首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
This study was conducted on recent desert samples—including (1) soils, (2) plants, (3) the shell, and (4) organic matter from modern specimens of the land snail Eremina desertorum—which were collected at several altitudes (316–360 m above sea level) from a site in the New Cairo Petrified Forest. The soils and shellE. desertorum were analyzed for carbonate composition and isotopic composition (δ18O, δ13C). The plants and organic matterE. desertorum were analyzed for organic carbon content and δ13C. The soil carbonate, consisting of calcite plus minor dolomite, has δ18O values from −3.19 to −1.78‰ and δ13C values −1.79 to −0.27‰; covariance between the two values accords with arid climatic conditions. The local plants include C3 and C4 types, with the latter being dominant. Each type has distinctive bulk organic carbon δ13C values: −26.51 to −25.36‰ for C3-type, and −13.74 to −12.43‰ for C4-type plants.The carbonate of the shellE. desertorum is composed of aragonite plus minor calcite, with relatively homogenous isotopic compositions (δ18Omean = −0.28 ± 0.22‰; δ13Cmean = −4.46 ± 0.58‰). Most of the δ18O values (based on a model for oxygen isotope fractionation in an aragonite-water system) are consistent with evaporated water signatures. The organic matterE. desertorum varies only slightly in bulk organic carbon δ13C values (−21.78 ± 1.20‰) and these values suggest that the snail consumed more of C3-type than C4-type plants. The overall offset in δ13C values (−17.32‰) observed between shellE. desertorum carbonate and organic matterE. desertorum exceeds the value expected for vegetation input, and implies that 30% of carbon in the shellE. desertorum carbonate comes from the consumption of limestone material.  相似文献   

2.
Carbon (δ13CPDB) and oxygen (δ18OSMOW) isotopic compositions of auriferous quartz-carbonate veins (QCVs) of gold deposits from Sangli, Kabuliyatkatti, Nagavi, Nabapur and Mysore mining areas developed on the Central Lode system of the Gadag Gold Field (GGF) in the Neoarchaean Gadag schist belt of the Dharwar Craton, southern India have been examined for the first time to understand the origin of the mineralising fluids. In majority of the samples (46 out of 49), δ13Cpdb of carbonates of the QCVs fall in the range from − 2.2‰ to − 9.7‰ and the δ18O values range from 12.0‰ to 30.5‰ SMOW. The calculated fluid δ13C C compositions for these deposits range from − 2.1‰ to − 9.6‰ and δ18OH2O from 6.8‰ to 25.9‰, respectively. Carbonate δ13C and fluid δ13C C compositions of the carbonates of the QCVs of the GGF are not only distinct from the carbon isotope range of marine carbonates or meta-sedimentary carbonates of the Chitradurga schist belt, but are consistent with C-isotope values of magmatic (− 5 ± 3‰, Burrows et al., 1986) and/or mantle (− 6 ± 2‰, Ohmoto, 1986) carbonates. As dissolution/decarbonation reactions during metamorphism of pre-existing carbonate/carbonated rocks produce CO2 with δ13C values similar to or more enriched than parent rock, the carbonate or fluid δ13C ratios of the QCVs (which fall in the compositional range of mantle/magmatic derived CO2 or carbonates) obtained in this work cannot be the result of metamorphism. The present study corroborates our previous reports from Ajjanahalli and G.R. Halli gold deposits (Sarangi et al., 2012) occurring in the vicinity of the southern extension of the same crustal scale shear zone on which all the GGF deposits are located.The age of gold mineralisation in this area has been reported to be 2522 ± 6 Ma by Sarma et al., 2011. Chardon et al. (2011) have proposed large-scale remobilization of the older gneissic basement, as well as, emplacement of juvenile granites between 2559 Ma and 2507 Ma, close to the crustal scale shear zone along the eastern margin of the Chitradurga schist belt. Based on these observations and our isotope studies, it is proposed that gold mineralising fluids were derived from mantle/juvenile magmatic melts and were channelled through crustal scale shear zones to give rise to the gold deposits in the GGF.  相似文献   

3.
The Qianfanling Mo deposit, located in Songxian County, western Henan province, China, is one of the newly discovered quartz-vein type Mo deposits in the East Qinling–Dabie orogenic belt. The deposit consists of molybdenite in quartz veins and disseminated molybdenite in the wall rocks. The alteration types of the wall rocks include silicification, K-feldspar alteration, pyritization, carbonatization, sericitization, epidotization and chloritization. On the basis of field evidence and petrographic analysis, three stages of hydrothermal mineralization could be distinguished: (1) pyrite–barite–quartz stage; (2) molybdenite–quartz stage; (3) quartz–calcite stage.Two types of fluid inclusions, including CO2-bearing fluid inclusions and water-rich fluid inclusions, have been recognized in quartz. Homogenization temperatures of fluid inclusions vary from 133 °C to 397 °C. Salinity ranges from 1.57 to 31.61 wt.% NaCl eq. There are a large number of daughter mineral-CO2-bearing inclusions, which is the result of fluid immiscibility. The ore-forming fluids are medium–high temperature, low to moderate salinity H2O–NaCl–CO2 system. The δ34S values of pyrite, molybdenite, and barite range from − 9.3‰ to − 7.3‰, − 9.7‰ to − 7.3‰ and 5.9‰ to 6.8‰, respectively. The δ18O values of quartz range from 9.8‰ to 11.1‰, with corresponding δ18Ofluid values of 1.3‰ to 4.3‰, and δ18D values of fluid inclusions of between − 81‰ and − 64‰. The δ13CV-PDB values of fluid inclusions in quartz and calcite have ranges of − 6.7‰ to − 2.9‰ and − 5.7‰ to − 1.8‰, respectively. Sulfur, hydrogen, oxygen and carbon isotope compositions show that the sulfur and ore-forming fluids derived from a deep-seated igneous source. During the peak collisional period between the North China Craton and the Yangtze Craton, the ore-forming fluids that derived from a deep igneous source extracted base and precious metals and flowed upwards through the channels that formed during tectonism. Fluid immiscibility and volatile exsolution led to the crystallization of molybdenite and other minerals, and the formation of economic orebodies in the Qianfanling Mo deposit.  相似文献   

