首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Quaternary glaciation of Mount Everest   总被引:1,自引:0,他引:1  
The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24–27 ka (Jilong moraine), 14–17 ka (Rongbuk moraine), 8–2 ka (Samdupo moraines) and ~1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8–7.7 ka) and Samdupo II (~2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.  相似文献   

2.
《Quaternary Science Reviews》2005,24(12-13):1391-1411
Temporal and spatial changes in glacier cover throughout the Late Quaternary in Tibet and the bordering mountains are poorly defined because of the inaccessibility and vastness of the region, and the lack of numerical dating. To help reconstruct the timing and extent of glaciation throughout Tibet and the bordering mountains, we use geomorphic mapping and 10Be cosmogenic radionuclide (CRN) surface dating in study areas in southeastern (Gonga Shan), southern (Karola Pass) and central (Western Nyainqentanggulha Shan and Tanggula Shan) Tibet, and we compare these with recently determined numerical chronologies in other parts of the plateau and its borderlands. Each of the study regions receives its precipitation mainly during the south Asian summer monsoon when it falls as snow at high altitudes. Gonga Shan receives the most precipitation (>2000 mm a−1) while, near the margins of monsoon influence, the Karola Pass receives moderate amounts of precipitation (500–600 mm a−1) and, in the interior of the plateau, little precipitation falls on the western Nyainqentanggulha Shan (∼300 mm a−1) and the Tanggula Shan (400–700 mm a−1). The higher precipitation values for the Tanggula Shan are due to strong orographic effects. In each region, at least three sets of moraines and associated landforms are preserved, providing evidence for multiple glaciations. The 10Be CRN surface exposure dating shows that the formation of moraines in Gonga Shan occurred during the early–mid Holocene, Neoglacial and Little Ice Age, on the Karola Pass during the Lateglacial, Early Holocene and Neoglacial, in the Nyainqentanggulha Shan date during the early part of the last glacial cycle, global Last Glacial Maximum and Lateglacial, and on the Tanggula Shan during the penultimate glacial cycle and the early part of the last glacial cycle. The oldest moraine succession in each of these regions varies from the early Holocene (Gonga Shan), Lateglacial (Karola Pass), early Last Glacial (western Nyainqentanggulha Shan), and penultimate glacial cycle (Tanggula Shan). We believe that the regional patterns and timing of glaciation reflect temporal and spatial variability in the south Asian monsoon and, in particular, in regional precipitation gradients. In zones of greater aridity, the extent of glaciation has become increasingly restricted throughout the Late Quaternary leading to the preservation of old (≫100 ka) glacial landforms. In contrast, in regions that are very strongly influenced by the monsoon (≫1600 mm a−1), the preservation potential of pre-Lateglacial moraine successions is generally extremely poor. This is possibly because Lateglacial and Holocene glacial advances may have been more extensive than early glaciations and hence may have destroyed any landform or sedimentary evidence of earlier glaciations. Furthermore, the intense denudation, mainly by fluvial and mass movement processes, which characterize these wetter environments, results in rapid erosion and re-sedimentation of glacial and associated landforms, which also contributes to their poor preservation potential.  相似文献   

3.
《Quaternary Research》2014,81(3):500-507
We analyzed climate proxies from loessic-soil sections of the southern Chinese Loess Plateau. The early Holocene paleosol, S0, is 3.2 m thick and contains six sub-soil units. Co-eval soils from the central Loess Plateau are thinner (~ 1 m). Consequently higher-resolution stratigraphic analyses can be made on our new sections and provide more insight into Holocene temporal variation of the East Asian monsoon. Both summer and winter monsoon evolution signals are recorded in the same sections, enabling the study of phase relationships between the signals. Our analyses consist of (i) measurements of magnetic properties sensitive to the production of fine-grained magnetic minerals which reflect precipitation intensity and summer monsoon strength; and (ii) grain-size analyses which reflect winter monsoon strength. Our results indicate that the Holocene precipitation maximum occurred in the mid-Holocene, ~ 7.8–3.5 cal ka BP, with an arid interval at 6.3–5.3 cal ka BP. The winter monsoon intensity declined to a minimum during 5.0–3.4 cal ka BP. These results suggest that the East Asian summer and winter monsoons were out of phase during the Holocene, possibly due to their different sensitivities to ice and snow coverage at high latitudes and to sea-surface temperature at low latitudes.  相似文献   

