首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Although the stable oxygen isotope fractionation between dissolved sulfate ion and H2O (hereafter ) is of physico-chemical and biogeochemical significance, no experimental value has been established until present. The primary reason being that uncatalyzed oxygen exchange between and H2O is extremely slow, taking 105 years at room temperature. For lack of a better approach, values of 16‰ and 31‰ at 25 °C have been assumed in the past, based on theoretical ‘gas-phase’ calculations and extrapolation of laboratory results obtained at temperatures >75 °C that actually pertain to the bisulfate system. Here I use novel quantum-chemistry calculations, which take into account detailed solute-water interactions to establish a new value for of 23‰ at 25 °C. The results of the corresponding calculations for the bisulfate ion are in agreement with observations. The new theoretical values show that sediment -data, which reflect oxygen isotope equilibration between sulfate and ambient water during microbial sulfate reduction, are consistent with the abiotic equilibrium between and water.  相似文献   

3.
Sulfur isotope composition (δ34S) profiles in sediment pore waters often show an offset between sulfate and sulfide much greater in magnitude than S isotope fractionations observed in pure cultures. A number of workers have invoked an additional reaction, microbial disproportionation of sulfur intermediates, to explain the offset between experimental and natural systems. Here, we present an alternative explanation based on modeling of pore water sulfate and sulfide concentrations and stable isotope data from the Cariaco Basin (ODP Leg 165, Site 1002B). The use of unique diffusion coefficients for and , based on their unequal molecular masses, resulted in an increase in the computed fractionation by almost 10‰, when compared to the common assumption of equal diffusion coefficients for the two species. These small differences in diffusion coefficients yield calculated isotopic offsets between coeval sediment pore water sulfate and sulfide without disproportionation (up to 53.4‰) that exceed the largest fractionations observed in experimental cultures. Furthermore, the diffusion of sulfide within sediment pore waters leads to values that are even greater than those predicted by our model for sulfate reduction with unique diffusion coefficients. These diffusive effects on the sulfur isotope composition of pore water sulfate and sulfide can impact our interpretations of geologic records of sulfate and sulfide minerals, and should be considered in future studies.  相似文献   

4.
Theoretical study on the reactivity of sulfate species with hydrocarbons   总被引:2,自引:0,他引:2  
The abiotic, thermochemically controlled reduction of sulfate to hydrogen sulfide coupled with the oxidation of hydrocarbons, is termed thermochemical sulfate reduction (TSR), and is an important alteration process that affects petroleum accumulations in nature. Although TSR is commonly observed in high-temperature carbonate reservoirs, it has proven difficult to simulate in the laboratory under conditions resembling nature. The present study was designed to evaluate the relative reactivities of various sulfate species in order to provide greater insight into the mechanism of TSR and potentially to fill the gap between laboratory experimental data and geological observations. Accordingly, quantum mechanics density functional theory (DFT) was used to determine the activation energy required to reach a potential transition state for various aqueous systems involving simple hydrocarbons and different sulfate species. The entire reaction process that results in the reduction of sulfate to sulfide is far too complex to be modeled entirely; therefore, we examined what is believed to be the rate limiting step, namely, the reduction of sulfate S(VI) to sulfite S(IV). The results of the study show that water-solvated sulfate anions are very stable due to their symmetrical molecular structure and spherical electronic distributions. Consequently, in the absence of catalysis, the reactivity of is expected to be extremely low. However, both the protonation of sulfate to form bisulfate anions () and the formation of metal-sulfate contact ion-pairs could effectively destabilize the sulfate molecular structure, thereby making it more reactive.Previous reports of experimental simulations of TSR generally have involved the use of acidic solutions that contain elevated concentrations of relative to . However, in formation waters typically encountered in petroleum reservoirs, the concentration of is likely to be significantly lower than the levels used in the laboratory, with most of the dissolved sulfate occurring as , aqueous calcium sulfate ([CaSO4](aq)), and aqueous magnesium sulfate ([MgSO4](aq)). Our calculations indicate that TSR reactions that occur in natural environments are most likely to involve bisulfate ions () and/or magnesium sulfate contact ion-pairs ([MgSO4]CIP) rather than ‘free’ sulfate ions () or solvated sulfate ion-pairs, and that water chemistry likely plays a significant role in controlling the rate of TSR.  相似文献   

