首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
在西藏北拉萨块体中段唐江穷果岩体中发现了一种新的岩石成因的暗色包体.唐江穷果岩体中暗色包体呈椭球状,与寄主岩之间呈不紧密胶结,在暗色包体和寄主岩的接触面上通常形成一个明显的风化间隙面.暗色包体为角闪闪长斑岩,寄主岩为花岗闪长岩,暗色包体明显较寄主岩更基性,更富Na2O、CaO、MgO和Fe2O3T.暗色包体和寄主岩具有明显不同的稀土元素,暗色包体的稀土元素除La、Ce元素外,整体含量较寄主岩高,且轻重稀土分异弱.两者都具有弧岩浆岩的特征,富集Rb、Cs、K等大离子亲石元素和Th、U,而亏损Nb、Ta、Ti等高场强元素.暗色包体成岩年龄为113.9±1.0 Ma,寄主岩的成岩年龄为110±1.1 Ma,暗色包体成岩年龄较寄主岩早约4 Ma.此外,两者具有一致的锆石原位Lu-Hf同位素特征.以上岩相学、年代学、元素地球化学和同位素地球化学证据表明,唐江穷果暗色包体和寄主岩来源于同源母岩浆,暗色包体在二次岩浆房中经历了较弱的斜长石结晶分离作用,寄主岩在二次岩浆房中经历了较强的角闪石结晶分离作用.经过结晶分离作用的寄主岩岩浆在侵位过程中将较早形成处于半塑性状态下的暗色包体裹挟至近地表.唐江穷果暗色包体最可能的成因模式可以解释为同源岩浆不同期次间的物理混合.   相似文献   

2.
陈希节  张奎华  周健 《地质学报》2016,90(9):2334-2354
花岗岩中包体是区域构造与深部过程研究结合的良好窗口,对研究花岗岩的成因和壳-幔相互作用有非常重要的意义。东天山南山口黑云母二长花岗岩中广泛发育镁铁质包体。主量元素组成上,寄主花岗岩岩具有中酸性、准铝质、富碱、富钾等特征;镁铁质包体则偏基性、贫钾。微量和稀土元素组成上,富集Rb、K、Th、U,贫Sr、P、Nb、Ta、Ti,且Zr、Hf含量相对较高,具中-强的铕负异常(0.46~0.57)。镁铁质包体与寄主岩具有相似的微量元素特征,但相对富集Sr、P,贫Zr、Hf,铕负异常中等或不明显(0.80~0.93)。闪长质包体属于同源包体,为寄主花岗岩同源母岩浆经结晶分异形成的早期产物。运用LA-ICP-MS锆石U-Pb定年技术,该南山口岩体暗色镁铁质微粒包体与寄主黑云母二长花岗岩的锆石U-Pb年龄分别为298.2±2.0Ma和294.0±2.7Ma,包体与寄主岩样品具有相似的Hf同位素组成,暗示其母岩浆来自新元古代晚期和早古生代亏损地幔中分离的新生地壳。该高钾钙碱性的花岗岩及其包体可能形成于东天山后碰撞背景下的板片断离后引起软流圈上涌,底侵体带来的热能使得新元古代晚期和早古生代的新生地壳发生部分熔融。  相似文献   

3.
敖仑花斑岩钼铜矿床的含矿斑岩中发现大量的暗色包体,包体成分主要为闪长质,具有细粒岩浆结构,形态以椭圆状为主。显微镜下包体中针状磷灰石和具有暗色镶边的眼球状石英十分发育,包体捕获了寄主岩石斑晶,如石英、斜长石、黑云母等,并具有熔蚀和再结晶的现象,反映出暗色包体具有显著的岩浆混合作用特征。元素地球化学方面,包体比寄主岩石明显偏基性,两者的主量元素具有很好的线性关系,稀土配分曲线及微量元素蛛网图比较相似,结合Sr、Nd同位素的特征显示,寄主岩石和包体之间应发生过物质交换。锆石U-Pb年龄结果表明,寄主岩石和包体年龄在误差范围内是一致的,分别为(134.1±1.4)Ma和(133.6±1.0)Ma,也进一步证实了暗色包体的岩浆混合成因。Sr、Nd同位素结果显示,敖仑花岩体的源区具有新生地壳物质的性质;暗色包体原始岩浆应该比现在更偏基性,可能起源于亏损地幔的玄武质岩浆。具有岩浆混合特征的暗色包体的发现可能是该区域幔源岩浆底侵作用的直接证据。  相似文献   