4.
Natural gas in the Xujiahe Formation of the Sichuan Basin is dominated by hydrocarbon (HC) gas, with 78–79% methane and 2–19% C2+ HC. Its dryness coefficient (C1/C1–5) is mostly < 0.95. The gas in fluid inclusions, which has low contents of CH4 and heavy hydrocarbons (C2+) and higher contents of non-hydrocarbons (e.g. CO2), is a typical wet gas produced by thermal degradation of kerogen. Gas produced from the Upper Triassic Xujiahe Formation (here denoted field gas) has light carbon isotope values for methane (δ13C1: −45‰ to −36‰) and heavier values for ethane (δ13C2: −30‰ to −25‰). The case is similar for gas in fluid inclusions, but δ13C1 = −36‰ to −45‰ and δ13C2 = −24.8‰ to −28.1‰, suggesting that the gas experienced weak isotopic fractionation due to migration and water washing. The field gas has δ13CCO2 values of −15.6‰ to −5.6‰, while the gas in fluid inclusions has δ13CCO2 values of −16.6‰ to −9‰, indicating its organic origin. Geochemical comparison shows that CO2 captured in fluid inclusions mainly originated from source rock organic matter, with little contribution from abiogenic CO2. Fluid inclusions originate in a relatively closed system without fluid exchange with the outside following the gas capture process, so that there is no isotopic fractionation. They thus present the original state of gas generated from the source rocks. These research results can provide a theoretical basis for gas generation, evolution, migration and accumulation in the basin.  相似文献   

5.
The Nanhuan manganese deposits in the southeastern Yangtze Platform occur in the black shale series in the lower part of the Datangpo Formation. In order to constrain the genesis of the deposits, a detailed study was undertaken that involved field observations, major and trace element analyses, organic carbon analyses, and isotope analyses (C, O, S). The major findings are as follows. (1) The ore-bearing rock series, morphology of the ore bodies, and characteristics of ores in several deposits are similar. The ore minerals are rhodochrosite and manganocalcite. The gangue minerals are mainly quartz, feldspar, dolomite, and illite. Minor apatite and bastnaesite occur in the manganese ores. (2) The ores are enriched in Ca and Mg, whereas they are depleted in Si, Al, K, and Ti compared to wall rocks. The ores normalized to average Post-Archean Australian shale (PAAS) are enriched in Co, Mo, and Sr. The chondrite-normalized rare earth element (REE) patterns for ores and wall rocks are between those of typical hydrogenous and hydrothermal type manganese deposits. Additionally, the ores have positive Ce anomalies with an average Ce/Ce* of 1.23 and positive Eu anomalies with an average Eu/Eu* of 1.18 (normalized to PAAS). (3) The average content of organic carbon is 2.21% in the samples, and the average organic carbon isotopic value (δ13CV-PDB) is − 33.44‰. The average inorganic carbon isotopic value (δ13CV-PDB) of carbonates in Gucheng is − 3.07‰, while the values are similar in the other deposits with an average of − 8.36‰. The oxygen isotopic compositions (δ18OV-PDB) are similar in different deposits with an average of − 7.72‰. (4) The sulfur isotopic values (δ34SV-CDT) of pyrite are very high and range from + 37.9‰ to + 62.6‰ (average of 52.7‰), which suggests that the pyrite was formed in restricted basins where sulfate replenishment was limited. The sulfate concentrations in the restricted basins were extremely low and enriched in δ34S, which resulted in the very high δ34S values for the pyrite that formed in the manganese deposits. Therefore, a terrigenous weathering origin for manganese can be excluded; otherwise, the sulfate would have been introduced into the basins together with terrigenous manganese, which would have decreased the δ34S values of pyrites. The manganese, which originated from hydrothermal processes, was enriched in the restricted and anoxic basins, and then, it was oxidized to manganese oxyhydroxide in the overlying oxic waters whereby the products precipitated into the sediments. The manganese oxyhydroxide in the sediment was then reduced to Mn2 + and released to the pore waters during the process of diagenesis. Some organic carbon was oxidized to CO32 , which made the depletion of 13C in manganese carbonates. Therefore, we suggest that the Nanhuan manganese deposits are hydrothermal–sedimentary/diagenetic type deposits.  相似文献   

6.
《Chemical Geology》2006,225(1-2):137-155
Carbon stable isotopes from carbonate minerals (mainly dolomite) from six wells from the Lower Triassic Sherwood Sandstones of the Corrib Gas Field, Slyne Basin, west of Ireland, allow stratigraphic correlation. The results also provide information on palaeoenvironmental change during the deposition of these continental redbed sedimentary rocks. The Triassic reservoir rocks have been buried to > 4000 m and heated to > 165 °C and now contain methane-rich gas. Although the oxygen isotopic signal has been at least partially reset during burial and heating, a primary carbon isotopic signal appears to have survived diagenesis. The carbon isotope ratio varies from − 3.2‰ to + 2.1‰. All six wells show similar stratigraphic changes when all the carbon isotope data are plotted relative to a major playa horizon. δ13C increases from about − 3‰ at the base of the Sherwood to about + 2‰ 170 m above the base. δ13C then decreases to about − 2‰ for the next 70 m and remains steady for the following 50 m. The top 20 m of the Sherwood contains carbonate with a δ13C values decreasing to about − 3‰. The occurrence of a stratigraphically-correlatable carbon isotope pattern implies that the primary evolution signal has been preserved. The change in δ13C correlates with indicators of aridity and biological stress such that the highest δ13C values are in sedimentary rocks deposited in a playa lake (arid times); these rocks contain the greatest quantity of dolomite cement. Conversely, the lowest δ13C values correspond to sedimentary rocks deposited from well-developed rivers (relatively humid times) from the lowest quantity of dolomite cement. The same carbon isotope evolution has been found in another well in the Slyne basin and in Belgium, suggesting that the palaeoenvironmental isotope signal in the Triassic sedimentary rocks of the Corrib Field may have a regional significance.  相似文献   

