首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Pudukkottai region in the northeastern part of the Madurai Block exposes the garnetiferous pink granite that intruded the biotite gneiss. Charnockite patches are associated with both the rock types. Rb–Sr biotite and Sm–Nd whole-rock isochron ages indicate a regional uplift and cooling at ~550 Ma. The initial Nd isotope ratios (\(\varepsilon _{\text {Nd}}^{\mathrm {t}}=-20\) to ?22) and Nd depleted-mantle model ages (TDM = 2.25 to 2.79 Ga) indicate a common crustal source for the pink-granite and associated charnockite, while the biotite gneiss and the charnockite within it represent an older crustal source (\(\varepsilon _{\text {Nd}}^{\mathrm {t}}= -29\) and TDM = > 3.2 Ga). The Rb–Sr whole-rock data and initial Sr–Nd isotope ratios also help demonstrate the partial but systematic equilibration of Sr isotope and Rb/Sr ratios during metamorphic mineral-reactions resulting in an ‘apparent whole-rock isochron’. The available geochronological results from the Madurai Block indicate four major periods of magmatism and metamorphism: Neoarchaean–Paleoproterozoic, Mesoproterozoic, mid-Neoproterozoic and late-Neoproterozoic. We suggest that the high-grade and ultrahigh-temperature metamorphism was preceded by magmatism which ‘prepared’ the residual crust to sustain the high PT conditions. There also appears to be cyclicity in the tectono-magmatic events and an evolutionary model for the Madurai Block should account for the cyclicity in the preserved records.  相似文献   

2.
3.
The close intergrowth of two native alloys of the compositions Ni0.59Cu0.24Al0.15Fe0.01Mn0.01 and Pd0.55Pt0.36Rh0.09 with a size of 10 μm has been discovered in the regolith from the Mare Crisium. A conclusion on its exhalative origin is made.  相似文献   

4.
Doklady Earth Sciences - This paper reports new data on the Early Ordovician age established for granitoids of the gabbro—tonalite–trondhjemite complex in the Denisovka ophiolite zone...  相似文献   

5.
Previously published and new data on secondary transformations of the globular and platy phyllosilicates of the glauconite–illite series from the Upper Proterozoic terrigenous rocks of the Olenek and Anabar uplifts (East Siberia), Srednii Peninsula (Murmansk coast), and Vendian–Cambrian boundary rocks of the Podolian Dniester area (Ukraine) are generalized for the first time. Plastic deformation, aluminization, chloritization, berthierinization, as well as replacement of phyllosilicates of different morphology by corrensite- chlorite and pyrite at different lithogenesis stages, are considered and lithological-mineralogical characteristics of the glauconite-bearing rocks are reported. The structural, crystal-chemical, genetic, and isotopegeochronological features of di- and trioctahedral phyllosilicates are discussed.  相似文献   

6.
Wang  Xinwei  Mao  Xiang  Mao  Xiaoping  Li  Kewen 《Mathematical Geosciences》2020,52(6):783-800
Mathematical Geosciences - Study of the characteristics and classification of geothermal gradients can effectively guide the exploration and development of geothermal resources. In this paper, we...  相似文献   

7.
A new interpretation of the seismic profile series for the Taimyr Orogen and the Yenisei–Khatanga Basin is given in terms of their tectonics and geological history. The tectonics and tectonostratigraphy of the Yenisei–Khatanga and the Khatanga–Lena basins are considered. In the Late Vendian and Early Paleozoic, a passive continental margin and postrift shelf basin existed in Taimyr and the Yenisei–Khatanga Basin. From the Early Carboniferous to the Mid-Permian, the North and Central Taimyr zones were involved in orogeny. The Late Paleozoic foredeep was formed in the contemporary South Taimyr Zone. In the Middle to Late Triassic, a new orogeny took place in the large territory of Taimyr and the Noril’sk district of the Siberian Platform. A synorogenic foredeep has been recognized for the first time close to the Yenisei–Khatanga Basin. In the Jurassic and Early Cretaceous, this basin was subsided under transpressional conditions. Thereby, anticlinal swells were formed from the Callovian to the Aptian. Their growth continued in the Cenozoic. The Taimyr Orogen underwent tectonic reactivation and apparently right-lateral transpression from Carboniferous to Cenozoic.  相似文献   

