首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
小兴安岭地区黑河-北安段多年冻土分布特征   总被引:7,自引:4,他引:7  
张艳  吴青柏  刘建平 《冰川冻土》2001,23(3):312-317
对于寒区公路工程,查清冻土工程地质条件是至关重要的,利用地质雷达和探孔来研究多年冻土的分布,为路基设计和处理提供依据,研究结果表明,黑北段分布有17段岛状年冻土,总长度为3.165km,主要分布于沼泽化湿地、泥炭层和草炭层极为发育低洼地带、多年冻土上限约1.5-2.0m,多年冻土厚度3-6m,主要发育有多冰冻土、富冰冻土、饱冰冻土,多年冻土地温较高,热稳定性较差,多年冻土处于强烈的退化状态。  相似文献   

2.
曾群柱  叶世强 《冰川冻土》1996,18(3):201-209
调水区多年冻土划分为3个区,冻土面积为11×10^4km^2左右,约占全区面积的72.4%,受全球气候变化及人类经济活动的影响,区内多年冻土处于退化状态。在全球气候持续变暖的情况下,未来50a内,目前厚度小于10m的多年冻土和岛状多年冻土将消融殆尽,多年冻土面积将减少约15%,冻土下界上升150-200m,气候变暖,使得性冻土层变薄,某些地段的多年冻土消失或变为深埋藏多年冻土等,则可降低工程造价,  相似文献   

3.
黄河源区冻土特征及退化趋势   总被引:17,自引:8,他引:9  
黄河源区位于青藏高原多年冻土区东北部边缘地带,是季节冻土、岛状多年冻土和在大片连续多年冻土并存地带.多年冻土层在垂向分布上有衔接状和不衔接状两大类.不衔接状又可分为浅埋藏(8m)、深埋藏(8m)和双层多年冻土等形式.从20世纪80年代以来,源区气温以0.02℃.a-1增温率持续上升,人类经济活动日益增强,导致冻土呈区域性退化.多年冻土下界普遍升高50~80m,最大季节冻深平均减少了0.12m,浅层地下水温度上升0.5~0.7℃.冻土退化总体趋势是由大片状分布逐渐变为岛状、斑状分布,多年冻土层变薄,冻土面积缩小,融区范围扩大.部分多年冻土岛完全消失变为季节冻土.  相似文献   

4.
调水区多年冻土划分为3个区,冻土面积为11×104km2左右,约占全区面积的72.4%。受全球气候变化及人类经济活动的影响,区内多年冻土处于退化状态。在全球气候持续变暖的情况下,未来50a内,目前厚度小于10m的多年冻土和岛状多年冻土将消融殆尽,多年冻土面积将减少约15%,冻土下界上升150~200m;气候变暖,使得季节性冻土层变薄,某些地段的多年冻土消失或变为深埋藏多年冻土等,则可降低工程造价,有利于施工和运营  相似文献   

5.
若尔盖高原及其周围山地的冻土和环境   总被引:8,自引:4,他引:8  
王绍令 《冰川冻土》1997,19(1):39-46
若尔盖高原内部年平均气温0.6~3.3℃,气温年较差19.1~21.2℃,已不具备多年冻土形成和保存的气候条件。据1992年7月间试坑和钻孔测温,在1.0~2.2m深处地温为5~8.4℃,浅层地下水温6.0~7.8℃,由此判断不存在多年冻土,季节冻结深度为1.0~2.0m。据冻土现象和试坑资料判断,周围山地海拔4150~4200m以上发育山地岛状多年冻土。区内沼泽演化表明,部分沼泽已疏干或向疏干趋势发展,草场退化和草原沙化已成为本区生态环境的重要问题,并已影响畜牧业发展  相似文献   

6.
引言 大小兴安岭地处我国东北部,该区广泛分布连续多年冻土及岛状多年冻土。由于多年冻土的存在,使大小兴安岭地下水具有特殊的水文地质条件,并且与自然界中各种因素互相依存,互为因果关系,错综复杂地变化着,从而形成了连续多年冻土区地下水,岛状多年冻土区地下水。  相似文献   