4.
《Quaternary Research》2014,81(3):476-487
The evolution of arid environments in northern China was a major environmental change during the Quaternary. Here we present the dating and environmental proxy results from a 35 m long core (A-WL10ZK-1) collected from the Ulan Buh Desert (UBD), along with supplemental data from four other cores. The UBD is one of the main desert dune fields in China and our results indicate the UBD has undergone complex evolution during the late Quaternary. Most of the present UBD was covered by a Jilantai-Hetao Mega-paleolake lasting until ~ 90 ka ago. A sandy desert environment prevailed throughout the UBD during the last glacial period and early Holocene. A wetland environment characterized by the formation of numerous interdunal ponds in the northern UBD occurred at ~ 8–7 ka, although a dune field persisted in the southern UBD. The modern UBD landscape formed after these wetlands dried up. During the last 2000 years, eolian sand from the Badain Jaran Desert has invaded the northern UBD, while farming and overgrazing resulted in the formation of the eastern UBD. We suggest that the formation of UBD landforms is related to the disintegration of the megalake Jilantai-Hetao and to summer monsoon changes during the last glaciation and Holocene.  相似文献   

5.
Pollen, chironomid, and ostracode records from a lake located at alpine treeline provide regional paleoclimate reconstructions from the southwest Yukon Territory, Canada. The pollen spectra indicate herbaceous tundra existed on the landscape from 13.6–11 ka followed by birch shrub tundra until 10 ka. Although Picea pollen dominated the assemblages after 10 ka, low pollen accumulation rates and Picea percentages indicate minimal treeline movement through the Holocene. Chironomid accumulation rates provide evidence of millennial-scale climate variability, and the chironomid community responded to rapid climate changes. Ostracodes were found in the late glacial and early Holocene, but disappeared due to chemical changes of the lake associated with changes in vegetation on the landscape. Inferred mean July air temperature, total annual precipitation, and water depth indicate a long-term cooling with increasing moisture from the late glacial through the Holocene. During the Younger Dryas (12.9–11.2 ka), cold and dry conditions prevailed. The early and mid-Holocene were warm and dry, with cool, wet conditions after 4 ka, and warm, dry conditions since the end of the Little Ice Age.  相似文献   

6.
《Quaternary Science Reviews》2007,26(19-21):2586-2597
Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.  相似文献   

7.
Improved chronological control on the penultimate advance of the Cordilleran Ice Sheet in northwest Canada (the Reid glaciation) is required for a better understanding of late Quaternary palaeoclimatic and palaeoenvironmental change in eastern Beringia. However, reliable dating of glaciation events beyond the last glacial maximum is commonly hindered by a lack of directly dateable material. In this study we (i) provide the first combined minimum and maximum age constraint on the Reid glaciation at Ash Bend, its reference locale in the Stewart River valley, northwestern Canadian Cordillera, using single-grain optically stimulated luminescence dating of quartz; and (ii) compare the timing of the Reid glaciation with other penultimate ice sheet advances in the region with the aim of establishing improved glacial reconstructions in eastern Beringia. We obtain ages of 158 ± 18 ka and 132 ± 18 ka for glaciofluvial sands overlying and underlying the Reid till, respectively. These ages indicate that the Reid advance, at its reference locale, occurred during MIS 6. This precludes an earlier MIS 8 age, and suggests that the Reid advance may have been synchronous with the Delta glaciation of central Alaska, and is likely correlative with the Mirror Creek glaciation in southern Yukon.  相似文献   

8.
Proglacial lake sediments at Goting in the Higher Central Himalaya were analyzed to reconstruct the summer monsoon variability during the Last Glacial to early Holocene. Sedimentary structures, high resolution mineral magnetic and geochemical data suggest that the lacustrine environment experienced fluctuating monsoonal conditions. Optically stimulated luminescence (OSL) dating indicates that the lake sedimentation occurred before 25 ka and continued after 13 ka. During this period, Goting basin witnessed moderate to strengthened monsoon conditions around 25 ka, 23.5 ka–22.5 ka, 22 ka–18 ka, 17 ka–16.5 ka and after14.5–13 ka. The Last Glacial phase ended with the deposition of outwash gravel dated at ~11 ka indicating glacial retreat and the onset of Holocene condition. Additionally, centennial scale fluctuations between 16.5 ka and 12.7 ka in the magnetic and geochemical data are seen.A close correspondence at the millennial scale between our data and that of continental and marine records from the Indian sub-continent suggests that Goting basin responded to periods of strengthened monsoon during the Last Glacial to early Holocene. We attribute the millennial scale monsoon variability to climatic instability in higher northern latitudes. However, centennial scale abrupt changes are attributed to the result of albedo changes on the Himalaya and Tibetan plateau.  相似文献   

