首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Surface adsorbed gas surveys and geo-microbiological surveys are well known techniques of petroleum exploration and aim towards risk reduction in exploration by way of identifying the areas warm with hydrocarbons and to establish inter-se exploration priorities amongst the identified warm areas. The thermogenic surface adsorbed gaseous hydrocarbons distribution patterns in petroliferous areas are considered to be a credible evidence for the upward migration of hydrocarbons. The present investigation aims to explore correlation between the adsorbed gas distribution pattern and microbial oxidizers in identifying the upward migration of hydrocarbons especially in the tropical black soil terrain of known petroliferous Mehsana Block of North Cambay Basin, India. A set of 135 sub-soil samples collected, were analyzed for indicator hydrocarbon oxidizing bacteria, adsorbed light gaseous hydrocarbons and carbon isotope ratios (13Cmethane and δ13Cethane). The microbial prospecting studies showed the presence of high bacterial population for methane (5.4 × 106 cfu/gm), ethane (5.5 × 106 cfu/gm), propane (4.6 × 106 cfu/gm) and butane oxidizing bacteria (4.6 × 106 cfu/gm) in soil samples. The light gaseous hydrocarbon analysis showed that the concentration ranges of C1, C2, C3, iC4 and nC4 are 402 ppb, 135 ppb, 70 ppb, 9 ppb and 18 ppb, respectively, and the value of carbon isotope ranges of methane ?29.5 to ?43.0‰ (V-PDB) and ethane ?19.1 to ?20.9‰ (V-PDB). The existence of un-altered petroliferous microseep (δ13C, ?43‰) of catagenetic origin is observed in the study area. Geo-microbial prospecting method and adsorbed soil gas and carbon isotope studies have shown good correlation with existing oil/gas fields of Mehsana. Microbial surveys can independently precede other geochemical and geophysical surveys to delineate area warm with hydrocarbons, and mapped microbiological anomalies may provide focus for locales of hydrocarbon accumulation in the Mehsana Block of Cambay Basin.  相似文献   

2.
Surface adsorbed gas surveys and geo-microbiological surveys are known techniques of petroleum exploration and aim towards risk reduction in exploration by way of identifying the areas warm with hydrocarbons and to establish intense exploration priorities amongst the identified warm areas. The present investigation aims to explore correlation between the adsorbed gas distribution pattern with the distribution of the counts of methane, ethane, propane and butane microbial oxidizers in the sub soil samples to establish the role of the latter in identifying the upward migration of hydrocarbons especially in the known petroliferous Krishna-Godavari Basin, India. A total of 135 soil samples were collected near oil and gas fields of Tatipaka, Pasarlapudi areas of Krishna Godavari Basin, Andhra Pradesh. The soil samples were collected from a depth of 2?C2.5 m. The samples collected, were analyzed for indicator hydrocarbon oxidizing bacteria, adsorbed light gaseous hydrocarbons and carbon isotopes (??13Cmethane). The microbial prospecting studies showed the presence of high bacterial population for methane (3.94 × 105 cfu/gm), ethane (3.85 × 105 cfu/gm), propane (4.85 × 105 cfu/gm) and butane oxidizing bacteria (3.63 × 105 cfu/gm) in soil samples indicating microseepage of hydrocarbons. The light gaseous hydrocarbon analysis showed 83 ppb, 92 ppb, 134 ppb, 187 ppb and 316 ppb of C1, C2, C3, nC4 and nC5, respectively, and the carbon isotopic composition of ??13C1 of the samples ranged between ? 36.6 ?? to ?22.7?? (Pee Dee Belemnite) values, which presents convincing evidence that the adsorbed soil gases collected from these sediments are of thermogenic origin. Geo-microbial prospecting method and adsorbed soil gas and carbon isotope studies have shown good correlation with existing oil/ gas fields of K.G basin. Microbial surveys indicating microseepage of hydrocarbons can, therefore, independently precede other geochemical and geophysical surveys to delineate areas warm with hydrocarbons and mapped microbiological anomalies may provide focus for locales of hydrocarbon accumulation in the K.G basin.  相似文献   

