infection of ingressing larval M. undulatus was observed in Chesapeake Bay; this ectoparasite was identified as a species of Lepeophtheirus within the copepod family Caligidae from analysis of cytochrome oxidase I sequences and scanning electron microscopy. Between 2007 and 2011, seasonal differences in prevalence were observed, with higher infection rates on fall ingressing larvae (20 % mean monthly infection rate) than in larvae entering the estuary in the winter (monthly infection rate of 6 %); the head region had the highest parasite attachment rate, being observed in 78 % of the infected fish. The potential effects of this ectoparasite on larval M. undulatus could include reductions in feeding (and thus growth) and increased susceptibility to predation.  相似文献   

17.
In this paper, a study on the performance of surface irrigation of date palms in a Tunisian arid area (Douz oasis) is presented. The study is conducted in 16 plots with various sizes and soil textures over a 4-year period (2012–2015). In the first step, an assessment of total water requirements of the date palms is carried out. Then, the surface irrigation performance is analyzed using three indicators, i.e., the relative water supply (RWS) indicator, the uniformity index of water distribution (D U ), and the water application efficiency (E a ). Finally, the irrigation management problems are identified. The results indicate that in the arid Tunisian Saharan oases, the soil texture, plot size, and farmers’ practices (especially irrigation duration) have significant effects on surface irrigation performance. The average annual net irrigation requirements of date palms are about 2400 mm. The RWS increases from 1.8 in the smaller plots (0.5 ha) to 3.6 in the largest plots (2.5 ha), implying that the increase in the plot size requires an excessive water supply. D U decreases from 80.7 in the 0.5 ha plots to 65.4 in the 2.5 ha plots; however, no significant difference in the E a is observed. The results show that the soil texture has no influence on the RWS and D U , but the E a is significantly higher in the loamy-sand soils (46.7%) compared to the sandy soils (36.3%). Overall, RWS indicator is higher than 1 (RWS?=?2.6) implying excessive irrigation supply to the system. Although D U is relatively uniform (>?60%), E a is relatively low (<?50%) indicating that the current irrigation management is inefficient. These findings have a paramount importance for improving irrigation water management in the Tunisian Saharan oases.  相似文献   

18.
Synchrotron-based in situ angle-dispersive X-ray diffraction experiments were conducted on a natural uvite-dominated tourmaline sample by using an external-heating diamond anvil cell at simultaneously high pressures and temperatures up to 18 GPa and 723 K, respectively. The angle-dispersive X-ray diffraction data reveal no indication of a structural phase transition over the P–T range of the current experiment in this study. The pressure–volume–temperature data were fitted by the high-temperature Birch–Murnaghan equation of state. Isothermal bulk modulus of K 0 = 96.6 (9) GPa, pressure derivative of the bulk modulus of \(K_{0}^{\prime } = 12.5 \;(4)\), thermal expansion coefficient of α 0 = 4.39 (27) × 10?5 K?1 and temperature derivative of the bulk modulus (?K/?T) P  = ?0.009 (6) GPa K?1 were obtained. The axial thermoelastic properties were also obtained with K a0 = 139 (2) GPa, \(K_{a0}^{\prime }\) = 11.5 (7) and α a0 = 1.00 (11) × 10?5 K?1 for the a-axis, and K c0 = 59 (1) GPa, \(K_{c0}^{\prime }\) = 11.4 (5) and α c0 = 2.41 (24) × 10?5 K?1 for the c-axis. Both of axial compression and thermal expansion exhibit large anisotropic behavior. Thermoelastic parameters of tourmaline in this study were also compared with that of the other two ring silicates of beryl and cordierite.  相似文献   

19.
A high-pressure single-crystal X-ray diffraction study has been carried out on a P21/c natural Mg-rich pigeonite sample with composition ca. Wo6En76Fs18 using a diamond anvil-cell. The unit-cell parameters were determined at 14 different pressures to 7.14 GPa. The sudden disappearance of the b-type reflections (h + k = odd) and a strong discontinuity (about 2.8%) in the unit-cell volume indicated a first-order P21/cC2/c phase transition between 4.66 and 4.88 GPa. The P(V) data of the P21/c phase were fitted to 4.66 GPa by a third-order Birch–Murnaghan equation of state (BM3 EoS), whereas the limited number of experimental data collected within the C2/c phase between 4.88 and 7.14 GPa were fitted using the same equation of state but with K′ constrained to the value obtained for the P21/c fitting. The equation of state coefficients are V 0 = 424.66(6) Å3, K T0 = 104(2) GPa and K′ = 8(1) for the P21/c phase, and V 0 = 423.6(1) Å3, K T0 = 112.4(8) GPa, and K′ fixed to 8(1) for the C2/c phase. The axial moduli for a, b, and c for the P21/c phase were obtained using also a BM3-EoS, while for the C2/c phase only a linear calculation could be performed, and therefore the same approach was applied for comparison also to the P21/c phase. In general the C2/c phase exhibits axial compressibilities (β c > β a >> β b) lower than those of the P21/c phase (β b > β c ≈ β a; similar to those found in previous studies in clinopyroxenes and orthopyroxenes). The lower compressibility of the C2/c phase compared with that of the P21/c could be ascribed to the greater stiffness along the b direction. A previously published relationship between P c and M2 average cation radius (i.r.) has been updated using all the literature data on P21/c clinopyroxene containing large cations at M2 site and our new data. The following weighted regression was obtained: P c (GPa) = 26(4) ? 28(5) ×  i.r (Å), R 2 = 0.97. This improved equation can be used to predict the critical pressure of natural P21/c clinopyroxene samples just knowing the composition at M2 site.  相似文献   

20.
The crystal structure of mangan-neptunite, a manganese analogue of neptunite, has been refined in two space groups (Cc and C2/c). The mineral is monoclinic, with the correct space group Cc; the unit-cell dimensions are: a = 16.4821(6), b = 12.5195(4), c = 10.0292(3) Å, β = 115.474(1)°, and V = 1868.31 Å3. The crystal structure has been refined to R 1 = 0.0307 (wR 2 = 0.0901) on the basis of 4892 observed reflections with |F hkl | ≥ 4σ|F hkl |. The most plausible acentric model is caused by the Ti- and (Fe, Mn, Mg)-ordering in the structure. Ti-octahedrons are strongly distorted and consist of short bond Ti-O (1.7 Å), one long bond (2.2 Å), and four equal bonds (2.0 Å). Fe-octahedrons are regularly shaped, with all Fe-O bonds being approximately identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号