首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the basis of the net transfer reactions among garnet, biotite,plagioclase and quartz (for both Mg and Fe end-member models),the garnet–biotite–plagioclase–quartz (GBPQ)geobarometer was empirically calibrated under physical conditionsof P = 1·0–11·4 kbar and T = 515–878°C,based on the input garnet–biotite temperatures and garnet–aluminosilicate–plagioclase–quartz(GASP) pressures of 224 natural aluminosilicate-bearing metapeliticsamples collated from the literature. The calibrations are internallyconsistent with the asymmetric quaternary solid solution modelof garnet, the symmetric quaternary solid solution model ofbiotite, and the Al-avoidance ternary solid solution model ofplagioclase in calibrating the garnet–biotite geothermometerand the GASP geobarometer. The resulting two GBPQ barometerformulae reproduce the input GASP pressures well within ±1·0kbar (mostly within ±0·5 kbar). For both aluminosilicate-bearingand aluminosilicate-absent metapelites, the two GBPQ barometryformulae yielded identical pressures, whether the sample wasincluded or not included in calibrating the GBPQ barometry.The random error of the GBPQ barometry may be expected as ±1·2kbar. The dP/dT slopes of these two GBPQ formulae are closeto that of the GASP barometer in PT space. Applicationsof the GBPQ barometry of aluminosilicate-absent metapelitesto the rocks within a thermal contact aureole, or rocks withina limited geographical area without post-metamorphic structuraldiscontinuity, show no obvious pressure change. It may be concludedthat the two GBPQ barometry formulae derived in this study maybe used as practical tools for metamorphic pelites under theconditions of 515–878°C and 1·0–11·4kbar, in the composition range of Xgros >3% in garnet, Xan>17% in plagioclase, and  相似文献   

2.
The garnet (Grt) and biotite (Bt) from gneisses of the Ji’an Group are characterized by diffusion zoning at the rim, but equilibrium composition of metamorphic peak is usually remained in extensive interior area. Garnet with growth zoning is also found in the kyanite zone. In the light of microarea compositional variation of Grt and Bt, the temperature and pressure at the progressive, peak and post-peak metamorphic stages are determined by correctly using Grt-Bt thermometer and GASP barometer. On this basis, a counterclockwiseP-T-t path can be constructed, which reflects the closing process of an ensialic rift belt in this region during the Early Proterozoic. The project was financially supported by the State Educational Commission Ph. D. Station Foundation (No. 96018702).  相似文献   

3.
High‐pressure granulites are an important record of geodynamic processes in overthickened or subducted continental crust. Orthopyroxene‐free assemblages in granitic (ternary feldspar(s) + quartz + garnet + kyanite + rutile), intermediate (ternary feldspar(s) + quartz + garnet + clinopyroxene ± kyanite ±rutile ± titanite) and basic (garnet + clinopyroxene + plagioclase ± quartz + rutile) compositions indicate formation conditions at mantle depths. Clinopyroxene compositions in Variscan high‐pressure granulites are unusual in that they include omphacite (in plagioclase‐bearing rocks thus not eclogite) and Al‐rich diopside (i.e. indicating high Ca‐Tschermak content), with both yielding temperatures above 900 °C. Problems such as compositional zoning, multiple generations of key phases in reaction domains and unmixing of high‐temperature solid‐solution phases during cooling (ternary feldspars, omphacite) clearly indicate disequilibrium and require very careful interpretation as to which phases and compositions possibly represent a former equilibrium association. Pressure–temperature (P–T) determination by the pseudosection method, although allowing prediction of mineral assemblages, compositions and molar proportions for a fixed bulk composition for modelled P–T conditions, still requires reliable activity–composition information for the key phases feldspar and clinopyroxene as well as an interpretation of former equilibrium compositions in the investigated samples, i.e. the same restrictions applying to conventional thermobarometry. The interpretations of some recently determined pseudosections for the composition of Variscan clinopyroxene‐bearing high‐pressure granulites contradict numerous published P–T paths. However, quantitative information from thermobarometry or pseudosections must be integrated with key petrographic observations. In the case of the Variscan example, it is argued that petrographic observations and published P–T paths are consistent with mineral assemblages predicted in pseudosections and support existing tectonometamorphic models.  相似文献   