3.
摘要:土壤游离烃技术通过直接检测受地表景观介质变化影响小的游离态轻烃异常来获取地下油气信息。塔里木盆地试验区已知油气藏上方具有良好的游离烃化探异常显示,干燥系数在840~1989之间,显示游离烃异常与深部油气的热演化相关。土壤游离烃组分平衡系数、湿度系数、特征系数等指标预测与判断地下油气藏性质的结果与实际地质结果相吻合。近地表游离烃的甲烷/丙烷指标均值高达25~116,由北向南依次增大,说明油气藏埋藏深度依次增大。丁烷异构比和戊烷异构比特征显示雅克拉油气区有机质成熟度最高。结果表明:游离烃的轻烃组分和含量变化特征能够预测与判断地下油气藏的位置、性质、有机质成熟度和保存条件。  相似文献   

4.
酸解烃技术是油气化探的一个重要方法,在常规的油气化探中被普遍应用,然而多解性一直影响其应用效果。本文选择济阳凹陷垛石桥地区作为研究区,利用改进的酸解烃技术,分析研究区已知背景区和产油气区土壤中的酸解烃含量及其碳同位素特征,以验证改进酸解烃技术在复杂含油气区块油气化探工作中的有效性,为油气化探提供高精度的技术方法。研究结果表明,垛石桥地区地表土壤酸解烃中甲烷的含量受干扰因素较多,与下伏油气藏没有明显的对应关系;而乙烷和丙烷等重烃含量与下伏油气藏的对应关系较好,可以较好地揭示深部油气运移的贡献。另外,该地区土壤酸解烃的组成特征指示其深部油气源以油藏为主,部分为凝析油藏,与实际地质情况较为吻合,表明改进的酸解烃技术可以作为复杂含油气区块指示深部油气藏的有效化探方法。  相似文献   

5.
The Deccan Syneclise is considered to have significant hydrocarbon potential.However,significant hydrocarbon discoveries,particularly for Mesozoic sequences,have not been established through conventional exploration due to the thick basalt cover over Mesozoic sedimentary rocks.In this study,near-surface geochemical data are used to understand the petroleum system and also investigate type of source for hydrocarbons generation of the study area.Soil samples were collected from favorable areas identified by integrated geophysical studies.The compositional and isotopic signatures of adsorbed gaseous hydrocarbons(methane through butane) were used as surface indicators of petroleum micro-seepages.An analysis of 75 near-surface soil-gas samples was carried out for light hydrocarbons(C1-C4) and their carbon isotopes from the western part of Tapti graben,Deccan Syneclise,India.The geochemical results reveal sites or clusters of sites containing anomalously high concentrations of light hydrocarbon gases.High concentrations of adsorbed thermogenic methane(C_1 = 518 ppb) and ethane plus higher hydrocarbons(ΣC_(2+) = 977 ppb) were observed.Statistical analysis shows that samples from 13% of the samples contain anomalously high concentrations of light hydrocarbons in the soil-gas constituents.This seepage suggests largest magnitude of soil gas anomalies might be generated/source from Mesozoic sedimentary rocks,beneath Deccan Traps.The carbon isotopic composition of methane,ethane and propane ranges are from-22.5‰ to-30.2‰ PDB,-18.0‰to 27.1‰ PDB and 16.9‰-32.1‰ PDB respectively,which are in thermogenic source.Surface soil sample represents the intersection of a migration conduit from the deep subsurface to the surface connected to sub-trappean Mesozoic sedimentary rocks.Prominent hydrocarbon concentrations were associated with dykes,lineaments and presented on thinner basaltic cover in the study area,which probably acts as channel for the micro-seepage of hydrocarbons.  相似文献   

6.
OILFIELDWATER,WHICHEXISTSCONCOMITANTLYWITH OILORGASINSUBSURFACERESERVOIRS,ISAKINDOFIMPOR TANTCOMPONENTOFRESERVOIRFLUIDANDALSOISADRIVING FORCEANDCARRIERFORHYDROCARBONMIGRATION,ACCUMULA TIONANDHYDROCARBONRESERVOIRFORMATION.OILFIELDWA TER,HYDROCARBONANDRESER…  相似文献   