9.
Several abrupt climate events during the Holocene, including the widely documented oscillation at 8.2 thousand years before present (ka), are attributed to changes in the North Atlantic thermohaline circulation. Additional mechanisms, such as interactions between atmospheric circulation, ice-sheet dynamics, and the influence of solar irradiance, also have been proposed to explain abrupt climatic events, but evidence remains elusive. This study presents evidence from multi-proxy analyses on the Holocene sediments of Eleanor Lake, interior British Columbia. Climatic inferences from our decadal-resolution record of biogenic silica (BSi) abundance are supported by changes in diatom and pollen assemblages from the same core and correlations with existing regional climate records. The BSi record reveals abrupt and persistent climatic shifts at 10.2, 9.3, and 8.5 ka, the latter two of which are coeval with major collapses of the Laurentide Ice Sheet. The record also reveals a short-term cooling at 8.2 ka that is distinct from the 8.5 ka event and similar in magnitude to several other late-Holocene coolings. BSi is correlated with solar-irradiance indices (r = 0.43–0.61), but the correlation is opposite in sign to that expected from direct solar forcing and weakens after 8 ka. Possible mechanisms causing the abrupt and persistent climate changes of the early Holocene include 1) sudden losses of ice and proglacial lake extent, causing a shift in the meridional structure of atmospheric circulation, 2) a possible link between solar minima and El Niño-like conditions that are correlated with warm spring temperature in interior British Columbia, and 3) the influence of solar irradiance variability on the position of the polar jet, possibly via effects on the strength of the glacial anticyclone.  相似文献   

10.
This paper contributes to the emerging picture of late Pleistocene and Holocene environmental change in the Bonneville basin, western North America, through analysis of pollen and sediments from the Blue Lake marsh system, a major wetland area located on the western margin of the Great Salt Lake desert. Analyses of data obtained from the upper 4 m of the Blue Lake core suggest that during the latest Pleistocene, when Lake Bonneville covered the Blue Lake site, pine and sagebrush dominated terrestrial plant communities. These steppe-woodland taxa declined in abundance after ~12 cal ka BP. Wetland plant communities developed at or nearby Blue Lake by ~11.9 cal ka BP and bulrush-dominated marshes were established no later than 10.8 cal ka BP. The Blue Lake wetlands largely desiccated during a dry and warm early middle Holocene ~8.3–6.5 cal ka BP. Climatic amelioration starting ~6.5 cal ka BP is marked principally by a local return of marshes at the expense of playa and grass meadow communities, and a regional increase in sagebrush relative to other dryland shrubs. Singleleaf pinyon pine migrated into the nearby Goshute Mountains after ~8 cal ka BP. Late Holocene fluctuations include cool intervals from ~4.4 to 3.4 and ~2.7 to 1.5 cal ka BP and warmer conditions from 3.4 to 2.7 cal BP and after 1.5 cal ka BP.  相似文献   

11.
《Quaternary Science Reviews》2007,26(19-21):2438-2462
Curves for Holocene lake levels and salinity changes are presented for An Loch Mór, a small oligohaline lake on the Aran Islands off the west coast of Ireland, based on palaeoecological investigations of a 12 m long, lake-sediment core. New insights are also provided into Holocene sea-level change in the Galway Bay region. Particular emphasis has been placed on the ostracod fauna, both past and present. Salinity and lake-level changes were reconstructed from the fossil ostracod assemblages, based on the known tolerances of individual species and on the assemblages as a whole. Additional evidence was provided by other proxies including strontium–isotope ratios derived from ostracod shells and other carbonates, plant macrofossil and pollen analyses, and sedimentological changes. The early Holocene (pre-Boreal, i.e. 11.5–10 ka) was characterised by low lake levels and slightly elevated salinity values, probably the result of high evapotranspiration and low precipitation rather than elevated sea levels. Early Holocene plant and animal migration to the island does not seem to have been impeded but relative sea levels were not necessarily so low (below −40 m a.s.l.) that landbridges were present to the mainland. Between ca 10 and 8.5 ka, relatively high lake levels prevailed. At 8.3 and 7.5 ka, minor fluctuations (lowering) of the lake level occurred that are assumed to relate to early Holocene abrupt events. Beginning at 7.05 ka, lake levels declined sharply. A general trend towards rising lake levels started at ca 6.4 ka and accelerated at ca 5.6 ka as runoff increased as a result of Neolithic clearances. At ca 4.8 ka, lake levels began to rise once again, probably in response to changes in rainfall and/or evapotranspiration and runoff. Lower lake levels during the first half of the 1st millennium AD were probably a response to decreased runoff as a result of a drier climate coupled with regeneration of woody vegetation. The sharpest rise in both lake levels and salinity began during the ninth century AD, which is attributed to a rapid rise in relative sea level.  相似文献   