7.
《Precambrian Research》2007,152(3-4):170-206
The Cauê Formation of the Paleoproterozoic Minas Supergroup hosts banded iron formations (BIFs), locally called itabirites, deposited in shallow marine passive margin settings. Two major compositional types of itabirite, dolomitic and quartz itabirites, are found in the northwestern part of QF. The former consists of alternating dolomite-rich and hematite-rich bands, whereas the latter is formed with alternating quartz-rich and hematite-rich bands. Accessory minerals are chlorite, sericite, and apatite in both types.Dolomitic and quartz itabirites have a very simple chemical composition. In the dolomitic itabirite, Fe2O3 plus CaO, MgO, and LOI range from 95.8 to 97.8%, while in the quartz itabirite, Fe2O3 plus SiO2 range from 94.4 to 99.6%. Both itabirites are highly oxidized and present Fe3+/(Fe2+ + Fe3+) ratios higher than 0.98, by far superior than the average ratios of Paleoproterozoic BIFs. Trace element concentrations in itabirites are very low, ranging from <10 to 55 ppm. Dolomite shows negative δ13C values varying from −2.5 to −0.8‰ versus PDB, while the oxygen isotope data display δ18O values varying from −12.4 to −8.5‰ versus PDB. The δ13C values of the dolomitic itabirite are in the same range of those of the overlying stromatolitic dolomites of the Gandarela Formation. C and O isotopes, REE signatures, and Y/Ho ratios suggest a marine origin for the sediments of the Cauê Formation. The HREE enrichment pattern exhibited by the itabirites shows a modern seawater REE signature overprinted by a hydrothermal pattern marked by positive Eu anomalies. Very low contents of Al2O3 and TiO2 and a strong positive correlation between them indicate a minor terrigenous component in the chemically-precipitated marine sediments of the Cauê Formation. Differences in the HREE signatures of itabirites suggest that dolomitic itabirite precipitated in shallower waters receiving sediments from the continent, while quartz itabirite precipitated in deeper waters. Sea-level fluctuations caused by marine transgression–regressions possibly contributed to changes in the composition and varied input of the terrigenous sediments. These changes are expressed by the co-existence of dolomitic, quartz, and amphibolitic itabirites in the Cauê Formation, which represent lateral and vertical facies transitions of dolomitic, cherty, and shaly BIFs, respectively.  相似文献   

8.
The Dapingzhang volcanogenic Cu–Pb–Zn sulfide deposit is located in the Lancangjiang tectonic zone within the Sanjiang region, Yunnan province of southwestern China. The deposit occurs within a felsic volcanic dome belonging to a mid-Silurian volcanic belt stretching for more than 100 km from Dapingzhang to Sandashan. The mineralized volcanic rocks are predominantly keratophyre and quartz keratophyre with subordinate spilite. The Dapingzhang deposit is characterized by well-developed vertical zonation with stockwork ores in the bottom, disseminated sulfide ores in the middle, and massive sulfide ores in the top, overlain by a thin layer of chemical sedimentary exhalative rocks (chert and barite). The Re–Os age of the pyrites from the deposit is 417 ± 23 Ma, indistinguishable from the age of the associated felsic volcanic rocks. The associated felsic volcanic rocks are characterized by negative Nb–Ta anomalies and positive εNd(t) values (+ 4.4–+6.5), similar to the coeval calc-alkaline volcanic rocks in the region. This observation supports the interpretation that the felsic volcanic rocks associated with the Dapingzhang deposit are the derivatives of arc basaltic magma by extensive fractional crystallization. The δ34S values of the sulfides from the deposit vary from − 1.24 to + 4.32‰, indicating a predominantly magmatic source for the sulfur. The sulfides are also characterized by homogeneous and relatively low radiogenic Pb isotope compositions (206Pb/204Pb = 18.310–18.656, 207Pb/204Pb = 15.489–15.643 and 208Pb/204Pb = 37.811–38.662), similar to the Pb isotopic compositions of the associated volcanic rocks. The Pb isotopic data indicate that mantle-derived Pb is more prevalent than crust-derived Pb in the deposit. The S–Pb isotopic data indicate that the important ore-forming materials were mainly derived from the associated volcanic rocks. The δ13CPDB and δ18OSMOW values of the associated hydrothermal calcite crystals vary from − 2.3‰ to + 0.27‰ and from + 14.6 to + 24.4‰, respectively. These values are between the mantle and marine carbonate values. The narrow range of the δ13CPDB values for the calcite indicates that carbon-bearing species in the hydrothermal fluids were primarily derived from marine carbonates. The δ18O values for the hydrothermal fluids, calculated from the measured values for quartz, are between − 2.1‰ and + 3.5‰. The corresponding δD values for the fluids range from − 59‰ to − 84‰. The O–H isotopic data indicate mixing between magmatic fluids and seawater in the ore-forming hydrothermal system. Similar to a typical volcanogenic massive sulfide (VMS) deposit, the ore-forming fluids contained both magmatic fluids and heated seawater; the ore metals and regents were derived from the underlying magma as well as felsic country rocks.  相似文献   