4.
THERIA_G: a software program to numerically model prograde garnet growth   总被引:6,自引:4,他引:2  
We present the software program THERIA_G, which allows for numerical simulation of garnet growth in a given volume of rock along any pressure–temperature–time (PTt) path. THERIA_G assumes thermodynamic equilibrium between the garnet rim and the rock matrix during growth and accounts for component fractionation associated with garnet formation as well as for intracrystalline diffusion within garnet. In addition, THERIA_G keeps track of changes in the equilibrium phase relations, which occur during garnet growth along the specified PTt trajectory. This is accomplished by the combination of two major modules: a Gibbs free energy minimization routine is used to calculate equilibrium phase relations including the volume and composition of successive garnet growth increments as P and T and the effective bulk rock composition change. With the second module intragranular multi-component diffusion is modelled for spherical garnet geometry. THERIA_G allows to simulate the formation of an entire garnet population, the nucleation and growth history of which is specified via the garnet crystal size frequency distribution. Garnet growth simulations with THERIA_G produce compositional profiles for the garnet porphyroblasts of each size class of a population and full information on equilibrium phase assemblages for any point along the specified PTt trajectory. The results of garnet growth simulation can be used to infer the PTt path of metamorphism from the chemical zoning of garnet porphyroblasts. With a hypothetical example of garnet growth in a pelitic rock we demonstrate that it is essential for the interpretation of the chemical zoning of garnet to account for the combined effects of the thermodynamic conditions of garnet growth, the nucleation history and intracrystalline diffusion. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
F. GaidiesEmail:
  相似文献   

5.
Multiple regression analysis on an extended dataset has been performed to refine the relationship between temperature, pressure, composition and the Fe–Mg distribution between garnet and clinopyroxene. In addition to a significant dependence between the distribution coefficient KD and X GrtCa and X GrtMg#, as shown by the experimental data, the effect of X GrtMn has also been incorporated using data from natural Mn‐rich garnet–clinopyroxene pairs. Multiple regression of data (n=360) covering a large span in pressure, temperature and composition from 27 experimental datasets, combined with 49 natural high‐Mn granulites from Ruby Range, Montana, USA, and Karnataka, India, yields the P–T –compositional relationship (r2=0.98): where KD=(Fe2+/Mg)Grt/(Fe2+/Mg)Cpx, X GrtCa=Ca/(Ca+Mn+Fe2++Mg) in garnet, X GrtMn= Mn/(Ca+Mn+Fe2++Mg) in garnet, and X GrtMg#=Mg/(Mg+Fe2+) in garnet. The Fe2+–Mg equilibrium between garnet and clinopyroxene does not seem to be affected by variations in the sodic content of the co‐existing clinopyroxene in the range X CpxNa=0–0.51. Comparisons between the new and former calibrations of the garnet–clinopyroxene Fe2+–Mg geothermometer clearly demonstrate how the various parameters in each case affect the calculated temperatures. Application of the new expression gives reasonable results for natural garnet–clinopyroxene pairs from various rock types and settings, and should be preferred to previous formulations. Using the new calibration to the self‐consistent dataset of Pattison & Newton (Contributions to Mineralogy and Petrology, 1989, 101, 87–103) suggests a systematic deviation with regard to both temperature and composition between their dataset and the datasets used in the present calibration.  相似文献   