5.
Microbiological reduction of a biogenic sulfated green rust , was examined using a sulfate reducing bacterium (Desulfovibrio alaskensis). Experiments investigated whether could serve as a sulfate source for D. alaskensis anaerobic respiration by analyzing mineral transformation. Batch experiments were conducted using lactate as the electron donor and biogenic as the electron acceptor, at circumneutral pH in unbuffered medium. transformation was monitored with time by X-ray diffraction (XRD), Transmission Mössbauer Spectroscopy (TMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The reduction of sulfate anions and the formation of iron sulfur mineral were clearly identified by XPS analyses. TMS showed the formation of additional mineral as green rust (GR) and vivianite. XRD analyses discriminated the type of the newly formed GR as GR1. The formed GR1 was as indicated by DRIFTS analysis. Thus, the results presented in this study indicate that D. alaskensis cells were able to use as an electron acceptor. , vivianite and an iron sulfur compound were formed as a result of reduction by D. alaskensis. Hence, in environments where geochemical conditions promote biogenic formation, this mineral could stimulate the anaerobic respiration of sulfate reducing bacteria.  相似文献   

6.
7.
Four or five sets of ab initio models, including Unrestricted Hartree Fock (UHF) and hybrid Density Functional Theory (DFT) are calculated for each species in a series of aqueous ferric aquo-chloro complexes: , , , FeCl3(H2O)3, FeCl3(H2O)2, , FeCl5H2O2−, , ) in order to determine the relative isotopic fractionation among the complexes, to compare the results of different models for the same complexes, to examine factors that influence the magnitude of the isotopic fractionation, and to compare bond-partner-driven fractionation with redox-driven fractionation.Relative to , all models show a nearly linear decrease in 56Fe/54Fe as the number of Cl ions per Fe3+ ion increases, with slopes of −0.8‰ to −1.0‰ per Cl at 20 °C. At 20 °C, 1000 ln β (β = 56Fe/54Fe reduced partition function ratio relative to a dissociated Fe atom) values range from 8.93‰ to 9.73‰ for , 8.04-9.12‰ for , 7.61-8.73‰ for , 7.14-8.25‰ for , and 3.09-4.41‰ for . The fractionation between and ranges from 1.5‰ to 2.6‰, depending on the model; this is comparable in magnitude to fractionation effects due to Fe3+/Fe2+ redox reactions. β values from the UHF models are consistently higher than those from the hybrid DFT models.Isotopic fractionation is shown to be sensitive to differences in ligand bond stiffness (above), coordination number, bond length, and the frequency of the asymmetric Fe-X stretching vibrational mode, as predicted by previous theoretical studies. Complexes with smaller coordination numbers have higher 1000 ln β (7.46‰, 5.25‰, and 3.48‰ for , ,, respectively, from the B3LYP/6-31G(d) model). Species with the same number of chlorides but fewer waters also show the effect of coordination number on 1000 ln β: (7.46‰ vs. 7.05‰ for FeCl3(H2O)2 vs. FeCl3(H2O)3 and 5.25‰ vs. 4.94‰ for vs. FeCl5H2O2− with the B3LYP/6-31G(d) model). As more Fe-Cl bonds substitute for Fe-OH2 bonds (with a resulting decrease in β), the lengths of the Fe-Cl bonds and the Fe-O bonds increase.Preliminary modeling of shows an Fe3+/Fe2+ fractionation of 3.2‰ for the B3LYP/6-31G(d) model, in agreement with previous studies. The addition of an explicit outer hydration sphere of 12 H2O molecules to models of improves agreement with measured vibrational frequencies and bond lengths; 1000 ln β increases by 0.8-1.0‰. An additional hydration sphere around increases 1000 ln β by only 0.1‰.Isotopic fractionations predicted for this simple system imply that ligands present in an aqueous iron environment are potentially important drivers of fractionation, and suggest that significant fractionation effects are likely in other aqueous systems containing sulfides or organic ligands. Fractionation effects due to both speciation and redox must be considered when interpreting iron isotope fractionations in the geological record.  相似文献   