8.
A series of benched excavations were typically carried out on the bedrock slope surface to improve the stability of the soil–rock mixture (S–RM) fill slope. It is difficult to devise an in situ, large-scale direct shear test for the interphase between the S–RM fill and the benched bedrock slope surface. This study introduced a comprehensive approach to investigate the shear deformation and strength of the interphase. First the soil–rock distribution characteristics were analyzed by test pitting, image analysis, and sieve test. Then the PFC2D random structure models with different rock block size distributions were built, and large-scale numerical shear tests for the interphase were performed after calibrating model parameters through laboratory tests. The stress evolution, damage evolution and failure, deformation localization (based on a principle proposed in this paper), rotation of rock blocks, and shear strength were systematically investigated. It was found that as the rock block proportion and rock block size (rock block proportion of 50 %) increase, the fluctuations of the post-peak shear stress–displacement curves of the interphase become more obvious, and the shear band/localized failure path network becomes wider. Generally, smaller rock blocks are of greater rotation angles in the shear band. The peak shear stress and internal friction angle of the interphase increase, while the cohesion decreases with growth of the rock block proportion. However, all these three parameters increase as the rock block size (rock block proportion of 50 %) increases.  相似文献   

9.
The product covariance model, the product–sum covariance model, and the integrated product and integrated product–sum models have the advantage of being easily fitted by the use of marginal variograms. These models and the use of the marginals are described in a series of papers by De Iaco, Myers, and Posa. Such models allow not only estimating values at nondata locations but also prediction in future times, hence, they are useful for analyzing air pollution data, meteorological data, or ground water data. These three kinds of data are nearly always multivariate and because the processes determining the deposition or dynamics will affect all variates, a multivariate approach is desirable. It is shown that the use of marginal variograms for space–time modeling can be extended to the multivariate case and in particular to the use of the Linear Coregionalization Model (LCM) for cokriging in space–time. An application to an environmental data set is given.  相似文献   

10.
11.
Trifonov  V. G.  Sokolov  S. Yu.  Sokolov  S. A.  Hessami  K. 《Geotectonics》2020,54(3):331-355
Geotectonics - Abstract—Mesozoic‒Cenozoic tectonic zoning and its evolution are characterized by analysis of geological data on the Black Sea–Caucasus–Caspian region. The...  相似文献   

12.
Reef formation in the Late Ordovician was relatively widespread in the Sandbian and Katian times. In the late Katian, it gradually reduced and ended in the Hirnantian, before the end of the Ordovician. In parallel, reef-building skeleton frame-building biota disappeared and was replaced with algae and calcimicrobes.  相似文献   

13.
The genesis of mineralized systems across the Mountain Freegold area, in the Dawson Range Cu–Au?±?Mo Belt of the Tintina Au province was constrained using Pb and stable isotope compositions and Ar–Ar and Re–Os geochronology. Pb isotope compositions of sulfides span a wide compositional range (206Pb/204Pb, 18.669–19.861; 208Pb/204Pb, 38.400–39.238) that overlaps the compositions of the spatially associated igneous rocks, thus indicating a magmatic origin for Pb and probably the other metals. Sulfur isotopic compositions of sulfide minerals are broadly similar and their δ34S (Vienna-Canyon Diablo Troilite (V-CDT)) values range from ?1.4 to 3.6 ‰ consistent with the magmatic range, with the exception of stibnite from a Au–Sb–quartz vein, which has δ34S values between ?8.1 and ?3.1 ‰. The δ34S values of sulfates coexisting with sulfide are between 11.2 and 14.2 ‰; whereas, those from the weathering zone range from 3.7 to 4.3 ‰, indicating supergene sulfates derived from oxidation of hypogene sulfides. The δ13C (Vienna Peedee Belemnite (VPDB)) values of carbonate range from ?4.9 to 1.1 ‰ and are higher than magmatic values. The δ18O (V-SMOW) values of magmatic quartz phenocrysts and magmatic least-altered rocks vary between 6.2 and 10.1 ‰ and between 5.0 and 10.1 ‰, respectively, whereas altered magmatic rocks and hydrothermal minerals (quartz and magnetite) are relatively 18O-depleted (4.2 to 7.9 ‰ and ?6.3 to 1.5 ‰, respectively). Hydrogen isotope compositions of both least-altered and altered igneous rock samples are D-depleted (from ?133 to ?161 ‰ Vienna-Standard Mean Ocean Water (V-SMOW)), consistent with differential magma degassing and/or post-crystallization exchange between the rocks and meteoric ground water. Zircon from a chlorite-altered dike has a U–Pb crystallization age of 108.7?±?0.4 Ma; whereas, the same sample yielded a whole-rock Ar–Ar plateau age of 76.25?±?0.53 Ma. Likewise, molybdenite Re–Os model ages range from 75.8 to 78.2 Ma, indicating the mineralizing events are genetically related to Late Cretaceous volcano-plutonic intrusions in the area. The molybdenite Re–Os ages difference between the nearby Nucleus (75.9?±?0.3 to 76.2?±?0.3 Ma) and Revenue (77.9?±?0.3 to 78.2?±?0.3 Ma) mineral occurrences suggests an episodic mineralized system with two pulses of hydrothermal fluids separated by at least 2 Ma. This, in combination with geological features suggest the Nucleus deposit represents the apical and younger portion of the Revenue–Nucleus magmatic-hydrothermal system and may suggest an evolution from the porphyry to the epithermal environments.  相似文献   