7.
植被与多年冻土共同维系着大兴安岭地区的冷湿环境。随着全球气候变暖,大兴安岭多年冻土已发生严重退化,植被的生长也受到影响。在大兴安岭北部多年冻土区设置55个采样点,每个采样点采集多年冻土活动层厚度、林下灌木生物量和落叶松胸径树龄等指标,同时借助增强型植被指数(EVI)在区域尺度比较大片多年冻土区和岛状融区多年冻土区的植被生长状况。结果表明:黑龙江呼中国家级自然保护区(简称呼中保护区)活动层厚度的平均值为(0.47±0.14) m,保护区周边为(0.83±0.38) m,呼中保护区周边的活动层厚度大于保护区内。大片多年冻土区的活动层厚度平均值为(1.04±0.47) m,小于岛状融区多年冻土区的(1.40±0.41) m。呼中保护区和周边灌木生物量的平均值分别为(201.75±71.70) g·m-2和(259.10±111.14) g·m-2,胸径与树龄比值的平均值分别为(0.20±0.08)和(0.26±0.14)。大片多年冻土区和岛状融区多年冻土区林下灌木生物量的平均值分别为(128.31±63.33) g·m-2和(199.04±66.13) g·m-2,胸径树龄比的平均值分别为(0.30±0.13)和(0.59±0.21)。活动层厚度大的区域,灌木的生物量以及落叶松胸径树龄比都大于活动层厚度小的区域,表明活动层厚度增加对灌木和乔木的生长有一定的促进作用。EVI的结果显示岛状融区多年冻土区植被的生长状况以及植被覆盖情况好于大片多年冻土区,从区域尺度证明了多年冻土对植被生长存在限制作用。研究结果对于深入理解多年冻土变化及其环境效应具有重要意义。  相似文献   

8.
结合探地雷达对我国东北黑大公路黑北段岛状多年冻土的勘察结果进行了应用分析研究. 结果表明, 探地雷达可以较为有效确定多年冻土分布区域、 厚层地下冰存在位置, 是研究多年冻土的一种有效手段. 探地雷达勘测结果表明, 东北小兴安岭岛状多年冻土现在主要位于山间沟谷洼地、 或山间盆地中, 地表有积水、 塔头草生长茂盛、 草炭和泥炭发育的沼泽化湿地是其存在的重要标志;结合20世纪70年代对该区的冻土调查结果, 以及线路沿线现存冻土比例推断, 在过去30 a间小兴安岭岛状多年冻土发生了较为显著的退化;现存黑河北安公路沿线稀疏岛状多年冻土区的比例约为2%, 冻土厚度约2~9 m, 冻土上限约1~3 m. 在影响多年冻土分布的因素中, 地表水分条件是最为关键的因素, 该地表水分通过蒸发吸热、 单向导热等作用调节地中热流, 并维持一定的净放热, 在年平均气温接近0 ℃的条件下仍可以维持冻土的发育和存在;其它影响因素, 如地形、 地貌、 坡向、 植被、 地质条件等因素发挥次要作用.  相似文献   

9.
一、前言一九五六年八月至十月一日笔者就工作之便在东北区北部一些地区内,对多年冻土做了少许的观察,收集到了一些资料。就所看到的事实证明在南兴安,石头沟——沐讷河、德都、五营、梧桐河、砂金产地,连线以北等地区确实有着广大面积的温度长年在零下的岛状多年冻土层。这一事实在1956年地质知识第10期所刊出的“中国东北区多年冻土的分布”一文中已经指出,本文只在关于分布状况方面再补充一些实际资料,而中心内容是介绍区内岛状多年冻土的赋  相似文献   

10.
兰州马衔山多年冻土特征及变化趋势分析   总被引:2,自引:2,他引:0  
马衔山是目前黄土高原地区唯一证实有多年冻土发育的山脉.残存的多年冻土被誉为黄土高原地区多年冻土的"活化石".近20a来马衔山多年冻土发生了明显的退化,目前仅在小湖滩有岛状多年冻土残存,属于典型的高温多年冻土,1990年代初在其它区域发现的零星多年冻土已经基本消失.马衔山岛状多年冻土地温从10~16m的-0.2℃向上和向下升高,地温梯度±0.01℃·m-1左右,相比1990年代初,多年冻土地温上升了0.1~0.2℃,年升温率为0.006~0.012℃·a-1,小于青藏高原高温多年冻土平均升温速率.马衔山多年冻土最大厚度约40m,正在发生着上引式和下引式退化,而岛状冻土边缘区域侧引式退化起主导作用.马衔山多年冻土发育有丰富的地下分凝冰,根据地下冰发育特征和埋藏有机质层14C测试资料分析,马衔山多年冻土在新冰期形成后发生过多次地表重复堆积,共生共长作用是地下冰形成的重要原因.丰富的地下冰和厚层有机质层的保护作用,以及区域寒冷的微气候环境,应该是马衔山多年冻土残存的主要原因.  相似文献   

