首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
月壤钛铁矿微波烧结制备月球基地结构材料的初步设想   总被引:2,自引:0,他引:2  
月球基地建设是当前"重返月球"的一个重要目标,为满足其建设需要大量结构材料.部分学者通过对真实月壤样品和模拟月壤进行各种高温烧结实验,分析了就地利用月壤矿物资源制备各种材料的方法.但由于月壤成分较为复杂,烧结产物的性能还很难满足实际需求.微波烧结技术作为一项新技术,具有传统烧结技术无法比拟的优势,更适合作为月球资源利用中的烧结加热技术.结合月壤中钛铁矿的含量,通过热力学分析,作者认为利用钛铁矿进行微波烧结实验来制备月球基地所需结构材料是一个值得深入研究的方案.  相似文献   

2.
月球表面的环境特征   总被引:15,自引:0,他引:15       下载免费PDF全文
本文通过对月球探测资料和研究结果的系统分析,认为月球体积小、质量轻、离太阳较近(温度高)等因素是月球只有极为稀薄大气层的原因;论证了月球极地阴影区存在水冰的证据,并计算出水资源量约为66亿吨。研究了月壤中氦-3的含量与月壤颗粒大小、矿物组成、元素成分和结构特征的关系,并估算了氦-3的资源量;探讨了月球表面的反射率;综合分析了月球区域性磁场的形成机制。  相似文献   

3.
我国月球探测的总体科学目标与发展战略   总被引:52,自引:0,他引:52  
在简述月球探测的历程与趋势的基础上,强调当代月球探测的总体目标为:①研究月球与地月系的起源和演化,特别是月球大气层与磁场的消失,矿物与岩石的分布和形成环境、月壤和内部层圈结构的形成以及月球演化的历程;②探测月球的资源、能源和特殊环境的开发利用及对人类社会长期可持续发展的支撑。我国不载人月球探测划分为绕、落、回三个阶段。为了全球性、整体性重新认识月球,绕月卫星探测的科学目标是为了获取全月面三维影像,探测14种有用元素的全球分布与丰度,探测月壤厚度并估算氦 3资源量以及太阳活动对空间环境的影响。"落"为月球探测器软着陆就位探测和月球车巡视探测,建立月基光学、低频射电和极紫外天文观测平台。"回"为月球探测器软着陆就位探测和取样返回地面。  相似文献   

4.
利用月球含氧矿物制取氧气的方法学比较   总被引:2,自引:0,他引:2  
氧气作为人类未来在月球上生存的基本条件,研究制取方法是月球基地建设中的一个主要目标.本文分类总结了利用月球含氧矿物制氧方法;就制氧方法适合就地利用月球资源、反应的高效率、反应过程易实现性等方面比较了各类方法的优缺点,提出就地利用微波能加热、氢气作为还原剂、月壤中钛铁矿作为反应物的月球基地制氧的优选方案.  相似文献   

5.
月球探测与人类社会的可持续发展   总被引:6,自引:0,他引:6  
1959年至1976年的18年是人类第一次月球探测高潮,美国和前苏联共成功发射了45个月球探测器,获取了382kg的月球岩石和月壤样品,这些探测资料和月球样品的系统分析与研究,大大促进了人类对月球、地球和太阳系的认识,并带动了一系列基础科学的创新,促进了一系列应用科学的发展。通过从1976年至1994年近18年浩如烟海的月球探测数据和资料的消化、分析与综合研究后,1994年Clementine环月探测器的发射,标志新的一轮探月高潮的开始。当前,国际探月活动刚进入重返月球、逐步建设月球基地的阶段,而逐步开发利用月球矿产资源、能源和特殊环境,建设月球基地,为人类社会的可持续发展服务,已成为新世纪月球探测的总体目标。本在系统分析已有的探测与研究资料基础上,论述了开发利用月球上具有的巨大能源库、丰富的矿产资源和独特的环境资源将对人类社会可持续发展所具有的深远意义。  相似文献   