7.
This study aims to assess the hydrocarbon potential of Ganga basin utilizing the near surface geochemical prospecting techniques. It is based on the concept that the light gaseous hydrocarbons from the oil and gas reservoirs reach the surface through micro seepage, gets adsorbed to soil matrix and leave their signatures in soils and sediments, which can be quantified. The study showed an increased occurrence of methane (C1), ethane (C2) and propane (C3) in the soil samples. The concentrations of light gaseous hydrocarbons determined by Gas Chromatograph ranged (in ppb) as follows, C1: 0–519, C2: 0–7 and C3: 0–2. The carbon isotopic (VPDB) values of methane varied between ?52.2 to ?27.1‰, indicating thermogenic origin of the desorbed hydrocarbons. High concentrations of hydrocarbon were found to be characteristic of the Muzaffarpur region and the Gandak depression in the basin, signifying the migration of light hydrocarbon gases from subsurface to the surface and the area’s potential for hydrocarbon resources.  相似文献   

8.
油气藏中的轻烃气体能够以微弱但可检出的量近似垂直地渗漏到地表土壤中,其中一部分烃类以游离态赋存在土壤或岩石颗粒空隙中。壤中游离气中的烃类能反映深部油气藏烃类的现代补偿性活跃微渗漏,被认为是油气地球化学勘探的最可靠方法之一。壤中游离气采集是获得第四系沉积层中微渗漏烃类地球化学异常的关键技术。自行研制了便携式游离气采集新装置,具有操作简便、携带方便、密封性好等特点。通过长期实践,总结了土壤游离气保真采集的方法。游离气方法在济阳坳陷惠民凹陷南坡临南—钱官屯地区、塔里木盆地阿克亚苏地区X井区的油气化探应用,获得的游离烃异常较好地反映了油气垂向微渗漏近地表信息,以及下伏油气的分布特征,油气微渗漏异常区与背景区分离明显,表明壤中游离气方法应用效果显著,在油气勘探中值得广泛推广。  相似文献   

9.
Sixty-five samples from selected source bed-type shale sequences from three exploration wells were analysed for yield and detailed composition of light hydrocarbons(C2C7) by a new hydrogen stripping/capillary gas chromatographic technique. In spite of low maturation levels (0.35–0.55% vitrinite reflectance), significant generation of ethane and propane was recognized in a Jurassic source bed sequence bearing hydrogen-poor kerogens. Light hydrocarbon generation in another and mature Jurassic source rock sequence is controlled by kerogen quality. Associated with a change from hydrogen-poor to hydrogen-rich kerogens, yields of total and most individual hydrocarbons exhibit orders-of-magnitude increases. At the same time, iso/n-alkane ratios for butanes, pentanes and heptanes decrease significantly. A study of an interbedded marine/nonmarine coal-bearing sequence of Upper Carboniferous age from the Ruhr area, West Germany, revealed that a marine shale unit in comparison to the adjacent coal seam is more prolific in generating n-alkanes of increasing molecular size.A case history for migration of light hydrocarbons by means of diffusion through shales is presented. In two shallow core holes in Campanian/Maastrichtian shales in West Greenland, upward diffusion of ethane to pentane range hydrocarbons is an active process within the near-surface 3 m interval. Diffusive losses within this interval amount to 99.8% for propane, 85.6% for n-butane and 38.9% for n-pentane.  相似文献   

10.
中国油气地球化学理论研究进展   总被引:5,自引:0,他引:5  
本文全面地,概括性地论述了目前中国在石油和天然气地球化学理论研究方面的现状和进展,包括非常规油气藏地球化学,油藏地球化学和天然气地球化学三个方面,其中,在非常规油气藏部分又分陆相低熟油气地球化学,高-过成熟油气地球化学(中国海相碳酸盐岩的油气生成)和煤成油气地球化学三个部分讨论。  相似文献   

11.
建立了毛细管柱气相色谱测定土壤中吸附态轻烃(酸解烃、顶空气轻烃)的方法,采用适于批量处理的酸解烃样品制备和通过振荡、加热达到解吸平衡的顶空气样品制备的前处理方法,在优化的仪器条件下,对天然气水合物区土壤中吸附态轻烃进行检测。顶空气轻烃的方法检出限为0.018×10^-6(以甲烷计算),精密度为6.6%(甲烷)-16%(异丁烷);酸解烃的方法检出限为0.016μL/kg(以甲烷计算),精密度为2.2%(甲烷)~19%(正戊烷)。该方法应用于大批量实际样品分析中,效果良好。  相似文献   