6.
浓度是溶液中客观存在的物理性质,活度则指非理想溶液(包括非理想固溶体)中组分的"有效浓度"。本文以石榴子石-黑云母(GB)温度计、石榴子石-Al2SiO5矿物-斜长石-石英(GASP)压力计为例,探讨了矿物活度模型对于温度计与压力计的影响。将石榴子石和黑云母作为理想或非理想固溶体,根据实验数据建立的不同版本的石榴子石-黑云母温度计,都能较好地重现实验温度,还能识别递增变质带、倒转变质带、热接触变质晕中,不同地带变质温度的系统性变化。但是,将石榴子石和黑云母同时作为理想固溶体的温度计,系统误差明显较大,计算温度系统性偏低。同时采用石榴子石和黑云母非理想活度模型,得到的温度计精确度高。将石榴子石和斜长石都作为理想固溶体建立的GASP压力计,计算压力明显偏高,不能准确识别Al2SiO5矿物的稳定域,有明显的系统误差。如果同时采用石榴子石与斜长石的非理想活度模型,即便不同活度模型之间热力学参数有很大差别,得到的GASP压力计准确度都较高,还能准确识别Al2SiO5矿物的稳定域。迄今为止,还严重缺乏适用于多种岩石类型和宽广温度-压力范围的通用型矿物活度模型。此外,虽然矿物温度计、压力计不涉及流体、熔体,但是其计算结果的确能准确反映客观地质事实,并不受流体、熔体的影响。  相似文献   

7.
A new formulation of garnet-biotite Fe–Mg exchange thermometer has been developed through statistical regression of the reversed experimental data of Ferry and Spear. Input parameters include available thermo-chemical data for quaternary Fe–Mg–Ca–Mn garnet solid solution and for excess free energy terms, associated with mixing of Al and Ti, in octahedral sites, in biotite solid solution. The regression indicates that Fe–Mg mixing in biotite approximates a symmetrical regular solution model showing positive deviation from ideality withW FeMg bi =1073±490 cal/mol. H r and S r for the garnet-biotite exchange equilibrium were derived to be 4301 cal and 1.85 cal respectively. The resultant thermometer gives consistent results for rocks with a much wider compositional range than can be accommodated by earlier formulations.  相似文献   

8.
This study performed equilibrium experiments in order to evaluate previously proposed formulations of the garnet (Grt)–clinopyroxene (Cpx) thermometer as applied to eclogites. The starting material is fine-grained powder of natural eclogite (<10 μm), whose main constituents are Grt (Fe:Mg:Ca∼44:28:28), Cpx (Na pfu∼0.55–0.60), phengite, quartz and rutile. Experimental conditions are 1,100–1,250°C at 2.5 GPa, and the run duration is 193–334 h. The experimental run products mainly consist of Grt, Cpx, and glass. In a preliminary experiment at 1,000°C for 144 h, Cpx grains are clearly zoned and most Grt grains maintain primary compositions. In the higher T (≥1,100°C) and longer run (≥193 h) experiments, Cpx in the run products becomes poorer in Na and higher in Fe/Mg compared with the starting material, and each grain does not show clear chemical zoning. Garnet compositions become poorer in Ca [Ca/(Fe+Mn+Mg+Ca)∼0.2–0.25] and lower in Fe/Mg compared with the starting material. The average composition of Cpx and the average of Ca-poor Grt compositions in each run product were used to evaluate previously proposed formulations of the Grt–Cpx thermometer. Temperatures calculated with formulations by Pattison and Newton (1989) and Berman et al. (1995) are much lower than the experimental temperatures, even though these formulations are based on the compositional bracketing-type experiment. One of the reasons for this discrepancy might be uncertainty of solid-solution properties of Al in Cpx, because the value of the excess interaction parameter for Al in the generally low-Al Cpx modeled by Berman et al. (1995) is much higher than those proposed by independent experiments, resulting in the estimated temperatures being significantly lower than the experimental temperatures.  相似文献   