14.
Syn-orogenic detachments in accretionary wedges make the exhumation of high-pressure and low-temperature metamorphic rocks possible with little erosion. The velocity of exhumation within the subduction channel or the accretionary complex, and thus the shape of PT paths, depend upon the kinematic boundary conditions. A component of slab retreat tends to open the channel and facilitates the exhumation. We document the effect of slab retreat on the shape of PT paths using the example of the Phyllite–Quartzite Nappe that has been exhumed below the Cretan syn-orogenic detachment during the Miocene in Crete and the Peloponnese. Data show a clear tendency toward colder conditions at peak pressure and during exhumation where the intensity of slab retreat is larger. This spatial evolution of PT gradient is accompanied with an evolution from a partly coaxial regime below the Peloponnese section of the detachment toward a clearly non-coaxial regime in Crete.  相似文献   

15.
The patterns and history of Mesozoic–Cenozoic plume magmatism in the Arctic is considered in relation with suprasubduction volcanism and geodynamic events. The Mesozoic–Cenozoic magmatic history of the area includes seven stages, distinguished by correlation of ages and compositions of volcanics associated with mid-ocean rifting, plumes, and subduction; three of seven stages correspond to global events at 230–200 Ma, 130–120 Ma, and 40–30 Ma. The reported study supports the inferred inverse correlation between plate velocities and amount of subduction-related volcanism. The gained knowledge is used for paleotectonic reconstructions in the Arctic.  相似文献   

16.
Spectra of the REE distribution in the Quaternary–Recent peat bog ore of southern Karelia and Leningrad region are characterized by LaN/YbN < 1.0, presence of positive Eu and negative Ce anomalies, and higher Y enrichment (relative to Ho and Dy) because of the REE sorption by Fe-bearing minerals in acid boggy waters. The 87Sr/86Sr ratio is 0.7175 in iron oxyhydroxides of the Somino deposit (Leningrad region) and 0.7283 in the Polovinkino ore (southern Karelia). The 143Nd/144Nd ratio in them is 0.511844 and 0.511617, respectively.  相似文献   

17.
We have investigated melting relations in the Fe–O–S ternary system in the pressure range of 15–27 GPa and 1873 K. Subsolidus phase relations are Fe, Fe3S2, and FeO up to 17 GPa and Fe, Fe3S, and FeO above this pressure. The eutectic temperature slightly decreases from ambient pressure to 17 GPa, whereas increases above this pressure. The eutectic temperature in this study is 100 K lower than that in the Fe–S binary system. The oxygen content in the Fe–O–S eutectic liquid drops when the coexisting solid phases changes from FeS to Fe3S2. The cotectic lines in the ternary phase diagram lie close to the Fe–FeS binary axis. The isothermal sections indicate that oxygen solubility in the Fe–O–S liquid increases with increasing temperature, and with increasing sulfur content. The solubility of sulfur in the solid Fe has a maximum value at the eutectic temperature, and decreases with increasing temperature. Our results could have important implications for formation and composition of the Martian core.  相似文献   

18.
Located in the western Yangtze Block, the Qingshan Pb–Zn deposit, part of the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province, contains 0.3 million tonnes of 9.86 wt.% Pb and 22.27 wt.% Zn. Ore bodies are hosted in Carboniferous and Permian carbonate rocks, structurally controlled by the Weining–Shuicheng anticline and its intraformational faults. Ores composed of sphalerite, galena, pyrite, dolomite, and calcite occur as massive, brecciated, veinlets, and disseminations in dolomitic limestones.