6.
月球基地建设是当前人类探索月球以及外太空的初步任务目标,但是地月间运输成本高昂,未来的月球基地建设的开展很可能倾向于采用"就地取材",即直接利用月球资源的方式进行。月壤是月球表面上随处可取的资源,若能有效利用,必然能大幅降低基地的建造成本。为满足月球基地建设中大量的原材料需求,国内外学者已经开始通过对阿波罗等航天计划取样的真实月壤样品和地球上制备的各类模拟月壤样品进行各种成型试验,探讨利用月壤进行月球资源就地利用的可行性。基于此,本文对模拟月壤成型技术和方法的国内外研究进展进行了归纳总结,结合月球表面的实际环境,对各种方法和技术的应用前景及可能遭受的挑战进行了详细探讨,论述了向月球运输大型设备及在月球实际环境中使用额外添加剂的难度。此外,详细介绍了国内课题组对我国自主研制的CLRS系列模拟月壤和钛铁矿粉末进行的激光3D打印成型试验的结果,阐明了激光3D打印工艺参数、预压等处理技术对激光烧结模拟月壤成型性的影响。详细介绍了模拟月壤的烧结机理及成分演变的研究,并且论述了烧结温度、烧结气氛、成分组成及原料粒度等对模拟月壤烧结过程的影响,讨论了模拟月壤成型的机理性研究的重要性,本文旨在为今后月面资源就地利用、月壤成型技术及机理等研究课题的进一步发展提供参考。  相似文献   

7.
月壤是月球科学与工程探测的主要目标物和承载物,也是人类认识月球的主要信息来源。太空风化作用是决定月壤形成,特别是演化过程的关键因素。本文系统总结了近两年来围绕嫦娥五号着陆区月壤的太空风化改造特征所取得的阶段性研究进展,特别是单质金属铁的多种成因机制、硫化物的风化改造特征和太阳风成因水等。上述研究成果的取得,为准确认识月壤特性,反演月壤形成与时空演化历史以及评估月壤资源特性奠定了良好的基础。最后结合我国后续月球探测工程规划,提出了新的研究方向与目标。  相似文献   

8.
徐琳  邹永廖  刘建忠 《矿物学报》2003,23(4):374-378
除了极少数非常陡峭的山脉与撞击坑和火山通道的峭壁外,整个月球表面几乎都被一层厚度不等的月尘、岩屑和岩块的混合堆积物即月壤所覆盖。由于月球无大气层等特殊环境,太阳光长驱直入,太阳风粒子直接注入到月壤细小颗粒上使月壤中富含稀有气体等太阳风粒子组分。本文在系统阐述月壤的形成过程与形成机制的基础上,分析了月壤中稀有气体的来源及其浓度与月壤的成熟度、月壤颗粒大小、月壤矿物组成和化学成分的相关关系,进而利用已有的探测数据和分析结果,对月壤中氦-3资源的开发利用前景进行了初步评估。  相似文献   

9.
月面环境与月壤特性研究的主要问题探讨   总被引:6,自引:0,他引:6  
月面环境与月壤特性是月球探测和月球科学研究的重要基础,对它们的研究一直在不断加深,本文对月球表面地形地貌、热环境以及月壤特性三个方面的研究现状进行了总结,初步分析了这三个方面研究目前存在的一些主要问题:(1)地形地貌对月球定量遥感的影响以及南极艾特肯(SPA)盆地等地貌单元的年代学划分和成因演化;(2)月面热辐射、月表物理温度和热流等月面热环境特征的进一步探测和全面分析,以及其对地球反照率变化的响应;(3)月壤形成演化过程及空间风化作用,月球极区氢富集机制和水冰探测,以及月球资源开发利用。  相似文献   

10.
月球极区冻结模拟月壤物理力学特性研究   总被引:1,自引:0,他引:1  
近年来越来越多的探测结果表明,月球极区永久阴影区月壤中存在水冰。水是人类赖以生存的化学物质,也是理解月球独特的形成与演化过程的关键环节。因此,各航天大国均将月球极区作为探月工程的重要目标。冻结月壤的导热系数和单轴抗压强度是月球极区原位探测取样的基础和关键参数。本研究采用低温试验研究了冻结模拟月壤的导热系数和单轴抗压强度。结果表明:冻结模拟月壤导热系数随含水率增大而线性增大,冻结模拟月壤的导热系数为0.2~1.3 W?m-1?K-1。冻结模拟月壤单轴压缩过程中发生脆性破坏,5%含水率冻结模拟月壤单轴抗压强度约为5 MPa,10%含水率冻结模拟月壤单轴抗压强度约为13 MPa。在初始加载阶段,干密度相同、含水率不同的冻结模拟月壤试样因微裂纹压密导致的应变量基本相同;在线弹性阶段,冻结模拟月壤有效弹性模量随含水率增大而增大,其主要原因是含水率增大使得月壤颗粒间的冻结强度增大;在破坏阶段,含水率较高的冻结模拟月壤表现出脆性破坏特征,含水率较低的冻结模拟月壤表现出更显著的塑性特征。研究结果将为月球永久阴影区水冰探测方案制定、探测器研制等提供基础的科学数据支撑。  相似文献   