12.
关于钼作用条件下的煤中有机质生烃特征和演化过程,目前知之甚少。为此,利用黄金管高压釜装置,以原煤中添 加单质钼的方式,开展了催化生气模拟实验。研究发现,无论加钼与否,煤样气态烃和单体烃气的产率均存在一个生成高 峰,在模拟镜质组反射率大于4.0%之后的极高成熟度阶段仍存在较大的甲烷生成潜力;当模拟镜质组反射率小于3.0%时, 添加的钼对煤中有机质生气具有微弱的抑制效应,此后阶段中才体现出一定的促进作用;原煤与加钼煤样甲烷产率之间的 相互关系与气态烃总产率大致相似,加钼煤样乙烷产率在镜质组反射率大于3.0%之后高于原煤,加钼条件下丙烷-戊烷的 产率在其生成高峰之后略高于或约等于原煤。分析认为,添加的钼没有参与煤中有机质的早- 中期热降解生烃过程,但对 晚期热裂解生气作用起到了一定的促进效应,原因可能在于煤中催化反应空间在不同的成熟演化阶段存在一定的差异。  相似文献   

13.
Analyses of Gulf of Mexico water samples indicate that methane arises from both biologic and thermal sources. Thermal generation of methane and other light hydrocarbons found in the water is demonstrated by: (1) the ratio of methane to ethane of less than 500 is below that expected for bacterial gases; (2) vertical profiles of hydrocarbon concentrations indicate multiple sources for methane, but not for ethane or propane; (3) the correlation between ethane, propane and butane is high indicating a common source, whereas methane correlates in only some areas suggesting multiple sources assumed to be bacterial and thermal; and (4) carbon isotope ratios. Hydrocarbons in the water result from seepage from the sea floor, and a relationship between hydrocarbons and fault systems can be observed. Petroleum production activities did not increase the hydrocarbon content of the non-surface water beyond that often found above petroliferous structures. To avoid surface contamination, analyses were made on water samples taken from near the sea floor. Special equipment for analyses was designed for the survey in the Gulf of Mexico offshore from Galveston, Texas, to Grand Isle, Louisiana, at water depths to 120 m.  相似文献   

14.
Previous studies of methane and higher hydrocarbon gases in Precambrian Shield rocks in Canada and the Witwatersrand Basin of South Africa identified two major gas types. Paleometeoric waters were dominated by hydrocarbon gases with compositional and isotopic characteristics consistent with production by methanogens utilizing the CO2 reduction pathway. In contrast the deepest, most saline fracture waters contained gases that did not resemble the products of microbial methanogenesis and were dominated by both high concentrations of H2 gas, and CH4 and higher hydrocarbon gases with isotopic signatures attributed to abiogenic processes of water-rock reaction in these high rock/water ratio, hydrogeologically-isolated fracture waters. Based on new data obtained for the higher hydrocarbon gases in particular, a model is proposed to account for carbon isotope variation between CH4 and the higher hydrocarbon gases (specifically ethane, propane, butane, and pentane) consistent with abiogenic polymerization. Values of δ13C for CH4 and the higher hydrocarbon gases predicted by the model are shown to match proposed abiogenic hydrocarbon gas end-members identified at five field sites (two in Canada and three in South Africa) suggesting that the carbon isotope patterns between the hydrocarbon homologs reflect the reaction mechanism. In addition, the δ2H isotope data for these gases are shown to be out of isotopic equilibrium, suggesting the consistent apparent fractionation observed between the hydrocarbon homologs may also reflect reaction mechanisms involved in the formation of the gases. Recent experimental and field studies of proposed abiogenic hydrocarbons such as those found at mid-ocean spreading centers and off-axis hydrothermal fields such as Lost City have begun to focus not only on the origin of CH4, but on the compositional and isotopic information contained in the higher hydrocarbon gases. The model explored in this paper suggests that while the extent of fractionation in the first step in the hydrocarbon synthesis reaction chain may vary as a function of different reaction parameters, δ13C values for the higher hydrocarbon gases may be predicted by a simple mass balance model from the δ13C values of the lower molecular weight precursors, consistent with abiogenic polymerization. Integration of isotopic data for the higher hydrocarbon gases in addition to CH4 may be critical for delineation of the origin of the hydrocarbons and investigation of formation mechanisms.  相似文献   