9.
Chun-Ming Wu  Jian Zhang 《Lithos》2004,78(4):319-332
Based on the net transfer reactions among garnet, muscovite, plagioclase, and quartz (for both Mg and Fe end-member models), the garnet-muscovite-plagioclase-quartz (GMPQ) geobarometry was empirically calibrated under the physical conditions of P=1.0-11.4 kbar and T=505-745 °C for 128 natural metapelitic rock samples collected from the literature. The input temperatures and pressures were simultaneously determined by the garnet-biotite thermometer and the garnet-aluminosilicate-plagioclase-quartz (GASP) barometer. The GMPQ calibrations adopted the same asymmetric quaternary solid solution model of garnet and the same Al-avoidance asymmetric ternary model of plagioclase as the calibrations of the garnet-biotite geothermometer and the GASP geobarometer. A symmetric Fe-Mg-AlVI ternary solid solution model of muscovite was adopted, and the Margules parameters of muscovite were obtained through regression. The Mg and Fe model reactions, along with the assumption of whether the ferric iron content in muscovite is 0% or 50%, resulted in four GMPQ barometry formulae. The GMPQ barometry formulae reproduce the input GASP pressures well within ±1.0 kbar (mostly within ±0.5 kbar). For both aluminosilicate-bearing and aluminosilicate-absent samples, the GMPQ barometry formulae yield identical pressures for every sample, whether the sample was included or not in calibrating the barometers. For each of the Mg or Fe model reaction, the formulae gave identical pressures within ±40 bars. The random error of the GMPQ barometry may be expected as ±1.4 kbar. The dP/dT slopes of these GMPQ formulae are close to that of the GASP barometer in the P-T space. Applications of the GMPQ barometry to aluminosilicate-absent metapelites within a limited geographic area without postmetamorphic structural discontinuity generally show no pressure difference. It may be concluded that the GMPQ barometry formulae derived in this work may be used as practical tools for metamorphic pelites under the conditions of 505-745 °C and 1-11.4 kbar, in the composition range of Xgros>3% in garnet and XAn>17% in plagioclase.  相似文献   

10.
Reaction of zoning of garnet   总被引:1,自引:0,他引:1  
Compositional zoning of garnet in metamorphic or igneous rocks preserves evidence of the equilibration history of the sample and can be interpreted in terms of a growth-fractionation, diffusion-exchange, or diffusion-reaction model. Diffusion zoning is usually assumed to result from exchange reactions between garnet and other phases as the partitioning coefficient varies in response to changing environmental conditions, primarily temperature. However, in many natural environments where garnet grew originally in divariant equilibrium with other phases, changing conditions can promote continuous or “divariant” reactions and consequent compositional shifts of phases that can be much greater in some systems showing these reactions than those related to the small changes of partitioning. Diffusional zoning related to overstepping of these continuous reactions must be related to incongruent reaction and necessitates formulation of a kinetic diffusion-reaction model involving moving phase boundaries as well as solid-state diffusion. Three samples containing zoned garnets from the metamorphic aureole around the Ronda ultramafic intrusion in southern Spain are used to illustrate two possible models of diffusion-reaction processes. The examples are particularly informative because the reactions are demonstrably irreversible and evidence of the reaction system is preserved. Partitioning data indicates that compositions of product phases are not in equilibrium with the original garnet and do not vary with extent of reaction; therefore, exchange reactions with garnet were not possible and garnet changed composition only by incongruent reaction. After a small amount of reaction, Mg/Fe of the rim composition approaches a value apparently in equilibrium with product phases, but the garnets are zoned inward to the original garnet composition preserved in the interior. Grossularite content is approximately constant and spessartite content variable but small, thus, the rim composition of pyrope or almandine is assumed to be fixed by the external reaction process and is taken as a boundary condition in the following models. The zoning profile of pyrope or almandine component between the fixed rim and core compositions (assumed to extend to ∞) is described in semiinfinite, half-space models appropriate for large garnets with narrow rims. The first model corresponds to a reaction system in which all garnet compositions are metastable (case 1) and zoning depends on the independent variables of the diffusion constant, velocity of the interface between garnet and matrix, and time. The second model, corresponding to systems in which the initial garnet composition is metastable but an equilibrium composition is stable (case 2), depends on the independent variables diffusion constant, time, and a function of reaction compositions. In case 1 the consumption velocity is assumed constant and a steady state zoning profile is reached at large time, whereas, in case 2, the velocity decreases with the concentration gradient and steady state is not possible. The models were tested using a reaction time estimated from cooling models of the aureole, mass of garnet consumed, determined petrographically, and phase compositions. The two cases are somewhat independent in that different parameters are independent variables. The estimate of the diffusion constant of 10?18±2 cm2/sec (assumed to be a mutual or binary coefficient for almandine and pyrope) is considered reasonable for the temperature range of reaction (probably 600–900° C), and the two models are consistent considering the probable error and possible real temperature differences. It is obvious that details of the metamorphic reaction system must be known to successfully apply diffusion models. Kinetic models, involving consumption or growth of the phase as well as diffusion are probably necessary when dealing with natural rocks. Several possible and interesting complications, such as cross coupling between components, can be investigated if more data were available. Experimental determination of diffusion constants allow natural reaction rates to be estimated by this method. Diffusion zoning is an important consideration that could increase the efficiency of experimentation with chemically recalcitrant phases.  相似文献   