11.
长江源区高寒生态与气候变化对河流径流过程的影响分析   总被引:24,自引:5,他引:19  
近40 a来长江源区气候变化剧烈,是青藏高原增温最为显著的地区之一,高寒生态系统与冻土环境不断退化.采用多因素逐次甄别方法与半经验理论方法相结合,基于多年冻土的不同植被覆盖降水-径流观测场观测试验结果,分析了长江源区气候-植被-冻土耦合系统中各要素变化对河川径流的不同影响.结果表明:近40 a来长江源区河川径流呈持续递减趋势,年均径流量减少了15.2%,频率>20%的径流量均显著减少,而>550 m3·s-1的稀遇洪水流量发生频率增加;气候变化与高寒草甸覆盖变化对源区径流变化的影响较大,分别占5.8%和5.5%;气候与植被覆盖变化对径流的显著影响是与冻土耦合作用的结果,但冻土环境与冰川变化对径流的贡献尚不能准确评价.高寒沼泽湿地和高寒草甸生态系统对于源区河川径流的形成与稳定起到关键作用,这两类生态系统的显著退化是驱动河川径流过程中变差增大、降水-径流系数减少以及洪水频率增加的主要原因.保护源区高寒草甸与独特的高寒湿地生态,对于维护源区水涵养功能和流域水安全意义重大.  相似文献   

12.
祁连山大通河源多年冻土区浅层土壤水热时空变化特征   总被引:1,自引:0,他引:1  
在大通河源不同草甸生态系统中建立浅层土壤水热监测网络. 2010-2011年监测结果表明:土壤温度和水分均具有明显的冻融交替和空间梯度变化格局. 在沼泽化草甸和典型草甸区,土壤融化和冻结末期分别出现在5月底、6月初和11月中下旬;而退化草甸区对应的时间则出现在4月底、5月初和11月中上旬. 在沼泽化草甸和典型草甸土壤温度变化曲线上有明显的“零点幕”时期,而退化草甸则不太明显. 土壤温度曲线的阶段划分结果表明,沼泽化草甸和典型草甸各阶段不存在显著差异,二者阶段划分曲线基本重合,均可以划分为6个阶段:春季升温阶段、春季“零点幕”阶段、夏季升温阶段、秋季降温阶段、秋季“零点幕”阶段和冬季降温阶段. 对于退化草甸而言,春季和秋季“零点幕”时期不明显,阶段划分曲线与前二者具有较大差异. 退化草甸温度曲线“零点幕”时期不显著对应于下伏多年冻土临近岛状多年冻土边缘,是最易于受环境影响变化而发生退化的区域. 3个监测场地浅层土壤水热格局一定程度上指示了下伏多年冻土的空间分布格局.  相似文献   

13.
青藏高原多年冻土区活动层土壤入渗特征及机理分析   总被引:1,自引:0,他引:1  
青藏高原多年冻土区活动层土壤的入渗规律研究是高寒区土壤水循环过程研究的主要内容。以青藏高原多年冻土区高寒沼泽草甸、高寒草甸和高寒草原的活动层土壤为研究对象,裸地为参照对象,分析了不同植被类型土壤的入渗规律及其主要影响因子。结果表明:不同植被类型土壤的入渗能力排序为高寒草原>裸地>高寒草甸>高寒沼泽草甸。高寒草甸土壤中致密的根系对土壤水分的运移具有强烈的阻滞作用,降低了土壤的入渗性能,而高寒草原土壤层根系较为稀疏,对土壤入渗的阻滞作用较弱,土壤水分向深层的渗漏速率较大。通过对比4种土壤入渗模型的模拟结果,发现Horton模型更适用于描述高寒草地土壤水分的入渗过程。另外,不同入渗模型对裸地入渗过程的模拟均优于其他植被类型草地,说明植被类型及植物的生长状况影响土壤入渗过程的模拟效果。全球变暖条件下,多年冻土区土壤入渗研究将为青藏高原多年冻土区陆地水文过程模型提供参数支持,为未来水资源变化研究提供基础数据。  相似文献   