The C–O isotope compositions of hydrothermal calcite and S–Pb–Sr isotope compositions of Qingshan sulphide minerals were analysed in order to trace the sources of reduced sulphur and metals for the Pb–Zn deposit. δ13CPDB and δ18OSMOW values of calcite range from –5.0‰ to –3.4‰ and +18.9‰ to +19.6‰, respectively, and fall in the field between mantle and marine carbonate rocks. They display a negative correlation, suggesting that CO2 in the hydrothermal fluid had a mixed origin of mantle, marine carbonate rocks, and sedimentary organic matter. δ34S values of sulphide minerals range from +10.7‰ to +19.6‰, similar to Devonian-to-Permian seawater sulphate (+20‰ to +35‰) and evaporite rocks (+23‰ to +28‰) in Carboniferous-to-Permian strata, suggesting that the reduced sulphur in hydrothermal fluids was derived from host-strata evaporites. Ores and sulphide minerals have homogeneous and low radiogenic Pb isotope compositions (206Pb/204Pb = 18.561 to 18.768, 207Pb/204Pb = 15.701 to 15.920, and 208Pb/204Pb = 38.831 to 39.641) that plot in the upper crust Pb evolution curve, and are similar to those of Devonian-to-Permian carbonate rocks. Pb isotope compositions suggest derivation of Pb metal from the host rocks. 87Sr/86Sr ratios of sphalerite range from 0.7107 to 0.7136 and (87Sr/86Sr)200Ma ratios range from 0.7099 to 0.7126, higher than Sinian-to-Permian sedimentary rocks and Permian Emeishan flood basalts, but lower than Proterozoic basement rocks. This indicates that the ore strontium has a mixture source of the older basement rocks and the younger cover sequence. C–O–S–Pb–Sr isotope compositions of the Qingshan Pb–Zn deposit indicate a mixed origin of the ore-forming fluids and metals.  相似文献   

19.
20.
The Linghou deposit, located near Hangzhou City of Zhejiang Province, eastern China, is a medium-sized polymetallic sulfide deposit associated with granitic intrusion. This deposit is structurally and lithologically controlled and commonly characterized by ore veins or irregular ore lenses. In this deposit, two mineralization events were identified, of which the former produced the Cu–Au–Ag orebodies, while the latter formed Pb–Zn–Cu orebodies. Silicification and calc-silicate (skarn type), phyllic, and carbonate alternation are four principal types of hydrothermal alteration. The early Cu–Au–Ag and late Pb–Zn–Cu mineralizations are characterized by quartz ± sericite + pyrite + chalcopyrite + bornite ± Au–Ag minerals ± magnetite ± molybdenite and calcite + dolomite + sphalerite + pyrite + chalcopyrite + galena, respectively. Calcite clusters and calcite ± quartz vein are formed during the late hydrothermal stage.The NaCl–H2O–CO2 system fluid, coexisting with NaCl–H2O system fluid and showing the similar homogenization temperatures (385 °C and 356 °C, respectively) and different salinities (16.89–21.68 wt.% NaCl eqv. and 7.70–15.53 wt.% NaCl eqv.), suggests that fluid immiscibility occurred during the Cu–Au–Ag mineralization stage and might have given rise to the ore-metal precipitation. The ore-forming fluid of the Pb–Zn–Cu mineralization mainly belongs to the NaCl–H2O–CO2 system of high temperature (~ 401 °C) and mid-high salinity (10.79 wt.% NaCl eqv.).Fluids trapped in the quartz-chalcopyrite vein, Cu–Au–Ag ores, Pb–Zn–Cu ores and calcite clusters yielded δ18OH2O and δD values varying from 5.54‰ to 13.11‰ and from − 71.8‰ to − 105.1‰, respectively, indicating that magmatic fluids may have played an important role in two mineralization events. The δ13CPDB values of the calcite change from − 2.78‰ to − 4.63‰, indicating that the CO32  or CO2 in the ore-forming fluid of the Pb–Zn–Cu mineralization was mainly sourced from the magmatic system, although dissolution of minor marine carbonate may have also occurred during the ore-forming processes. The sulfide minerals have homogeneous lead isotopic compositions with 206Pb/204Pb ranging from 17.958 to 18.587, 207Pb/204Pb ranging from 15.549 to 15.701, and 208Pb/204Pb ranging from 37.976 to 39.052, indicating that metallic elements of the Linghou deposit came from a mixed source involving mantle and crustal components.Based on geological evidence, fluid inclusions, and H–O–C–S–Pb isotopic data, the Linghou polymetallic deposit is interpreted as a high-temperature, skarn-carbonate replacement type. Two types of mineralization are both related to the magmatic–hydrothermal system, with the Cu–Au–Ag mineralization having a close relationship with granodiorite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号