11.
Northwest Africa (NWA) 4472 is a polymict lunar regolith meteorite. The sample is KREEP-rich (high concentrations of potassium, rare earth elements and phosphorus) and comprises a heterogeneous array of lithic and mineral fragments. These clasts and mineral fragments were sourced from a range of lunar rock types including the lunar High Magnesian Suite, the High Alkali Suite, KREEP basalts, mare basalts and a variety of impact crater environments. The KREEP-rich nature of NWA 4472 indicates that the sample was ejected from regolith on the nearside of the Moon in the Procellarum KREEP Terrane and we have used Lunar Prospector gamma-ray remote sensing data to show that the meteorite is most similar to (and most likely sourced from) regoliths adjacent to the Imbrium impact basin.U-Pb and Pb-Pb age dates of NWA 4472 phosphate phases reveal that the breccia has sampled Pre-Nectarian (4.35 Ga) rocks related to early episodes of KREEP driven magmatism. Some younger phosphate U-Pb and Pb-Pb age dates are likely indicative of impact resetting events at 3.9-4 Ga, consistent with the suggested timing of basin formation on the Moon. Our study also shows that NWA 4472 has sampled impact melts and glass with an alkali-depleted, incompatible trace element-rich (high Sc, low Rb/Th ratios, low K) compositional signature not related to typical Apollo high-K KREEP, or that sampled by KREEPy lunar meteorite Sayh al Uhaymir (SaU) 169. This provides evidence that there are numerous sources of KREEP-rich protoliths on the Moon.  相似文献   

12.
CAS-1模拟月壤   总被引:5,自引:0,他引:5  
模拟月壤是与月球月壤具有相似的矿物组成、化学成分和物理力学性质的地球物质,是月球样品的地球化学复制品。长白山龙岗火山群金龙顶子火山喷发的四海火山渣具有与阿波罗14号采集的月球样品相似的化学和矿物组成,并含有20%~40%的玻璃物质。以四海火山渣为初始物质,研制成功CAS-1模拟月壤,并测量了CAS-1模拟月壤的主量和微量元素组成、矿物组成、密度、颗粒形态、粒度分布、抗剪性和复介电常数等参数。结果表明,CAS-1模拟月壤与Apollo 14号采集的月球样品具有相似的化学成分、矿物组成和物理力学性质,是一种理想的低钛玄武岩质模拟月壤。  相似文献   

13.
The most fundamental character of lunar soil is its high concentrations of solar-wind-implanted elements, and the concentrations and behavior of the noble gases He, Ne, Ar, and Xe, which provide unique and extensive information about a broad range of fundamental problems. In this paper, the authors studied the forming mechanism of lunar regolith, and proposed that most of the noble gases in lunar regolith come from the solar wind. Meteoroid bombardment controls the maturity of lunar soil, with the degree of maturation decreasing with grain size; the concentrations of the noble gases would be of slight variation with the depth of lunar soil but tend to decrease with grain size. In addition, the concentrations of noble gases in lunar soil also show a close relationship with its mineral and chemical compositions. The utilization prospects of the noble gas ^3He in lunar regolith will be further discussed.  相似文献   

14.
KREEP Rocks   总被引:2,自引:1,他引:2  
KREEP rocks with high contents of K, REE and P were first recognized in Apollo-12 samples, and it was confirmed later that there were KREEP rock fragments in all of the Apollo samples, particularly in Apollo-12 and -14 samples. The KREEP rocks distributed on the lunar surface are the very important objects of study on the evolution of the moon, as well as to evaluate the utilization prospect of REE in KREEP rocks. Based on previous studies and lunar exploration data, the authors analyzed the chemical and mineral characteristics of KREEP rocks, the abundance of Th on the lunar surface materials, the correlation between Th and REE of KREEP rocks in abundance, studied the distribution regions of KREEP rocks on the lunar surface, and further evaluated the utilization prospect of REE in KREEP rocks.  相似文献   

15.
Solar-wind erosion of rocks on the lunar surface and the implanting of solar-wind particles in minerals of lunar regolith are principally important processes of space weathering. The latter process leads to the accumulation of inert gases in mineral particles of lunar regolith. Literature data indicate that, depending on the composition and structure of the particles, the concentrations of implanted He in various minerals range within roughly three to four orders of magnitude. The lowest He implantation coefficient was determined in amorphous particles (glass), and very low implantation coefficients were also obtained in experiments on He implantation in glass (obsidian).  相似文献   