12.
The climates on the eastern Tibetan Plateau are strongly influenced by direct insolation heating as well as monsoon-derived precipitation change. However, the moisture and temperature influences on regional vegetation and climate have not been well documented in paleoclimate studies. Here we present a well-dated and high-resolution loss-on-ignition, peat property and fossil pollen record over the last 10,000 years from a sedge-dominated fen peatland in the central Zoige Basin on the eastern Tibetan Plateau and discuss its ecological and climatic interpretations. Lithology results indicate that organic matter content is high at 60–80% between 10 and 3 ka (1 ka = 1000 cal yr BP) and shows large-magnitude fluctuations in the last 3000 years. Ash-free bulk density, as a proxy of peat decomposition and peatland surface moisture conditions, oscillates around a mean value of 0.1 g/cm3, with low values at 6.5–4.7 ka, reflecting a wet interval, and an increasing trend from 4.7 to 2 ka, suggesting a drying trend. The time-averaged mean carbon accumulation rates are 30.6 gC/m2/yr for the last 10,000 years, higher than that from many northern peatlands. Tree pollen (mainly from Picea), mostly reflecting temperature change in this alpine meadow-forest ecotonal region, has variable values (from 3 to 34%) during the early Holocene, reaches the peak value during the mid-Holocene at 6.5 ka, and then decreases until 2 ka. The combined peat property and pollen data indicate that a warm and wet climate prevailed in the mid-Holocene (6.5–4.7 ka), representing a monsoon maximum or “optimum climate” for the region. The timing is consistent with recent paleo-monsoon records from southern China and with the idea that the interplays of summer insolation and other extratropical large-scale boundary conditions, including sea-surface temperature and sea-level change, control regional climate. The cooling and drying trend since the mid-Holocene likely reflects the decrease in insolation heating and weakening of summer monsoons. Regional synthesis of five pollen records along a south–north transect indicates that this climate pattern can be recognized all across the eastern Tibetan Plateau. The peatland and vegetation changes in the late Holocene suggest complex and dramatic responses of these lowland and upland ecosystems to changes in temperature and moisture conditions and human activities.  相似文献   

13.
The High Himalaya is a key area for tectonic, geomorphological and climate studies, because of its extreme relief and location at the transition zone between areas with abundant monsoonal precipitation and the arid/semiarid Tibetan Plateau. We present 10Be surface exposure ages on 22 boulders from the Annapurna area in Nepal. The ages improve understanding of the Late Quaternary landscape history and the geomorphological processes operating in this part of the Himalaya.Although our study is reconnaissance in nature, it highlights the importance of catastrophic events, such as landslides and debris flows, for denudation of high mountains. Holocene exposure ages for the Dhampu–Chooya landslide (~4.1 ± 0.6 ka) and for 600 m of alluviation in Kali Gandaki Valley (~2.1 ± 0.6 ka), for example, indicate the frequent occurrence and extent of catastrophic events and their implications for natural hazards. We also offer an explanation for the differences in Late Quaternary glacial chronologies at closely spaced study sites in the Nepal Himalaya. Topographically controlled and spatially variable precipitation in the Himalaya determines the sensitivity of glaciers to changes in temperature and precipitation. Accordingly, some glaciers advanced in-phase with Northern Hemisphere ice sheets, whereas others reached their maximum extent at times of increased monsoonal precipitation during Marine Isotope Stage 3 and the early Holocene.  相似文献   