15.
鄂尔多斯盆地陕北地区长10油源及成藏条件分析   总被引:4,自引:0,他引:4  
在鄂尔多斯盆地的陕北志丹地区勘探发现了长10油藏,原油密度为0.8152g/cm^3,全烃色谱图的主峰为nC13~nC15油质较轻。轻烃组分中环烷烃较为丰富,芳烃含量低,呈姥植均势(Pr/Ph为1.21~1.45),原油的δ^13CP08值为-31.78%。,甾萜烷分布与主要参数特征为:重排藿烷类相对丰度很高、伽马蜡烷低,Ts/Tm比值很高(5.54~7.26)C30^*/C50藿烷比值高(0.67~0.72),C29Ts/C30藿烷比值高(0.38~0.52),甾烷中重排甾烷较高、αβ和βα构型甾烷丰富。ααα-20R构型甾烷呈不对称“V”型分布,反映了较为典型的湖相油型油特征。油-油、油-源对比显不,该区长10原油来自长7优质烃源岩。石油可能是在湖盆中部长7优质烃源岩发育的地区通过垂向倒灌进入长10油层组、经侧向运聚成藏的。据此,预测盆地长9和长10油层组具备良好的成藏与勘探潜力。  相似文献   

16.
油气垂向运移的形迹   总被引:5,自引:1,他引:5  
李鹤庆 《物探与化探》1994,18(6):426-430
油气由于地下的压力差、浓度差和比重差等因素,使烃类运移到地表。常见的油气苗是烃类渗漏的宏观标志,但更为普遍存在于地表的烃类渗漏是微观标志,它需要用精密的仪器才能检测出来。琼斯(1975年)发现近地表土壤气同地下储层气以及钻孔中遇到的显示气,在化学成份上十分一致。言文伯等(1990年)发现油气藏紫外吸收值,油浸岩的数值最高,其次是油层上方沉积岩,再则是油田上方土壤,而非油田上方土壤紫外吸收值最低。井中化探的烃类指标浓度或相对强度,从油气层至地表是递减的,为油气垂向运移的形迹提供了直观依据。  相似文献   

17.
碳酸盐岩既可作为烃源岩,也可作为储集岩存在。因此,除直接发现液态石油和气苗外,在野外和室内碳酸盐岩含油的识别都较困难。确定碳酸盐岩中含有的烃类是原生的,还是它处运移充填而来的,这在勘探实践中具有不同的指导意义,本文阐述了用岩石热解分析技术判别碳酸盐岩中烃源的方法。提出了碳酸盐岩含油判别指数P、岩石热解烃最高温度Tmax和岩石中游离烃S1含量等判别碳酸盐岩是否含运移烃的指标。用此方法研究了西藏措勤盆地碳酸盐岩含油显示,发现强龙松纳背斜在1805剖面下白垩统郎山组1段(K1l^1)碳酸盐岩曾有油气运移过程存在。同时用其它方法证明了岩石热解技术对碳酸盐岩含运移烃的识别是可靠的。  相似文献   

18.
Direct correlation have been observed between certain trace element and hydrocarbon anomalies in the near subsurface soils of Vindhyan basin, India. This relationship with hydrocarbon is very useful in hydrocarbon exploration. 52 soil samples from Vindhyan basin were collected from a depth of 2.5m. All the soil samples were analyzed for light hydrocarbon, isotope and trace element concentrations. The adsorbed light gaseous hydrocarbon analyses show the presence of methane (8–328 ppb), ethane (0–27 ppb) and propane (0–11 ppb) respectively and these values indicate the presence of hydrocarbon micro-seepage in the study area. The carbon isotopic values determined for methane and ethane for these soil samples are (?26.41 to ?47.70 ‰ PDB) and (?20.07 to ?35.30 ‰ PDB) respectively and they are thermogenic in nature. The trace element concentrations of nickel (33–220 ppm), vanadium (72–226 ppm), copper (20–131 ppm), chromium (94–205 ppm), zinc (66–561 ppm) and cobalt (9–39 ppm) have higher than the normal concentrations in soils. Trace element concentrations are used to plot with the data obtained from light gaseous hydrocarbon concentrations and carbon isotopic values of soil samples of the Vindhyan basin. Trace element anomalies have been observed around the hydrocarbon anomalies in the study area.  相似文献   