16.
Dhofar 1442 is one of the few lunar KREEP-rich meteorites, which contains KREEP norites and KREEP gabbronorite as well as low-Ti basalts and highly evolved granophyres. Zircon is a typical accessory mineral of KREEP rocks. U-Th-Pb dates of 12 zircon grains (four of them were in two lithic clasts, and the others were fragments in the meteorite matrix) indicate that the zircons belong to at least two groups of different age: “ancient” (~4.31 Ga) and “young” (~3.95 Ga), which correspond to two major pulses of KREEP magmatism in the source region of the Dhofar 1442 meteorite. The zircon of the “young” group was most probably related to the crater ejecta of the Mare Imbrium Basin. The rock fragments dated at approximately 3.95 Ga have the composition of KREEP gabbronorite. The parental rocks of the zircon of the “ancient” group in the Dhofar 1442 meteorite are uncertain and could be highly evolved granophyres. This hypothesis is supported by the high Th (100–300 ppm) and U (150–400 ppm) contents. These zircon fragments of the “ancient” group, higher than in the “young” group (<50 ppm Th and <70 ppm U) and are typical of zircon from lunar granitic rocks. The composition of the products of KREEP magmatism in the source region of the Dhofar 1442 meteorite could vary from predominantly granitic to KREEP gabbronoritic at 4.3–3.9 Ga.  相似文献   

17.
月壤的物理和机械性质   总被引:46,自引:0,他引:46  
月壤是在O2、水、风和生命活动都不存在的情况下,由陨石和微陨石撞击、宇宙射线和太阳风轰击、月表温差导致岩石热胀冷缩破碎等因素的共同作用下形成的。月壤独特的形成过程,加上独特的月表环境,使月壤在粒度分布、颗粒形态、颗粒比重、孔隙比和孔隙率、电性和电磁性质、压缩性、抗剪性、承载力等方面均与地球土壤存在较大差异,这些参数的平均值和最佳估计值,可以作为月表机械设计和操作、宇航员装备设计、月球着陆场选址的主要依据,对月球资源开发和利用以及月球基地建设具有极其重要的意义。  相似文献   

18.
The plutonic rocks of the magnesian suite (Mg-suite) represent the period of lunar basaltic magmatism and crustal growth (∼4.46 to 4.1 Ga) that immediately followed the initial differentiation of the Moon by magma ocean (LMO) formation and crystallization. The volume and distribution of the Mg-suite and its petrogenetic relationship to latter stages of lunar magmatism (mare basalts) remains obscure. These plutonic rocks exhibit a range of compositions and include ultramafics, troctolites, spinel troctolites, norites, and gabbronorites. A distinguishing characteristic of this suite is that they contain some of the most magnesium-rich phases (Fo95-90) that had crystallized from lunar magmas, yet they also are significantly enriched in an incompatible element component referred to as KREEP (a late-stage product of LMO crystallization containing abundant potassium (K), rare earth elements (REE), phosphorous (P), uranium, and thorium). Ion microprobe analyses of individual mineral phases (olivine, pyroxene, and plagioclase) from the Mg-suite have shown some very unexpected characteristics that have profound implications on the origin of these basaltic magmas. Although the Mg-suite lithologies are typified by silicates with relatively high Mg′, early liquidus phases such as olivine are fairly low in Ni, Co, and Cr relative to more iron-rich olivines in the younger mare basalts. The high Y and Ti/Y in early phases such as olivine and orthopyroxene indicate that the parental basaltic melts were high in incompatible elements and contained an “ilmenite fractionation” signature. However, the Y in olivine from many of the troctolites and ultramafic lithologies are only slightly greater than that of the olivine in the mare basalts whereas olivine in the norites, gabbronorites, and Apollo 14 troctolites are exceedingly high. The KREEP component may have been added to the Mg-suite parent magmas by assimilation or mixing into the mantle source. The volume of KREEP required to be added to the parental magmas of the Mg-suite tends to favor the latter mechanism for KREEP incorporation. The extremely high abundances of KREEP in the norites and gabbronorites are a product of substantial crystallization (40% to 70%) of KREEP-enriched Mg-suite parental magmas. Basaltic magmatism associated with KREEP extended for over 1.5 billion years and appears to have changed over time. The early stages of this style of lunar magmatism (Mg-suite) appear to represent melting of early LMO cumulates with low abundances of Ni, Co, Cr, and V. Later stages of KREEP-rich basaltic magmatism seemed to clearly involve melting of a variety of LMO cumulate assemblages with higher incompatible element enrichment. It appears that the heat derived from the KREEP component was instrumental in at least initiating melting of the lunar mantle over this period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号