9.
Hydrogen isotopic composition of n-alkanes was measured in sediments from an excavated profile of the Early Cretaceous Yixian Formation in Liaoning Province, NE China, aiming to assess the significance of the δD value of n-alkanes in ancient lacustrine sediments as the indicator for determining the source inputs of organic matters and paleoclimatic conditions. The δD values of n-alkanes are in the range of − 250‰ to − 85‰ and display an obvious three-stage variation pattern through the profile, which is consistent with the distribution of the dominated n-alkanes and the profile of their δ13C values. The δD and δ13C values of n-alkanes suggest that short-chain n-alkanes are primarily derived from photosynthetic bacteria and algae; n-C29 and n-C31 are mainly originated from terrestrial higher plants; n-C28 and n-C30 may be derived from the same precursor but via the different biological mechanism of hydrogen isotopic fractionation; while the source inputs of medium-chain n-alkanes are more complicated, with n-C23 being derived from some specific algae or biosynthesized by various aquatic organisms. The paleoclimatic conditions are reconstructed via two approaches. The reconstructed hydrogen isotopic values of lake water and meteoric water (expressed as δDLW and δDMW, respectively) were at the intervals of − 51.8‰ to 17.0‰ and − 118.1‰ to − 43.5‰, respectively, indicating a general climate transition from semi-arid to arid. The calculated ΔδDLW-MW values vary from 37.0‰ to 89.1‰ and display a similar but a significant large-scale variation trend with the ΔδDC23  long (− 28.8‰ to 85.0‰; long represents long-chain n-alkanes) and ΔδDmid-long (− 15.4‰ to 43.4‰; mid represents medium-chain n-alkanes) values. The discrepancy may be attributed to the source input overlap for n-alkanes and the uncertainties of εwater/lipid values. The coupling of ΔδDC23  long, ΔδDmid-long and ΔδDLW-MW values with the paleoclimatic evidence indicates that the δD values of n-alkanes could be more sensitive to the change of paleoclimatic conditions.  相似文献   

10.
The several-hundred-m-thick Miocene Upper Red Formation in northwestern Iran hosts stratiform and fault-controlled copper mineralization. Copper enrichment in the percent range occurs in dm-thick carbonaceous sandstone and shale units within the clastic redbed sequence and consists of fine-grained disseminated copper sulfides (chalcopyrite, bornite, chalcocite) and supergene alteration minerals (covellite, malachite and azurite). The copper mineralization formed after calcite cementation of the primary rock permeability. Copper sulfides occur mainly as replacement of diagenetic pyrite, which, in turn, replaced organic matter. Electron microprobe analysis on bornite, chalcocite and covellite identifies elevated silver contents in these minerals (up to 0.12, 0.72 and 1.21 wt%, respectively), whereas chalcopyrite and pyrite have only trace amounts of silver (<0.26 and 0.06 wt%, respectively). Microthermometric data on fluid inclusions in authigenic quartz and calcite indicate that the Cu mineralization is related to a diagenetic fluid of moderate-to low temperature (Th = 96–160 °C) but high salinity (25–38 wt% CaCl2 equiv.). The range of δ34S in pyrite is −41.9 to −16.4‰ (average −31.4‰), where framboidal pyrite shows the most negative values between −41.9 and −31.8‰, and fine-grained pyrite has relatively heavier δ34S values (−29.2 to −16.4‰), consistent with a bacteriogenic derivation of the sulfur. The Cu-sulfides (chalcopyrite, bornite and chalcocite) show slightly heavier values from −14.6 to −9.0‰, and their sulfur sources may be both the precursor pyrite-S and the bacterial reduction of sulfate-bearing basinal brines. Carbonates related to the ore stage show isotopically light values of δ13CV-PDB from −8.2 to −5.1‰ and δ18OV-PDB from −10.3 to −7.2‰, indicating a mixed source of oxidation of organic carbon (ca. −20‰) and HCO3 from seawater/porewater (ca. 0‰). The copper mineralization is mainly controlled by organic matter content and paleopermeability (intragranular space to large fracture patterns), enhanced by feldspar and calcite dissolution. The Cheshmeh-Konan deposit can be classified as a redbed-type sediment-hosted stratiform copper (SSC) deposit.  相似文献   

11.
The Yangla Cu deposit is the largest Cu skarn deposit in the Jinshajiang tectonic belt. Based on the detailed observation of crosscutting relationships, three mineralization stages (i.e., pre-ore, ore and supergene) have been identified in the Yangla deposit. The pre-ore stage is dominated by prograde skarn. The ore stage is characterized by the precipitation of hydrous silicate minerals, Fe-oxides, Fe-Cu-Mo-sulfides, quartz and calcite, whose mineral assemblages were formed in the early and late sub-ore stages. The early sub-ore stage is marked by retrograde alteration with the deposition of hydrous silicate minerals (e.g., actinolite, epidote and chlorite), Fe-oxides, abundant Fe-Cu-Mo-sulfides, quartz and minor calcite. Whilst, the late sub-ore stage, associated with silicic and carbonate alteration, is represented by widespread thick quartz or calcite veins with disseminated pyrite, chalcopyrite, galena and sphalerite. We present new carbon-oxygen (C-O) isotopic compositions of the ore-hosting marble and hydrothermal calcite of this deposit. The hydrothermal calcite in the Yangla deposit was precipitated from both the early and late sub-ore stages. Calcite I from the early sub-ore stage is anhedral, and occurs as spot in the skarn or locally replaces the skarn minerals. Calcite II from the late sub-ore stage is distinguished by being coarse-grained, subhedral to euhedral and its occurrence in thick veins. Calcite I contains lower δ13CPDB (−7.0‰ to −5.0‰) and δ18OSMOW (7.2‰ to 12.7‰) than Calcite II (δ13CPDB = −4.5‰ to −2.3‰; δ18OSMOW = 10.7‰ to 19.4‰). In the δ13CPDB vs. δ18OSMOW diagram, the Calcite I and Calcite II data fall close to the igneous carbonatite field and between the fields of igneous carbonatite and marine carbonates, respectively. This suggests a dominantly magmatic origin for the early sub-ore fluids, and there might have been increasing carbonate wall rock involvement towards the late sub-ore stage. The ore-hosting marble (δ13CPDB = −4.8‰ to −0.3‰; δ18OSMOW = 10.2‰ to 23.9‰) also shows a positive δ13CPDB vs. δ18OSMOW correlation, which is interpreted to reflect the decreasing alteration intensity during the interactions between the hydrothermal fluids and ore-hosting carbonates. Simulated calculation suggests that both the Calcite I and Calcite II precipitated at 350 °C to 250 °C and 250 °C to 150 °C, respectively. We proposed that CO2 degassing and water/rock interactions were likely the two major processes that precipitated the calcite and led to the observed C-O isotopic features of the Yangla Cu deposit.  相似文献   