11.
Summary A forward model is proposed to reproduce the formation of garnet under conditions of sluggish diffusion transport in the matrix. Starting from a matrix consisting of chlorite and quartz, the amount of garnet growth and the chemical composition was calculated at each PT increment in the system MnO–FeO–MgO–Al2O3–SiO2–H2O. Sluggish diffusion transport was introduced considering the local equilibrium between garnet surface and the matrix within a given diffusion distance (equilibration volume). Varying the diffusion distance, calculations were performed along the prograde PT path of the Sambagawa metamorphic belt, Japan. The final size of the garnet grains was largely proportional to the diffusion distance. In contrast to the model without diffusion limitations, a shorter diffusion distance resulted in a rise of the Mg/(Mg + Fe) ratio in garnet before Mn approached zero. These results indicate that the chemical composition trend in zoned garnet from the Sambagawa belt is consistent with growth under sluggish material transport. The calculated amount of garnet growth increases dramatically with temperature. The amount of newly grown natural garnet in the Sambagawa metamorphic rocks was plotted against temperatures, where chemical compositions of garnet were calibrated against temperatures with the Gibbs’ method. This trend was also consistent with the modelled garnet behaviour.  相似文献   

12.
Interaction parameters derived using empirical calibration methods indicate strong non-ideality in the mixing of octahedrally-coordinated cations in muscovite and biotite. The data set used for calibration comprises mineral compositions from 49 samples containing quartz, muscovite, biotite, garnet, plagioclase and Al2SiO5 (kyanite or sillimanite). Pressures and temperatures in the data set were determined through the simultaneous application of geothermometry based on the garnet-biotite FeMg1 exchange equilibrium and geobarometry based on the anorthite-breakdown equilibrium. Two equilibria yielded simple expressions from which binary interaction parameters for octahedrally-coordinated cations in biotite could be directly determined. A four-component (Fe2+, Mg, Al, Ti) regular symmetric mixing model was assumed for biotite. One equilibrium yielded a simple expression from which an interaction parameter for the mixing of the MgAl-celadonite component in muscovite could be directly determined. Two sets of calculations were performed utilizing different calibrations of the garnet-biotite geothermometer and the anothite-breakdown geobarometer and different garnet activity models. Both placed samples within or near the stability field of the Al2SiO5 phase present in each sample and both yielded similar values for the interaction parameters within narrow uncertainties, indicating that the values are insensitive to differences in the underlying methods. Using the derived interaction parameters, activity models were formulated for the annite, phlogopite, eastonite, and siderophyllite components of biotite, and for the MgAl-celadonite component of muscovite. These were utilized for the empirical calibration of 45 fluid-independent equilibria involving unique combinations of phase components from the mineral assemblage garnet + plagioclase±biotite±muscovite±quartz. Forty-three of the equilibria may be applied as geobarometers to equilibrium assemblages of quartz + muscovite + biotite + garnet + plagioclase when care is taken to insure that applications are restricted to valid compositional ranges. For these, the calibrations yielded multiple correlation coefficients ranging from 0.953 to 0.998 and standard deviations of the residuals ranging from 597 to 118 bars.  相似文献   