14.
Forty-four boulders from moraines in two glacial valleys of Mount Erciyes (38.53°N, 35.45°E, 3917 m), central Turkey, dated with cosmogenic chlorine-36 (36Cl), indicate four periods of glacial activity in the past 22 ka (1 ka = 1000 calendar years). Last Glacial Maximum (LGM) glaciers were the most extensive, reaching 6 km in length and descending to an altitude of 2150 m above sea level. These glaciers started retreating 21.3 ± 0.9 ka (1σ) ago. They readvanced and retreated by 14.6 ± 1.2 ka ago (Lateglacial), and again by 9.3 ± 0.5 ka ago (Early Holocene). The latest advance took place 3.8 ± 0.4 ka ago (Late Holocene). Using glacier modeling together with paleoclimate proxy data from the region, we reconstructed the paleoclimate at these four discrete times. The results show that LGM climate was 8–11 °C colder than today and moisture levels were somewhat similar to modern values, with a range between 20% more and 25% less than today. The analysis of Lateglacial advance suggests that the climate was colder by 4.5–6.4 °C based on up to 1.5 times wetter conditions. The Early Holocene was 2.1–4.9 °C colder and up to twice as wet as today, while the Late Holocene was 2.4–3 °C colder and its precipitation amounts approached to similar conditions as today. Our paleoclimate reconstructions show a general trend of warming for the last 22 ka, and an increase of moisture until Early Holocene, and a decrease after that time. The recent glacier terminates at 3450 m on the northwest side of the mountain. It is a remnant from the last advance (possibly during the Little Ice Age). Repeated measurements of glacier length between 1902 and 2008 reveal a retreat rate of 4.2 m per year, which corresponds to a warming rate of 0.9–1.2 °C per century.  相似文献   

15.
The Yulong Mountain massif is tectonically active during Quaternary and contains the southernmost glacierized mountains in China, and all of Eurasia. Past glacial remnants remain preserved on the east and west sides of the Yulong Mountains. A ridge of moraine protruded into the Jinsha River at the Daju Basin, damming the river, and forming a lake at the head of the Jinsha River. Cosmogenic 10Be and 26Al provide exposure age dates for the moraine-based fluvial terraces left behind after the dam breached, and for moraine boulders on both the eastern and western sides of the Yulong Mountains. Our results yield exposure ages for the terraces that range from 29 ka to 8 ka, and a downcutting rate of 7.6 m/ka. The preservation of the remaining dam for over 10,000 years suggests stability of the moraine dam and gradual erosion of the dam during drainage of the dammed lake. From the relationship between exposure ages and elevations of the fluvial terraces located in different walls of the Daju fault, we obtain a late Quaternary dip-slip rate of about 5.6 m/ka for the Daju fault. The exposure ages of 10.2 ka and 47 ka for moraine boulders located in the east and west sides of the Yulong Mountains, respectively, coincide with warm periods in the late Quaternary. This implies that precipitation provides the major control for glaciations on the Yulong Mountains, a domain of the southwest Asian monsoon.  相似文献   

16.
Woolly mammoths were large, herbivorous, cold-adapted mammals of the Late Pleistocene. The diet and habitat requirements of the species set certain constraints on the palaeoenvironments it could occupy. The relationship between the mammoth’s shifting range and changing environments can be explored using independent data on ice sheet configuration, temperature, and vegetation, provided the locality and age of the fossil remains can be validated. Here we present a comprehensive record of occurrence of the woolly mammoth in the circum-Baltic region of northern Europe during the last glaciation, based on a compilation of radiocarbon-dated remains. The record shows that the mammoth was widespread in northern and north-eastern Europe during Marine Isotope Stage 3 (MIS 3), at 50,000–30,000 calibrated years ago (50–30 ka). The presence of the species up to 65°N latitude supports the restriction of the Scandinavian Ice Sheet (SIS) during MIS 3. The widest distribution range round 30 ka was followed by a decline that led to the disappearance of mammoths from the area during the maximum extent of the SIS, from 22 to 18 ka. The woolly mammoth re-colonized the Baltic region and southern Scandinavia after the onset of the late-glacial deglaciation at 17 ka. The late-glacial record suggests a markedly fluctuating population changing its range in tune with the rapid environmental changes. The last appearance of mammoth in our study region was in Estonia during the Younger Dryas (Greenland Stadial 1; GS1) at about 12 ka. The two major periods of occurrence during MIS 3 and the late-glacial stadial suggest that mammoth had a wide tolerance of open to semi-open tundra and steppe-tundra habitats with intermediately cold climate, whereas the 22–18 ka disappearance suggests a major southward and/or eastward retreat in response to extremely cold, glacial conditions near the SIS margin. The final regional extinction correlates with the re-forestation during the rapid warming at the Younger Dryas–Holocene boundary.  相似文献   