12.
The Kanggur gold deposit is located in the southern margin of the Central Asia Orogenic Belt and in the western segment of the Kanggur–Huangshan ductile shear belt in Eastern Tianshan, northwestern China. The orebodies of this deposit are hosted in the Lower Carboniferous volcanic rocks of the Aqishan Formation and mainly consist of andesite, dacite and pyroclastic rocks. The SHRIMP zircon U–Pb age data of the andesite indicate that the volcanism in the Kanggur area might have occurred at ca. 339 Ma in the Early Carboniferous, and that the mineralization age of the Kanggur gold deposit was later than the age of volcanic rocks in the area. Geochemically, the andesite rocks of the Aqishan Formation belong to low-tholeiite and calc-alkaline series and display relative depletions in high field strength elements (HFSEs; i.e. Nb, Ta and Ti). The δ18Ow and δDw values vary from − 9.1‰ to + 3.8‰ and − 66.0‰ to − 33.9‰, respectively, indicating that the ore-forming fluids were mixtures of metamorphic and meteoric waters. The δ30Si values of 13 quartz samples range from − 0.3‰ to + 0.1‰ with an average of − 0.15‰, and the δ34S values of 18 sulphide samples range from − 0.9‰ to + 2.2‰ with an average of + 0.54‰. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values of 10 sulphide samples range from 18.166 to 18.880, 15.553 to 15.635 and 38.050 to 38.813, respectively, showing similarities to orogenic Pb; these values are consistent with those of the andesite from the Kanggur area, suggesting a common lead source. All of the silicon, sulphur and lead isotopic systems indicate that the ore-forming fluids and materials were mainly derived from the Aqishan Formation, and that the host volcanic rocks of the Aqishan Formation probably played a significant role in the Kanggur gold mineralization. Integrating the data obtained from studies on geology, geochronology, petro-geochemistry and H–O–Si–S–Pb isotope systematics, we suggest that the Kanggur gold deposit is an orogenic-type deposit formed in Eastern Tianshan orogenic belt during the Permian post-collisional tectonism.  相似文献   

13.
The Xiaguan Ag–Pb–Zn orefield (Neixiang County, Henan Province), hosting the Yindonggou, Zhouzhuang, Yinhulugou and Laozhuang fault-controlled lode deposits, is situated in the Erlangping Terrane, eastern Qinling Orogen. The quartz-sulfide vein mineralization is dominated by main alteration styles of silicic-, sericite-, carbonate-, chlorite- and sulfide alteration. Major Ag-bearing minerals are freibergite, argentite and native Ag. The deposits were formed by a CO2-rich, mesothermal (ca. 250–320 °C), low-density and low salinity (< 11 wt.% NaCl equiv.), Na+–Cl-type fluid system. Trapping pressures of the carbonic-type fluid inclusions (FIs) decreased from ca. 280–320 MPa in the early mineralization stage to ca. 90–92 MPa in the late mineralization stage, indicating that the ore-forming depths had become progressively shallower. This further suggests that the metallogenesis may have occurred in a tectonic transition from compression to extension. Geological- and ore fluid characteristics suggest that the Xiaguan Ag–Pb–Zn orefield belongs to orogenic-type systems.The δ18OH2O values change from the Early (E)-stage (7.8–10.8 ‰), through Middle (M)-stage (6.0–9.4 ‰) to Late (L)-stage (− 1.5–3.3 ‰), with δD values changing from E-stage − 95 to − 46 ‰, through M-stage − 82 to − 70 ‰ to L-stage − 95 to − 82 ‰. δ13CCO2 values of the ore fluids in the E- and M-stage quartz vary between 0.1 ‰ and 0.9 ‰ (average: 0.3 ‰); δ13CCO2 values of L-stage FIs are − 0.2–0.1 ‰ in quartz and − 6.8 ‰ to − 3.5 ‰ in calcite. The H–O–C isotopic data indicate that the initial ore fluids were sourced from the underthrusted Qinling Group marine carbonates, and were then interacted with the ore-hosting Erlangping Group metasedimentary rocks. Inflow of circulated meteoric water may have dominated the L-stage fluid evolution.Sulfur (δ34S = 1.9–8.1 ‰) and lead isotopic compositions (206Pb/204Pb = 18.202–18.446, 207Pb/204Pb = 15.567–15.773 and 208Pb/204Pb = 38.491–39.089) of sulfides suggest that the ore-forming materials were mainly sourced from the ore-hosting metasedimentary strata. The stepped heating sericite 40Ar/39Ar detection suggests that the mineralization occurred in the Middle Jurassic to Early Cretaceous (ca. 187  124 Ma). Considering the regional tectonic evolution of the Erlangping Terrane, we propose that the Xiaguan Ag–Pb–Zn orefield was formed in a continent–continent collisional tectonic regime, in accordance with the tectonic model for continental collision, metallogeny and fluid flow (CMF).  相似文献   