14.
以青藏高原腹地不同植被类型多年冻土区土壤细菌为研究对象, 分析了可培养菌群数量、 多样性和生理代谢功能的变化及其与环境因子间的关系. 结果显示: 从沼泽草甸到高寒荒漠, 土壤水分、 总碳、 总氮含量逐渐降低, pH值升高, 可培养细菌数量在2.97×106~2.88×107 CFU·g-1, 与含水量、 总碳、 总氮显著正相关; Actinobacteria(51.4%)和γ-Proteobacteria(31.7%)为优势菌群, α-protebacteria仅在沼泽草甸中有分布, β-protebacteria、 Bacterioidetes丰度与含水量、 总碳、 总氮间显著正相关; 自沼泽到荒漠, 菌群代谢活性和Shannon功能多样性指数降低, pH与Shannon指数显著负相关, 继氨基酸类碳源之后, 多聚物逐渐成为被细菌群落主要利用的碳源种类. 研究表明, 伴随冻土退化地上植被逆向演替的过程, 青藏高原多年冻土地下土壤微生物群落丰度、 遗传和代谢功能多样性均发生了不同程度的响应.  相似文献   

15.
中国天山西部那拉提山地区多年冻土分布特征   总被引:1,自引:1,他引:0  
那拉提山位于中国天山西部, 其冻土变化过程对区域自然环境变化、 工程活动产生重要互馈作用. 结合即将修建的新疆伊(宁)-库(车)输电线路前期的冻土勘察结果, 对那拉提山地区冻土分布特性、 主要影响因素等进行了探讨. 结果表明: 那拉提山地区冻土分布属于典型的山地多年冻土, 冻土发育区域、 冻土类型和地下冰空间发育特征及冻土温度状况等主要受到海拔、 地形地貌、 地表水分条件等因素的影响和控制. 同时, 该地区大量发育有泥流阶地、 泥流舌、 热融滑塌、 石环、 石河等冰缘现象. 受坡向、 植被、 水分等因素影响, 区域内冻土活动层厚度为0.7~4.5 m, 随着海拔增加, 冻土厚度由阳坡连续多年冻土下界(海拔3 000 m)附近的约20~22 m增加到海拔3 300 m附近的约70~100 m. 自1985年以来, 区域年平均气温上升(约0.088℃·a-1), 该区域内的冻土退化趋势明显.  相似文献   

16.
活动层含水量是表征多年冻土区气候、水文和生态过程的关键参数。长期以来,由于受多年冻土区活动层水分实测样点数量稀少的限制,各类基于遥感反演、模式模拟乃至数据融合和同化等手段生产的土壤水分空间数据均存在着较大的误差。2020年10—11月在青藏高原腹地(沱沱河源区)测定了 1 072组活动层土壤含水量数据并进行分析,探讨了该时段该区域活动层土壤水分的空间差异,并与全球陆面数据同化系统数据产品(GLDAS-Noah)和欧洲中期天气预报中心发布的第五代再分析资料(ERA5-Land)进行了对比分析。结果表明,在该区域平均厚度为2.72 m的活动层内,土壤质量含水量(总含水量)约为14.0%,活动层土壤含水量与植被发育情况存在正相关关系。除高寒沼泽草甸类型外,高寒草甸与高寒草原类型的活动层含水量随深度的增加呈现出先减小后增大的变化趋势。不同坡位类型的活动层含水量呈上坡位>下坡位>中坡位>平坡位,阳坡水分高于阴坡且两者活动层剖面水分变化相似。多年冻土区浅表层0~350 cm深度范围内的土壤含水量大于区内融区同深度的土壤含水量,两者土壤剖面水分分布均呈现出先增大后减小再增大的特征。该区域的GLDAS-Noah同化水分产品与实测数据对比的误差在10%以内,比ERA5-Land再分析土壤水分数据更为准确,但两种数据产品对土壤剖面上的水分垂直分布情况描述均与实测数据有较大差异。该研究结果可以为数据同化系统的模式冻融参数化方案优化及遥感水分产品研发提供科学依据。  相似文献   