19.
The organic geochemical methods of hydrocarbon prospecting involve the characterization of sedimentary organic matter in terms of its abundance, source and thermal maturity, which are essential prerequisites for a hydrocarbon source rock. In the present study, evaluation of organic matter in the outcrop shale samples from the Semri and Kaimur Groups of Vindhyan basin was carried out using Rock Eval pyrolysis. Also, the adsorbed low molecular weight hydrocarbons, methane, ethane, propane and butane, were investigated in the near surface soils to infer the generation of hydrocarbons in the Vindhyan basin. The Total Organic Carbon (TOC) content in shales ranges between 0.04% and 1.43%. The S1 (thermally liberated free hydrocarbons) values range between 0.01–0.09 mgHC/gRock (milligram hydrocarbon per gram of rock sample), whereas the S2 (hydrocarbons from cracking of kerogen) show the values between 0.01 and 0.14 mgHC/gRock. Based on the Tmax (temperature at highest yield of S2) and the hydrogen index (HI) correlations, the organic matter is characterized by Type III kerogen. The adsorbed soil gas, CH4 (C1), C2H6 (C2), C3H8 (C3) and nC4H10, (nC4), concentrations measured in the soil samples from the eastern part of Vindhyan basin (Son Valley) vary from 0 to 186 ppb, 0 to 4 ppb, 0 to 5 ppb, and 0 to 1 ppb, respectively. The stable carbon isotope values for the desorbed methane (δ13C1) and ethane (δ13C2) range between −45.7‰ to −25.2‰ and −35.3‰ to −20.19‰ (VPDB), respectively suggesting a thermogenic source for these hydrocarbons. High concentrations of thermogenic hydrocarbons are characteristic of areas around Sagar, Narsinghpur, Katni and Satna in the Son Valley. The light hydrocarbon concentrations (C1–C4) in near surface soils of the western Vindhyan basin around Chambal Valley have been reported to vary between 1–2547 ppb, 1–558 ppb, 1–181 ppb, 1–37 ppb and 1–32 ppb, respectively with high concentrations around Baran-Jhalawar-Bhanpur-Garot regions (Kumar et al., 2006). The light gaseous hydrocarbon anomalies are coincident with the wrench faults (Kota – Dholpur, Ratlam – Shivpuri, Kannod – Damoh, Son Banspur – Rewa wrench) in the Vindhyan basin, which may provide conducive pathways for the migration of the hydrocarbons towards the near surface soils.  相似文献   

20.
川东宣汉地区天然气地球化学特征及成因   总被引:13,自引:1,他引:12       下载免费PDF全文
依据10余口探井60多个气样的化学成份和碳同位素组成数据,结合烃源岩和储层沥青分析资料,系统剖析了四川盆地东部宣汉地区普光、毛坝场等构造带天然气地球化学特征,并探讨了其成因及来源。研究结果表明:这些构造带中飞仙关组—长兴组天然气为高含硫化氢的干气,天然气化学成份表现出古油藏原油裂解气的特点。其烃类气体中以甲烷为主(高于99.5%);富含非烃气体,CO2和H2S平均含量分别达5.32%和11.95%。甲烷碳同位素较重(-33‰~-29‰),表征高热演化性质;乙烷δ13C值主要分布在-33‰至-28‰范围,属油型气。这些天然气与川东邻近气田的同层位天然气具有同源性,而与石炭系气藏天然气在化学成份、碳同位素组成上有所不同,意味着有不同的气源。硫化物硫同位素和沥青元素组成证实高含量的H2S是气藏发生TSR作用所致。δ34S值表征层状沉积成因的硬石膏是TSR作用的反应物,而脉状硬石膏则是其残余物。储层的孔隙类型可能与TSR作用强度和H2S含量高低有联系,裂缝型气层中H2S少,孔洞型储层中H2S丰富。乙烷、沥青和各层系烃源岩干酪根碳同位素对比表明研究区飞仙关组—长兴组气藏天然气主要来自二叠系烃源层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号