14.
The İnkaya Cu–Pb–Zn–(Ag) prospect is a typical example of the hydrothermal mineralization occurring in the Menderes Massif, which crop out in Western Anatolia. The prospect located approximately 20 km west of Simav (Kütahya-Turkey) in northern part of the Menderes Massif have been characterized through the detailed examinations involving geological, mineralogical, whole-rock geochemistry, fluid inclusion, stable isotope and lead isotope.The İnkaya Cu–Pb–Zn–(Ag) prospect is located along an E–W-trending fault in the Cambrian Simav Metamorphics, which consist of quartz–muscovite schist, quartz–biotite schist, muscovite schist, biotite schist and the Arıkayası Formation, which is composed of marbles. Galena, sphalerite, chalcopyrite, pyrite and fahlore are the main minerals, and they are accompanied by small amounts of cerussite, anglesite, digenite, enargite, chalcocite, covellite, bornite, and Fe-oxides with gangue quartz. In addition to Pb, Zn, Cu, Ag, the ore samples contain substantial quantities of As, Cd and Bi and small amount of Au. Average contents of Cu, Pb, Zn and Ag are 77,400 ppm, 102,600 ppm, 6843 ppm and 203 ppm, respectively.The δ34S values for galena, chalcopyrite and pyrite formed in the same stage vary in the range from − 1.7 to − 2.1‰ (average − 2.0), 0.1 to 0.3‰ (average 0.2) and − 1.5 to 2.6‰ (average + 1.5), respectively.δ34S values for H2S, representing the composition of the fluids responsible for the sulfide mineral formations and calculated from the δ34S value are between − 2.77 and 1.33‰; it is consistent with the sulfur in sulfide minerals. δ18Oquartz values range from 11.3 to 16.4‰ and estimated δ18Ofluid values range from 5.4 to 10.6‰.Pyrite–galena and pyrite–chalcopyrite pairs calculated to determine equilibrium isotope temperatures based on δ34S values are between 254.6 and 277.4 °C for pyrite–galena and 274.7 °C for pyrite–chalcopyrite. Sulfur and oxygen isotope values similar to the values for fluid equilibrated with an felsic magmatic source.Fluid inclusion studies on quartz of the same silicification stage coexisting with galena, sphalerite and chalcopyrite collected from the mineralized vein indicate that the temperature range of the fluids is 235 °C to 340 °C and that the salinities are 0.7 to 4.49 wt.% NaCl equivalent. The wide range of homogenization temperatures and relatively lower salinities of the fluid inclusions indicate that at least two different fluid generations were trapped in the quartz from only one fluid type. Also, lower salinities of fluid inclusion probably indicate mixing of meteoric water and magmatic fluid.The galena has 206Pb/204Pb values of 18.862–18.865, 207Pb/204Pb values of 15.707–15.711, and 208Pb/204Pb values of 39.033–39.042. The lead isotope values show a similarity with upper crustal values.  相似文献   

15.
Strontium and carbon isotope stratigraphy was applied to a 202 m-thick shallow marine carbonate section within the Late Jurassic Bau Limestone at the SSF quarry in northwest Borneo, Malaysia, which was deposited in the western Palaeo-Pacific. Strontium isotopic ratios of rudist specimens suggest that the SSF section was formed between the latest Oxfordian (155.95 Ma) and the Late Kimmeridgian (152.70 Ma), which is consistent with previous biostratigraphy. The δ13Ccarb values of bulk carbonate range from −0.10 to +2.28‰ and generally show an increasing upward trend in the lower part of the section and a decreasing upward trend in the upper part of the section. A comparable pattern is preserved in the δ13Corg isotope record. Limestone samples of the SSF section mainly preserve the initial δ13Ccarb values, except for the interval 84–92 m, where an apparent negative anomaly likely developed as a result of meteoric diagenesis. Comparing with the Tethyan δ13Ccarb profile, a negative anomaly in the lower SSF section can be correlated with the lowered δ13C values around the Oxfordian/Kimmeridgian boundary. In addition, δ13Ccarb values of the Bau Limestone are generally ∼1‰ lower than the Tethyan values, but comparable with the values reported from Scotland and Russia, located in Boreal realm during the Late Jurassic. This suggests that either the Tethyan record or the other records have been affected by the δ13C values of regionally variable dissolved inorganic carbon (DIC). The Late Jurassic δ13CDIC values are thought to have been regionally variable as a result of their palaeoceanographic settings. This study shows that δ13C chemostratigraphy of the Palaeo-Pacific region contributes to an improved understanding of global carbon cycling and oceanography during this time period.  相似文献   

16.
Stable isotopes of injected CO2 act as useful tracers in carbon capture and storage (CCS) because the CO2 itself is the carrier of the tracer signal and remains unaffected by sorption or partitioning effects. At the Ketzin pilot site (Germany), carbon stable isotope composition (δ13C) of injected CO2 at the injection well was analyzed over a time period of 4 months. Occurring isotope variances resulted from the injection of CO2 from two different sources (an oil refinery and a natural gas-reservoir). The two gases differed in their carbon isotope composition by more than 27‰. In order to find identifiable patterns of these variances in the reservoir, more than 250 CO2-samples were collected and analyzed for their carbon isotope ratios at an observation well 100 m distant from the injection well. An isotope ratio mass spectrometer connected to a modified Thermo Gasbench system allowed quick and cost effective isotope analyses of a high number of CO2 gas specimens. CO2 gas from the oil refinery (δ13C = −30.9‰, source A) was most frequently injected and dominated the reservoir δ13C values at the injection site. Sporadic injection of the CO2 from the natural gas-reservoir (δ13C = −3.5‰, source B) caused isotope shifts of up to +5‰ at the injection well. These variances provided a potential ideal tracer for CO2 migration behavior. Based on these findings, tracer input signals that were injected during the last 2 years of injection could be reconstructed with the aid of an isotope mixing model and CO2 delivery schedules. However, in contrast to the injection well, δ13C values at the observation well showed no variances and a constant value of −28.5‰ was measured at 600 m depth. This is in disagreement with signals that would be expected if the input signals from the injection would arrive at the observation well. The lack of isotope signals at the observation well suggests that parts of the reservoir are filled with CO2 that is immobilized.  相似文献   