13.
自然界中矿物多以固溶体形式存在,据其晶体化学特征计算热力学性质是开展矿物成因理论研究的基础。本文引入描述二元矿物固溶体热力学性质的假三元模型,计算得到了透辉石-硬玉固溶体系列的热力学性质。该模型通过构造一种高度有序的中间相,同时考虑长程和短程有序效应,基于热力学平衡态矿物固溶体自由能最低的规律,可以计算特定组分下矿物的平衡自由能、焓和熵等热力学参数。本文针对透辉石-硬玉固溶体体系,取绿辉石为其中间有序态,计算了其活度-成分关系和温度-组分相图等,发现绿辉石随温度升高的有序无序相变为一级相变,相变温度为1 148±25 K,与实验研究结果一致。本文获得的透辉石-绿辉石-硬玉体系的热力学参数可用于视剖面图方法研究MORB成分的岩石的榴辉岩相变质作用过程。  相似文献   

14.
Textural evidence, thermobarometry, and geochronology were usedto constrain the pressure-temperature-time (P—T—t)history of the southern portion of the Britt domain in the CentralGneiss Belt, Ontario Grenville Province. Typical metapeliticassemblages are quartz+plagioclase+ biotite + garnet + kyanite alkali feldspar sillimanite rutile ilmenite staurolite gahnite muscovite. Metatonalitic assemblages have quartz+ plagioclase + garnet biotite + hornblende + rutile + ilmenite.Metagabbroic rocks contain plagioclase + garnet + clinopyroxene+ biotite + ilmenite hornblende rutile quartz. Notabletextural features include overgrowths of sillimanite on kyaniteand of spinel on staurolite. The spinel overgrowths can be modeledby the breakdown of staurolite via the reaction Fe-staurolite= hercynite +kyanite + quartz + H2O. The decomposition of stauroliteto her-cynite has a steep dP/dT slope and constrains the lateprograde path of a staurolite metapelite. Garnet—Al2SiO5—plagioclase—quartz(GASP) barometry applied to metapelitic garnets that preservecalcium zoning reveals a pressure decrease from 11 to 6 kbat an assumed temperature of 700 C. Garnet—plagioclase—ilmenite—rutile—quartzand garnet—clinopyroxene—plagioclase—quartzbarometry is in good agreement with pressures obtained withthe GASP barometer. Geochronologic data from garnet, allanite,and monazite in metapelitic rocks give ages that fall into twogroups, 1–4 Ga and 1.1 Ga, suggesting the presence ofat least two metamorphic events in the area. It is most reasonableto assign the 1.4 Ga age to the high-pressure data and the 1.1Ga age to the lower-pressure data. Collectively the P—T—tdata indicate a complex and protracted history rather than asingle cycle of burial and uplift for this part of the GrenvilleProvince.  相似文献   

15.
It is necessary to understand the mechanisms of disequilibrium reactions in metamorphic rocks in order to (1) model the rate of reaction in response to changing state variables during tectonic process, and (2) interpret the assemblages of natural disequilibrium samples in terms of tectonic history. A sample was selected from an area of known tectonic history to examine in detail and document the kinetics of reaction. The sample preserves evidence of the garnet granulite to gabbro transition.Orthopyroxene and anorthite coronas around garnet and orthopyroxene rims around clinopyroxene are textural observations suggesting the overall reaction: garnet+clinopyroxene+quartz+plagioclase(matrix) orthopyroxene+ anorthite (corona). The disequilibrium nature of reaction is evident from compositional zoning of garnet, some zoning of clinopyroxene, and difference between corona anorthite (An90) and matrix plagioclase (An35).Several texturally-distinguished microenvironments in a single thin section were investigated to determine how components were redistributed during reaction; T and P are assumed to have been the same throughout. The compositional data are best explained by a partial equilibrium model in which orthopyroxene, garnet rims, Fe-rich clinopyroxene, and a hypothetical intergranular fluid approach equilibrium and are not in equilibrium with reactant garnet cores and matrix plagioclase. Corona texture suggests that intergranular diffusion had some effect but the composition data indicate that it was not rate-limiting. The fact that garnet rim compositions are nearly in equilibrium with product phases (with respect to Mg-Fe partitioning) suggests that diffusion in garnet can be considered a rate-limiting reaction step. Combining the differential equation of zoning for this system with mass and volume balance equations of reaction enables one to predict the density change with time by numerical integration.I conclude that comparison of core compositions of zoned minerals in high-grade rocks is meaningful only if a compositional plateau is preserved that can be proven not to be altered by diffusion. Diffusion in pyroxene is apparently too fast at high grade to make relict pyroxenes useful tracers of metamorphic conditions. The rim composition of zoned phases depends on the relative rate of reaction and internal diffusion; the approach of the rim of a reactant phase to equilibrium with products is a measure of the degree to which intragranular diffusion is rate-limiting. In general, this work supports reaction models that assume that intergranular diffusion is rapid and that interface kinetics or intragranular diffusion are usually rate-limiting factors.Reactions controlled by diffusion in garnet are slow geologically. Tectonic hysteresis can be produced because garnet can form in granulite assemblages more rapidly than it is consumed with changing heat flow. The rate of gabbro-garnet granulite transition depends on whether plagioclase reacts by zoning or separate product grains nucleate.  相似文献   