17.
山地多年冻土的异质性影响其植被类型的分布特征,且对有机碳的分布也具有重要影响。通过采集黑河上游多年冻土区三种典型植被类型(高寒沼泽草甸、高寒草甸、高寒草原)8个活动层的土壤样品,测定其土壤有机碳密度及其理化性质。结果表明:高寒沼泽草甸土壤有机碳密度最高(49.50 kg·m-2),高寒草甸次之(11.22 kg·m-2),高寒草原最低(7.30 kg·m-2)。土壤有机碳密度的剖面垂直分布特征具有差异性,高寒沼泽草甸土壤有机碳密度随深度变化不明显,高寒草原和高寒草甸土壤有机碳密度随深度逐渐减小,存在显著的表层聚集性。有机碳密度与土壤含水率和细粒含量呈显著正相关,与pH值呈显著负相关关系。一般线性模型结果表明土壤含水率、pH值和土壤颗粒组成解释了96.39%的有机碳密度变异,其中土壤含水率贡献了81.53%,pH值和土壤粒度分别贡献了9.33%和4.75%。研究表明多年冻土区不同植被类型土壤有机碳密度分布特征具有明显差异,山地多年冻土土壤含水率是控制有机碳密度分布特征的重要影响因素。  相似文献   

18.
基于青藏高原北麓河地区高寒草原、高寒沼泽草甸和高寒草甸生态系统下多年冻土活动层水热过程的监测数据,对活动层水热过程特征开展了相关研究。研究结果显示,在活动层厚度、冻融时间、持续时间以及活动层土壤水分含水量分布方面,不同的高寒生态系统下活动层的上述属性特征差异明显。高寒草原下多年冻土活动层厚度最大,土体开始融化的时间最早,每年持续融化的日数也最长;高寒草甸最小,高寒沼泽草甸居中。高寒草原下活动层土壤含水率从上到下逐渐增加,水分基本集中在活动层的中下部分;高寒沼泽草甸下活动层土壤水分的分布情况相对比较均衡;高寒草甸下活动层土壤含水率分布呈现从上到下逐步减少的模式,越靠近地表土壤含水率越大。对监测数据的进一步分析发现,不同的高寒生态系统下,近地表地温与气温温差累计值、近地表土壤有机质含量、n因子特征以及近地表地温标准差统计特征都具有明显的区别。研究分析表明,多年冻土活动层水热过程特征与高寒生态系统类型具有明显的关联性,高寒生态系统会影响近地表能量通量,从而使地-气热量交换产生差异,这一差异又将改变活动层土壤温度、水分分布特征及其动力学过程。  相似文献   

19.
祁连山冻土区是我国青藏高原重要永久冻土区之一,也是我国陆域天然气水合物分布的重要地区。前期调查表明祁连山木里天然气水合物钻井区一带具 有丰富多样的高寒冻土生态类型。为了解该地区高寒草甸和高寒沼泽草甸表层土壤中古菌群落的多样性及分布特征,对2014年初冬在该区采集的表层土壤样品利用16S rRNA分子生物学技术和 地球化学等方法进行了分析和研究。结果显示,高寒草甸区土壤呈中性,而高寒沼泽草甸区土壤呈弱酸性。钻井区土壤中的TOC和顶空气甲烷含量均显著高于背景区,而在背景区内的两种生态 类型土壤中的TOC和顶空气甲烷含量差别较小。钻井区(除1个点)微生物细胞丰度高于背景区2~5倍。冬季表层土壤中的古菌多样性较低,含泉古菌的3个类群和广古菌的3个类群。不同植被类型 古菌群落的优势种群显著不同,在高寒草甸区为泉古菌门的Group Ⅰ.1b,而高寒沼泽草甸区为广古菌门的甲烷八叠球菌目(Methanosarcinales)。根据研究结果推测,土壤水分可能是导致高 寒草甸区和高寒沼泽草甸区细胞丰度和古菌群落差异的一个主要原因,高寒沼泽草甸区内产甲烷菌占优势可能与土壤高TOC含量有关。高寒沼泽草甸土壤中存在较丰富的产甲烷古菌,它们在厌 氧条件下的甲烷氧化作用也是土壤中甲烷来源之一。  相似文献   

20.
黄河源区地下水位下降对生态环境的影响   总被引:17,自引:6,他引:11  
黄河源区1:250000区域环境地质调查资料与以往资料的对比表明,黄河源区区域地下水位近几十年来呈现明显的下降趋势,主要表现在:地下水露头泉口下移,河谷区民井地下水位下降及山前冲洪积扇前缘泄出带下移.多年冻土的退化直接导致了冷生隔水层的下移,从而引起区域地下水位的下降.区域地下水位的下降导致生态水位下降,包气带土壤层的含水量减少,使该区出现植被草场退化、生物多样性减少、沼泽湿地萎缩、鼠害猖獗、荒漠化加剧及黄河断流等生态环境问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号