17.
The Hoshbulak Zn–Pb deposit is located in South Tianshan, Xinjiang, China. The Zn–Pb orebody is tabular and stratoid in form and it is hosted in calcareous rocks of the Upper Devonian Tan'gaitaer Formation which were thrust over the Carboniferous system. The ores are mineralogically simple and composed mainly of sphalerite, galena, pyrite, calcite, dolomite and exhibit massive, banded, veinlets, colloidal, metasomatic, eutectic, concentric ring and microbial-like fabrics. The Co/Ni ratios of pyrite in the ores range from 0.46 to 0.90 by electron microprobe, which suggested that the Hoshbulak Zn–Pb mineralization was formed in a sedimentary environment. The REE patterns of the hydrothermal calcite coincide well with those of recrystallized micritic limestones, suggesting that the Hoshbulak Pb–Zn mineralization was closely genetically related to limestones of the Tan'gaitaer Formation. The C-, H- and O-isotopic compositions of hydrothermal calcite and dolomite in the ores yield δ13C(VPDB) values ranging from − 1.9‰ to + 2.6‰ (mean 0.79‰), δ18O(VSMOW) values from 22.41‰ to 24.67‰ (mean 23.04‰) and δD values from − 77‰ to − 102‰ for fluid inclusions. It is suggested that the ore-forming fluids, including CO2, were derived from the calcareous strata of the Tan'gaitaer Formation in association with hydrocarbon brines. The δ34S(VCDT) ranges from − 22.3‰ to − 8.5‰ for early ore-stage sulfides and from 5.9‰ to 24.2‰ with a cluster between 14.4‰ and 24.2‰ for the sulfides (pyrite, sphalerite, galena) in the main ore-stage. The ore sulfur may have been derived from evaporite rocks by thermochemical sulfate reduction (TSR) as the predominant mechanism for H2S generation. The Pb-isotopic compositions of the sulfide minerals from the Hoshbulak ores yield 206Pb/204Pb ratios from 17.847 to 18.173, 207Pb/204Pb ratios from 15.586 to 15.873 and 208Pb/204Pb ratios from 37.997 to 38.905, which indicate that the metals were sourced mainly from the Tan'gaitaer Formation. We conclude that the genesis of the Hoshbulak Mississippi Valley-type deposit was closely related to thrust faulting in the South Tianshan orogen of China.  相似文献   

18.
The Hadamengou-Liubagou Au-Mo deposit is the largest gold deposit in Inner Mongolia of North China. It is hosted by amphibolite to granulite facies metamorphic rocks of the Archean Wulashan Group. To the west and north of the deposit, there occur three alkaline intrusions, including the Devonian-Carboniferous Dahuabei granitoid batholith, the Triassic Shadegai granite and the Xishadegai porphyritic granite with molybdenum mineralization. Over one hundred subparallel, sheet-like ore veins are confined to the nearly EW-trending faults in the deposit. They typically dip 40° to 80° to the south, with strike lengths from hundreds to thousands of meters. Wall rock alterations include potassic, phyllic, and propylitic alteration. Four distinct mineralization stages were identified at the deposit, including K-feldspar-quartz-molybdenite stage (I), quartz-pyrite-epidote/chlorite stage (II), quartz-polymetallic sulfide-gold stage (III), and carbonate-sulfate-quartz stage (IV). Gold precipitated mainly during stage III, while Mo mineralization occurred predominantly in stage I. The δDH2O and δ18OH2O values of the ore-forming fluids range from −125‰ to −62‰ and from 1.4‰ to 7.5‰, respectively, indicating that the fluids were dominated by magmatic water with a minor contribution of meteoric water. The δ13CPDB and δ18OSMOW values of hydrothermal carbonate minerals vary from −10.3‰ to −3.2‰ and from 3.7‰ to 15.3‰, respectively, suggesting a magmatic carbon origin. The δ34SCDT values of sulfides from the ores vary from −21.7‰ to 5.4‰ and are typically negative (mostly −20‰ to 0‰). The wide variation of the δ34SCDT values, the relatively uniform δ13C values of carbonates (typically −5.5‰ to −3.2‰), as well as the common association of barite with sulfides suggest that the minerals were precipitated under relatively high fo2 conditions, probably in a magmatic fluid with δ34SƩS  0‰. The Re-Os isotopic dating on molybdenite from Hadamengou yielded a weighted average age of 381.6 ± 4.3 Ma, indicating that the Mo mineralization occurred in Late Devonian. Collectively, previous 40Ar-39Ar and Re-Os isotopic dates roughly outlined two ranges of mineralizing events of 382–323 Ma and 240–218 Ma that correspond to the Variscan and the Indosinian epochs, respectively. The Variscan event is approximately consistent with the Mo mineralization at Hadamengou-Liubagou and the emplacement of the Dahuabei Batholith, whereas the Indosinian event roughly corresponds to the possible peak Au mineralization of the Hadamengou-Liubagou deposit, as well as the magmatic activity and associated Mo mineralization at Xishadegai and Shadegai. Geologic, petrographic and isotopic evidence presented in this study suggest that both gold and molybdenum mineralization at Hadamengou-Liubagou is of magmatic hydrothermal origin. The molybdenum mineralization is suggested to be associated with the magmatic activity during the southward subduction of the Paleo-Asian Ocean beneath the North China Craton (NCC) in Late Devonian. The gold mineralization is most probably related to the magma-derived hydrothermal fluids during the post-collisional extension in Triassic, after the final suturing between the Siberian and NCC in Late Permian.  相似文献   