16.
During prograde metamorphism garnet and, in some higher grade samples, staurolite were produced in a chlorite-chloritoid schist, part of the Precambrian Z to Cambrian Hoosac Formation near Jamaica, VT. Garnet grew during two prograde events separated by a retrogression. This sequence resulted in distinctive inclusion textures and zoning anomalies in garnet produced by diffusive alteration. Textures, reaction space analysis, and mineral compositional variations constrain the possible sequence of reactions in these rocks. Below the staurolite isograd, and to some unknown extent above it, garnet grew by the reaction chloritoid+chlorite+quartz→garnet+H2O. With increasing grade the mineral compositions are displaced towards lower Mn/Fe and higher Mg/Fe ratios. The data are compatible with equilibrium with respect to exchange reactions for the matrix assemblages on a thin section scale and with minerals having closely followed equilibrium paths during reaction. The staurolite isograd coincides with the reaction chloritoid+quartz→garnet+staurolite+chlorite+H2O. This reaction is continuous and trivariant with ZnO becoming an additional component concentrated in staurolite. During this reaction both the Mn/Fe and Mg/Fe ratios of the phases appear to have decreased. This new chemical trend is recorded by garnet zoning profiles and is compatible with trends predicted from phase diagrams. Thus there are two distinct types of garnet zoning reversals in these samples. One is near the textural unconformity and is best explained by diffusive alteration during partial resorption of first stage garnet. The other occurs near the outer rim of garnet in staurolite zone samples and marks the onset of a new prograde garnet producing reaction.  相似文献   

17.
A new approach is proposed for incorporating solid solution reactions into mass conservation equations describing reaction paths in both closed and open systems. The method is applicable to problems involving advective, dispersive, and diffusive transport in a porous medium. By representing the continuously variable solid solution composition with a discrete set of stoichiometric solids that span composition space, combined with a kinetic formulation of their rates of reaction, a self-determining spatial and temporal evolution of the solid solution concentration and composition is obtained. It is demonstrated that equilibrium of an aqueous solution with a stoichiometric solid derived from a solid solution corresponds to equilibrium of the solid solution itself if and only if equilibrium of the stoichiometric solid is stable. One advantage of this approach is that it is unnecessary to introduce any additional compositional variables to represent the solid solution. Discretization may be over the entire range of composition space, or over some subset depending on the system. A major consequence of the kinetic discrete-composition solid solution representation is that modeling solid solutions is similar to modeling pure mineral phases with the exception of a weighting factor applied to reaction rates of stoichiometric solids corresponding to a common solid solution. With this approach, precipitation leads to a discrete zonation of the solid solution that approximates the continuous variation in composition expected for the actual solid solution. The approach is demonstrated for a hypothetical ideal and non-ideal binary solid solution AxB1−xC for a reaction path formulation and reactive transport involving advection and diffusion.  相似文献   