4.
龙新岩体和夏郢岩体位于扬子地块与华夏地块拼合带的西南端,岩体中的Ⅰ型花岗岩成因研究对揭示桂东南地区早古生代的地球动力学背景及其构造演化具有重要的地质意义.对龙新岩体的寄主岩和其暗色微粒包体,以及夏郢岩体岩石进行了LA-ICP-MS锆石U-Pb定年、Lu-Hf同位素和全岩地球化学研究.锆石U-Pb定年结果显示,龙新岩体的寄主岩(花岗闪长岩)的年龄为440±2 Ma;龙新岩体的暗色包体(闪长岩)的年龄为441±1 Ma,寄主岩与暗色包体为同期岩浆作用的产物.夏郢岩体花岗闪长岩和二长花岗岩年龄分别为447±3 Ma和436±3 Ma,说明夏郢岩体至少发生了2期岩浆侵入事件.Hf同位素研究表明,龙新岩体寄主岩和暗色微粒包体的锆石εHf(t)值分别为-3.32~-5.83和-17.89~-1.82,二阶段模式年龄(TDM2)分别为1.62~1.76 Ga和1.57~2.54 Ga;夏郢岩体早期花岗岩闪长岩和晚期二长花岗岩的锆石εHf(t)值分别为-15.43~3.03和-4.79~6.82,TDM2分别为1.59~1.99 Ga和0.97~1.70 Ga,指示物源主要来自古-中元古代的地壳物质.地球化学特征表明龙新岩体寄主岩为准铝质高钾钙碱性Ⅰ型花岗岩,寄主岩和暗色微粒包体均富集轻稀土元素和大离子亲石元素,亏损重稀土元素及高场强元素;夏郢岩体早期的花岗闪长岩为弱过铝质高钾钙碱性Ⅰ型花岗岩,晚期的二长花岗岩则为强过铝质高钾钙碱性Ⅰ型花岗岩,主微量元素特征均与龙新岩体寄主岩相似.根据研究区花岗岩和镁铁质包体的岩相学、年代学、地球化学及Hf同位素组成特征,表明龙新岩体的暗色包体(闪长岩)为岩浆混合成因,而龙新岩体寄主岩(花岗闪长岩)和夏郢岩体(早期花岗岩闪长岩和晚期二长花岗岩)具有一致的岩石源区和岩石成因,但在后期的成岩过程中存在岩浆混合和结晶分异程度的差异.综合以往对华南地区构造背景的研究,认为龙新和夏郢岩体是在扬子地块和华夏地块陆内造山期后,岩石圈伸展减薄,热的幔源岩浆上涌底侵,中-下地壳受到地幔热影响发生部分熔融,形成的酸性岩浆在源区和基性岩浆经历了不均一且不强烈的壳-幔混合作用形成的.   相似文献   

5.
东昆仑造山带晚华力西期-印支期花岗质岩石中广泛发育暗色微粒包体.本文以东昆仑东段和勒冈希里克特花岗闪长岩体为例,对暗色微粒包体及其寄主岩进行了详细研究.包体的野外产出特征、形态、结构构造和矿物学特征表明,他们是基性岩浆进入中酸性岩浆快速冷凝结晶的产物,和寄主花岗岩有着相似的稀土元素配分模式,显示轻稀土富集,重稀土亏损,轻重稀土元素分馏明显的特征,微量元素蛛网图也具有明显的相似性,富集大离子亲石元素,亏损高场强元素,反映了岩浆混合作用的特征;LA-ICP-MS锆石U-Pb同位素年代学研究显示,暗色微粒包体的形成年龄为(224.9±4.1)Ma,与寄主岩的同位素年龄值(225±5)Ma在误差范围内一致,表明了在晚三叠世期间东昆仑地区存在着后碰撞阶段壳-幔岩浆混合作用.  相似文献   