8.
Chloride complexation of Cu+ controls the solubility of copper(I) oxide and sulfide ore minerals in hydrothermal and diagenetic fluids. Solubility measurements and optical spectra of high temperature CuCl solutions have been interpreted as indicating the formation of CuCl, , and complexes. However, no other monovalent cation forms tri- and tetrachloro complexes. EXAFS spectra of high temperature Cu-Cl solutions, moreover, appear to show only CuCl and complexes at T > 100 °C. To reconcile these results, I investigated the nature and stability of Cu-Cl complexes using ab initio cluster calculations and ab initio (Car-Parrinello) molecular dynamics simulations for CuCl-NaCl-H2O systems at 25 to 450 °C. Ab initio molecular dynamic simulations of 1 m CuCl in a 4 m Cl solution give a stable complex at 25 °C over 4 ps but show that the third Cl is weakly bound. When the temperature is increased along the liquid-vapour saturation curve to 125 °C, the complex dissociates into and Cl; only forms at 325 °C and 1 kbar. Even in a 15.6 m Cl brine at 450 °C, only the complex forms over a 4 ps simulation run.Cluster calculations with a static dielectric continuum solvation field (COSMO) were used in an attempt directly estimate free energies of complex formation in aqueous solution. Consistent with the MD simulations, the complex is slightly stable at 25 °C but decreases in stability with decreasing dielectric constant (ε). The complex is predicted to be unstable at 25 °C and becomes increasingly unstable with decreasing dielectric constant. In hydrothermal fluids (ε < 30) both the and complexes are unstable to dissociation into and Cl.The results obtained here are at odds with recent equations of state that predict and complexes are the predominant species in hydrothermal brines. In contrast, I predict that only complexes will be significant at T > 125 °C, even in NaCl-saturated brines. The high-temperature (T > 125 °C) optical spectra of CuCl solutions and solubility measurements of Cu minerals in Cl-brines need to be reinterpreted in terms of only the CuCl and complexes.  相似文献   

9.
10.
11.
12.
Potentiometric measurements of the stoichiometric constants for the dissociation of carbonic acid in NaCl solutions ( and ) have been made as a function of molality (0-6 m) and temperature (0-50 °C). The results have been fitted to the equations
  相似文献   

13.
Over the last decade, a significant research effort has focused on determining the feasibility of sequestering large amounts of CO2 in deep, permeable geologic formations to reduce carbon dioxide emissions to the atmosphere. Most models indicate that injection of CO2 into deep sedimentary formations will lead to the formation of various carbonate minerals, including the common phases calcite (CaCO3), dolomite (CaMg(CO3)2), magnesite (MgCO3), siderite (FeCO3), as well as the far less common mineral, dawsonite (NaAlCO3(OH)2). Nevertheless, the equilibrium and kinetics that control the precipitation of stable carbonate minerals are poorly understood and few experiments have been performed to validate computer codes that model CO2 sequestration.In order to reduce this uncertainty we measured the solubility of synthetic dawsonite according to the equilibrium: , from under- and oversaturated solutions at 50-200 °C in basic media at 1.0 mol · kg−1 NaCl. The solubility products (Qs) obtained were extrapolated to infinite dilution to obtain the solubility constants (. Combining the fit of these values and fixing  at 25 °C, which was derived from the calorimetric data of Ferrante et al. [Ferrante, M.J., Stuve, J.M., and Richardson, D.W., 1976. Thermodynamic data for synthetic dawsonite. U.S. Bureau of Mines Report Investigation, 8129, Washington, D.C., 13p.], the following thermodynamic parameters for the dissolution of dawsonite were calculated at 25 °C: , and . Subsequently, we were able to derive values for the Gibbs energy of formation (, enthalpy of formation ( and entropy ( of dawsonite. These results are within the combined experimental uncertainties of the values reported by Ferrante et al. (1976). Predominance diagrams are presented for the dawsonite/boehmite and dawsonite/bayerite equilibria at 100 °C in the presence of a saline solution with and without silica-containing minerals.  相似文献   