19.
The Hattu schist belt is located in the western part of the Archaean Karelian domain of the Fennoscandian Shield. The orogenic gold deposits with Au–Bi–Te geochemical signatures are hosted by NE–SW, N–S and NW–SE oriented shear zones that deform 2.76–2.73 Ga volcanic and sedimentary sequences, as well as 2.75–2.72 Ga tonalite–granodiorite intrusions and diverse felsic porphyry dykes. Mo–W mineralization is also present in some tonalite intrusions, both separate from, and associated with Au mineralization. Somewhat younger, unmineralized leucogranite intrusions (2.70 Ga) also intrude the belt. Lower amphibolite facies peak metamorphism at 3–5 kbar pressures and at 500–600 °C temperatures affected the belt at around 2.70 Ga and post-date hydrothermal alteration and ore formation. In this study, we investigated the potential influence of magmatic-hydrothermal processes on the formation of orogenic gold deposits on the basis of multiple stable isotope (B, S, Cu) studies of tourmaline and sulphide minerals by application of in situ SIMS and LA ICP MS analytical techniques.Crystal chemistry of tourmaline from a Mo–W mineralization hosted by a tonalite intrusion in the Hattu schist belt is characterized by Fe3 +–Al3 +-substitution indicating relatively oxidizing conditions of hydrothermal processes. The range of δ11B data for this kind of tourmaline is from − 17.2‰ to − 12.2‰. The hydrothermal tourmaline from felsic porphyry dyke swith gold mineralization has similar crystal chemistry (e.g. dravite–povondraite compositional trend with Fe3 +–Al3 + substitution) and δ11B values between − 19.0‰ and − 9.6‰. The uvite–foitite compositional trend and δ11B ‰ values between − 24.1% and − 13.6% characterize metasomatic–hydrothermal tourmaline from the metasediment-hosted gold deposits. Composition of hydrothermal vein-filling and disseminated tourmaline from the gold-bearing shear zones in metavolcanic rocks is transitional between the felsic intrusion and metasedimentary rock hosted hydrothermal tourmaline but the range of average boron isotope data is essentially identical with that of the metasediment-hosted tourmaline. Rock-forming (magmatic) tourmaline from leucogranite has δ11B values between − 14.5‰ and − 10.8‰ and the major element composition is similar to that of the metasediment-hosted tourmaline.The range of δ34SVCDT values measured in pyrite, chalcopyrite and pyrrhotite is from − 9.1 to + 8.5‰, which falls within the typical range of sulphur isotope data for Archaean orogenic gold deposits. In the Hattu schist belt, positive δ34SVCDT values characterize metasediment-hosted gold ores with sulphide parageneses dominated by pyrrhotite and arsenopyrite. The δ34SVCDT values are both positive and negative in ore mineral parageneses within felsic intrusive rocks in which variable amounts of pyrrhotite are associated with pyrite. Purely negative values were only recorded from the pyrite-dominated gold mineralization within metavolcanic units. Therefore the shift of δ34SVCDT values to the negative values reflects precipitation of sulphide minerals from relatively oxidizing fluids. The range of measured δ65CuNBS978 values from chalcopyrite is from − 1.11 to 1.19‰. Positive values are common for mineralization in felsic intrusive rocks and negative values are more typical for deposits confined to metasedimentary rocks. Positive and negative δ65CuNBS978 values occur in the ores hosted by metavolcanic rocks. There is no correlation between sulphur and copper isotope data obtained in the same chalcopyrite grains.Evaluation of sulphur and boron isotope data together and comparisons with other Archaean orogenic gold provinces supports the hypothesis that the metasedimentary rocks were the major sources of sulphur and boron in the orogenic gold deposits in the Hattu schist belt. Variations in major element and boron isotope compositions in tourmaline, as well as in the δ34SVCDT values in sulphide minerals are attributed to localized involvement of magmatic fluids in the hydrothermal processes. The results of copper isotope studies indicate that local sources of copper in orogenic gold deposits may potentially be recognized if the original, distinct signatures of the sources have not been homogenized by widespread interaction of fluids with a large variety of rocks and provided that local chemical variations have been too small to trigger changes in the oxidation state of copper during hydrothermal processes.  相似文献   

20.
《Gondwana Research》2014,25(3-4):1276-1282
Concentrations of total organic matter (TOC), carbon isotopic compositions of carbonate and organic matter (δ13Ccarb, δ13Corg), and sulfur isotopic compositions of carbonate associated sulfate (δ34Ssulfate) across the Guadalupian–Lopingian (G–L) boundary were analyzed from identical samples of Tieqiao section, Laibin, Guangxi province, South China. The δ13Ccarb values show a positive excursion from − 0.45‰ to the peak of 3.80‰ in the Laibin limestone member of the Maokou Formation, followed by a drastic drop to − 2.60‰ in the lowest Heshan formation, then returned to about 1.58‰. Similar to the trends of the δ13Ccarb values, Δ13Ccarb–org values also show a positive excursion followed by a sharp negative shift. The onset of a major negative carbon isotope excursion postdates the end Guadalupian extinction that indicates subsequent severe disturbance of the ocean–atmosphere carbon cycle. The first biostratigraphic δ34Ssulfate values during the G–L transition exhibit a remarkable fluctuation: a dramatic negative shift followed by a rapid positive shift, ranging from 36.88‰ to − 37.41‰. These sulfate isotopic records suggest that the ocean during the G–L transition was strongly stratified, forming an unstable chemocline separating oxic shallow water from anoxic/euxinic deep water. Chemocline excursions, together with subsequent rapid transgression and oceanic anoxia, were likely responsible for the massive diversity decline of the G–L biotic crisis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号