17.
The evolution processes and forcing mechanisms of the Horqin dunefield in northern China are poorly understood. In this study, systematic OSL dating of multiple sites is used together with pollen analysis of a representative section in order to reconstruct the evolution of the dunefield since the Last Glacial Maximum (LGM). Our results show that there was extensive dune mobilization 25–10 ka, transition to stabilization 10–8 ka, considerable dune stabilization 8–3 ka, and multiple episodes of stabilization and mobilization after 3 ka. Comparison of dune evolution of the dunefields in northern China during the Holocene showed that Asian monsoon and resultant effective moisture have played an important role in the evolution of dunefields at the millennial time scale. Further analysis indicated that the dune evolution in the Horqin dunefield before 3 ka was synchronous with climatic changes. However, increasing human activity has impacted dune evolution during the last 3 ka.  相似文献   

18.
《Quaternary Science Reviews》2007,26(13-14):1695-1712
The impact of the 8.2 ka cooling event during the Early–Mid Holocene has not been widely observed in Southern Europe, which in contrast to Northern Europe, was already experiencing a cooler than present climate at this time. Multi-proxy analysis of sediment cores from two closed-basin saline lakes in the Central Ebro Desert (NE Spain) has allowed us to investigate the impact of climatic changes around the time of this event in more detail. Long-term changes in climate between the Early and Mid Holocene indicate a shift in winter to a more positive NAO, resulting in declining lake levels in one lake sensitive to winter groundwater recharge, and cooler winter temperatures reconstructed from pollen–climate analysis. Reconstructed summer temperatures also declined over this period while annual precipitation and forest cover increased, interpreted as a result of enhanced convection-driven summer precipitation association with a northward displacement of the sub-tropical high pressure. Around 8.2 ka, a marked increase in fire frequency is shown between ca 8.8 and 8.0 ka BP, along with an expansion of fire-tolerant evergreen oak and peak in water levels in a second storm run-off fed lake. A maximum in fire intensity occurred with the deposition of a charcoal layer at both lake sites dated to 8150±130 and 8285±135 cal BP, respectively. The increase in fire is largely attributed to a temporary return southward of the summer sub-tropical high pressure over the Mediterranean, which not only increased summer aridity, but also caused a contradictory regional warming before Hemispheric cooling set in.  相似文献   

19.
Information on the ocean/atmosphere state over the period spanning the Last Glacial Maximum – from the Late Pleistocene to the Holocene – provides crucial constraints on the relationship between orbital forcing and global climate change. The Pacific Ocean is particularly important in this respect because of its dominant role in exporting heat and moisture from the tropics to higher latitudes. Through targeting groundwaters in the Mojave Desert, California, we show that noble gas derived temperatures in California averaged 4.2 ± 1.1 °C cooler in the Late Pleistocene (from ~43 to ~12 ka) compared to the Holocene (from ~10 to ~5 ka). Furthermore, the older groundwaters contain higher concentrations of excess air (entrained air bubbles) and have elevated oxygen-18/oxygen-16 ratios (δ18O) – indicators of vigorous aquifer recharge, and greater rainfall amounts and/or more intense precipitation events, respectively. Together, these paleoclimate indicators reveal that cooler and wetter conditions prevailed in the Mojave Desert from ~43 to ~12 ka. We suggest that during the Late Pleistocene, the Pacific ocean/atmosphere state was similar to present-day El Nino-like patterns, and was characterized by prolonged periods of weak trade winds, weak upwelling along the eastern Pacific margin, and increased precipitation in the southwestern U.S.  相似文献   

20.
Stratigraphical, mineralogical, geochemical and optical dating methods were used to reconstruct paleo-hydrological changes in two playas (Phulera, 500 mm/a and Pokharan, 200 mm/a) in near extremum climatic regions of the Thar Desert. Sediment successions in shallow profiles from Phulera and Pokharan contain three and four stratigraphic units, respectively, each with characteristic geochemical properties. These units reflect changes in chemical weathering, detrital input, salinity and provide a measure of the changes in precipitation (i.e. monsoon) through time.Sediments from Pokharan suggest short rainfall events during ca. 6.6–4 ka, relatively stable fresh water (higher and persistent rainfall) regime during 4–2.3 ka, and a hyper saline (low rainfall) condition during 2.3–1.1 ka. Sediments at Phulera, record hyper saline (low rainfall) lacustrine conditions during <2.3 ka to >1.4 ka. Higher abundance of gypsum in Pokharan (2.3–1.1 ka) and proto-dolomite in Phulera (2.3–1.4 ka) are nearly synchronous and reflect enhancement of salinity. Selenite crystals in Pokharan and large desiccation cracks in buried horizons at Phulera reflect desiccation of playas at ca. 2 ka. Both playas progressively became less saline after 1.4 ka. Given the regional nature of this record, these changes are attributed to fluctuation of the monsoon over the Indian sub continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号