18.
Six equilibria among quartz, plagioclase, biotite, muscovite, and garnet were empirically calibrated using mineral composition data from 43 samples having the assemblage quartz+muscovite+biotite+garnet+plagioclase+Al2SiO5 (sillimanite or kyanite). Pressures and temperatures in the data set used for calibration were determined through the simultaneous application of garnet-biotite geothermometry and garnet-quartz-plagioclase-Al2SiO5 geobarometry. Thermodynamic expressions for four of the six equilibria incorporate interaction parameters that model non-ideality in the mixing of cations in the octahedral sites of both muscovite and biotite. With pressure chosen as the dependent variable, multiple regression was used to solve for unknowns in the equilibrium thermodynamic expressions. The regressions yielded multiple correlation coefficients ranging from 0.983 to 0.999, with corresponding standard deviations of 338 and 92 bars in the residuals. The standard deviations in the residuals may be explained largely or entirely by the propagation of errors associated with electron microprobe analysis. These equilibria enable the determination of pressures from equilibrium assemblages of quartz+garnet+plagioclase+muscovite+biotite, and give results closely comparable to the experimentally calibrated garnet-quartz-plagioclase-Al2SiO5 geobarometer. Geobarometric applications should be restricted to rocks in which equilibrium constants and compositional variables fall within the same ranges as those used for calibration.  相似文献   

19.
Garnet + liquid equilibrium   总被引:1,自引:0,他引:1  
New experiments were performed to determine saturation conditions for garnet and silicate liquid. Starting compositions were natural basalt powders ranging from komatiite to nephelinite, which were partially melted at pressures between 25 and 100 kbar. Rounded grains of natural pyrope or grossular were added to some experiments to induce garnet saturation, and to aid the segregation of liquid pools for microprobe analysis. Simple expressions describing K eq as a function of P, T and liquid composition were calibrated by linear least squares analysis of the data from this, and other, studies. Since garnets do not often occur as phenocrysts, equations were designed to predict garnet compositions when P, T and a silicate liquid composition are given. The regression data have a pressure range of 20–270 kbar, and compositions as diverse as nephelinite and komatiite. These models should thus apply to a broad range of geological problems. The majorite component in garnet was found to increase with increasing P, but compositional effects are also important. A garnet saturation surface applied to liquids with chondritic compositions shows that such liquids crystallize garnet with Mj contents of 0.27–0.42 at 200 kbar. Models of Earth differentiation thus need to account not only for fractionation of majorite, but also for Fe-, Ca-, Na- and Ti-bearing garnet components, which occur in non-trivial quantities at high pressure. Since many models of igneous petrogenesis rely on mineral-melt partition coefficients for the minor elements Na, Ti, and Cr, partition coefficients for these elements were also examined. The K d gar/liq for Na was found to be P-sensitive; Na contents of basalts may thus potentially yield information regarding depths of partial melting. Received : 28 May 1997 / 25 November 1997  相似文献   

20.
This paper concentrates on the petrology of eclogite-faciesmetapelites and, particularly, the significance of staurolitein these rocks. A natural example of staurolite-bearing eclogitic micaschistsfrom the Champtoceaux nappe (Brittany, France) is first described.The Champtoceaux metapelites present, in addition to quartz,phengite, and rutile, two successive parageneses: (1) chloritoid+staurolite+garnetcores, and (2) garnet rims+kyanite?chloritoid. Detailed microprobe analyses show that garnet and chloritoidevolve towards more magnesian compositions and that stauroliteis more Fe-rich than coexisting garnet. A comparison of thestudied rocks with other known occurrences of eclogitic metapelitesshows that whereas staurolite is always more Fe-rich than garnetin high-pressure eclogites, the reverse is true in low- to medium-pressuremicaschists. Phase relations between garnet, staurolite, chloritoid, biotite,and chlorite are analysed in the KFMASH system (with excessquartz, phengite, rutile, and H2O). The topology of univariantreactions is depicted for a normal and a reverse Fe-Mg partitioningbetween garnet and staurolite. Mineral compositional changesare also predicted for varying bulk-rock chemistries. In the studied micaschists, the zonal arrangement of garnetinclusions and the progressive compositional changes of ferromagnesianphases record part of the prograde P–T path, before theattainment of ‘peak’ metamorphic conditions (atabout 65O–7OO?C, 18–20 kb). The retrograde path,which records the uplift of the Champtoceaux nappe, occurs underdecreasing temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号