14.
Ammonium was injected from the subseafloor hydrothermal system at the Endeavour Segment, Juan de Fuca Ridge, into the deep-sea water column resulting in an -rich (?177 nM) neutrally buoyant hydrothermal plume. This was quickly removed by both autotrophic ammonia oxidation and assimilation. The former accounted for at least 93% of total net removal, with its maximum rate in the neutrally buoyant plume (?53 nM d−1) up to 10-fold that in background deep water. Ammonia oxidation in this plume potentially added 26-130 mg into the deep-sea water column. This oxidation process was heavily influenced by the presence of organic-rich particles, with which ammonia-oxidizing bacteria (AOB) were often associated (40-68%). AOB contributed up to 10.8% of the total microbial communities within the plume, and might constitute a novel lineage of β-proteobacterial AOB based on 16S rRNA and amoA phylogenetic analyses. Meanwhile, assimilation rates were also substantially enhanced within the neutrally buoyant plume (?26.4 nM d−1) and accounted for at least 47% of total net removal rates. The combined oxidation and assimilation rates always exceeded total net removal rates, suggesting active in situregeneration rates of at least an order of magnitude greater than the particulate nitrogen flux from the euphotic zone. Ammonia oxidation is responsible for turnover of 0.7-13 days and is probably the predominant in situ organic carbon production process (0.6-13 mg C m−2 d−1) at early stages of Endeavour neutrally buoyant plumes.  相似文献   

15.
A two-dimensional (2D) reactive transport model is used to investigate the controls on nutrient (, , PO4) dynamics in a coastal aquifer. The model couples density-dependent flow to a reaction network which includes oxic degradation of organic matter, denitrification, iron oxide reduction, nitrification, Fe2+ oxidation and sorption of PO4 onto iron oxides. Porewater measurements from a well transect at Waquoit Bay, MA, USA indicate the presence of a reducing plume with high Fe2+, , DOC (dissolved organic carbon) and PO4 concentrations overlying a more oxidizing -rich plume. These two plumes travel nearly conservatively until they start to overlap in the intertidal coastal sediments prior to discharge into the bay. In this zone, the aeration of the surface beach sediments drives nitrification and allows the precipitation of iron oxide, which leads to the removal of PO4 through sorption. Model simulations suggest that removal of through denitrification is inhibited by the limited overlap between the two freshwater plumes, as well as by the refractory nature of terrestrial DOC. Submarine groundwater discharge is a significant source of to the bay.  相似文献   

16.
17.
The concentration and distribution of Pt and Au in a fluid-melt system has been investigated by reacting the metals with S-free, single-phase aqueous brines (20, 50, 70 wt% eq. NaCl) ± peraluminous melt at a confining pressure of 1.5 kbar and temperatures of 600 to 800 °C, trapping the fluid in synthetic fluid inclusions (quartz-hosted) and vesicles (silicate melt-hosted), and quantifying the metal content of the trapped fluid and glass by laser ablation ICP-MS. HCl concentration was buffered using the assemblage albite-andalusite-quartz and fO2 was buffered using the assemblage Ni-NiO. Over the range of experimental conditions, measured concentrations of Pt and Au in the brines (, ) are on on the order of 1-103 ppm. Concentrations of Pt and Au in the melt (, ) are ∼35-100 ppb and ∼400-1200 ppb, respectively. Nernst partition coefficients (, ) are on the order of 102-103 and vary as a function of (non-Henry’s Law behavior). Trapped fluids show a significant range of metal concentrations within populations of inclusions from single experiments (∼ 1 log unit variability for Au; ∼2-3 log unit variability for Pt). Variability in metal concentration within single inclusion groups is attributed to premature brine entrapment (prior to metal-fluid-melt equilibrium being reached); this allows us to make only minimum estimates of metal solubility using metal concentrations from primary inclusions. The data show two trends: (i) maximum and average values of and in inclusions decrease ∼2 orders of magnitude as fluid salinity () increases from ∼4 to 40 molal (20 to 70 wt % eq. NaCl) at a constant temperature; (ii) maximum and average values of increase approximately 1 order of magnitude for every 100°C increase temperature at a fixed . The observed behavior may be described by the general expression:
  相似文献   

18.
19.
The influence of solution complexation on the sorption of yttrium and the rare earth elements (YREEs) by amorphous ferric hydroxide was investigated at 25 °C over a range of pH (4.0-7.1) and carbonate concentrations . Distribution coefficients, defined as , where [MSi]T is the total concentration of sorbed YREE, MT is the total YREE concentration in solution, and [Si] is the concentration of amorphous ferric hydroxide, initially increased in magnitude with increasing carbonate concentration, and then decreased. The initial increase of is due to sorption of YREE carbonate complexes , in addition to sorption of free YREE ions (M3+). The subsequent decrease of , which is more extensive for the heavy REEs, is due to the increasing intensity of YREE solution complexation by carbonate ions. The competition for YREEs between solution complexation and surface complexation was modeled via the equation:
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号