6.
青海泽多桌肉地区花岗闪长岩中发育大量暗色闪长质包体。通过对花岗闪长岩(寄主岩石)与暗色包体的地球化学研究发现,花岗闪长岩(寄主岩石)的SiO_2含量为w(SiO_2)=61.61%~68.80%,A/CNK=0.91~0.99,属于偏铝质钙碱性花岗岩特征;暗色包体中发育针状磷灰石,暗色包体的SiO_2含量为w(SiO_2)=52.66%~66.99%,碱度率AR=2.08~2.26(大于1),里特曼指数σ=1.89~8.67,固结指数SI=16~24.74,属过铝质钙碱性花岗岩。稀土元素分析显示,花岗闪长岩稀土总量w(ΣREE)=117.44×10~(-6)~265.68×10~(-6);暗色包体稀土总量w(ΣREE)=184.05×10~(-6)~342.11×10~(-6),总量高于寄主岩石;暗色包体和寄主花岗岩有着相似的稀土元素配分模式,显示轻稀土富集,重稀土亏损,轻重稀土元素分馏明显的特征。微量元素分析显示,暗色包体微量元素的分布型式与寄主岩微量元素特征基本一致,大离子亲石元素K、Rb、Ba相对富集,高场强元素Nb、Ta、Zr、Hf相对亏损,反映了岩浆混合作用的特征。在花岗闪长岩中获得LA-ICP-MS锆石U-Pb年龄为202.49 Ma±0.63 Ma,属晚三叠世。表明泽多桌肉花岗闪长岩属于晚三叠世以来的造山带伸展崩塌造成岩石圈较快速减薄以及幔源岩浆底侵作用的发生,并导致地壳岩石接近熔融温度产生壳源岩浆而成岩。  相似文献   

7.
南岭中段的锡田岩体燕山期岩石以斑状黑云母二长花岗岩为主,岩体中广泛发育暗色微粒包体。暗色微粒包体为岩浆结构,大多数具有塑性外形,发育淬冷边、反向脉,存在多种不平衡结构和矿物组合,如钾长石环斑、石英眼斑、针状磷灰石等,显示岩浆混合特征。岩石地球化学方面,暗色微粒包体具有比寄主岩贫硅、贫碱,富K、Fe、Mg、Ca、Ti特征;暗色微粒包体及寄主岩富集轻稀土元素(LREE/HREE=2.6~8.8),具有中-强的铕负异常(δEu=0.09~0.74)以及具有相似的稀土元素配分曲线和微量元素蛛网图;在主要氧化物含量Harker图解中投点多呈直线变异趋势,反映了两者具有密切的亲缘关系,利用共分母和不共分母图解进行判别,暗色微粒包体与寄主岩具岩浆混合特征,在MgO-TFeO判别图解中也指示包体为岩浆混合成因。上述岩相学和元素地球化学特征表明暗色微粒包体是基性岩浆侵入到酸性岩浆中淬冷形成的,指示锡田岩体存在两种岩浆的混合作用。通过LA-ICP-MS锆石U-Pb定年,得到寄主岩形成年龄(150.04±0.52)Ma,暗色包体形成年龄(145.09±0.63)Ma,二者年龄在测试误差范围内一致,显示岩浆混合作用发生的时间大致为晚侏罗世。  相似文献   

8.
刘梓  张玉芝  崔翔  甘成势  王岳军 《地球科学》2020,45(4):1243-1265
粤西阳江市八二花岗质岩体中广泛发育似斑状细粒闪长质暗色微粒包体,这些暗色微粒包体形态多样,与寄主岩具相似的矿物组合,对研究花岗岩成因和壳-幔相互作用具有十分重要的意义.为了探讨它们的岩石成因及构造属性,对寄主岩和暗色微粒包体开展了系统的岩相学、年代学和地球化学研究.LA-ICP-MS锆石U-Pb定年结果表明,寄主岩年龄为160.0±1.0 Ma,暗色微粒包体年龄为159.3±1.1 Ma,均为晚侏罗世的产物.全岩地球化学特征显示,寄主岩属于富钾的准铝质I型花岗岩,寄主岩和暗色微粒包体均富集轻稀土元素和大离子亲石元素,亏损重稀土元素和Nb、Ta、Ti等高场强元素.此外,两者具相似的Sr-Nd同位素组成,寄主岩的εNd(t)值为-5.73~-5.67,(87Sr/86Sr)i值为0.707 63~0.707 67;而暗色微粒包体的εNd(t)值为-5.81~-4.35,(87Sr/86Sr)i值为0.707 04~0.707 74.锆石饱和温度计和角闪石全铝压力计表明八二花岗质岩体结晶于730~754℃和19.8~20.6 km.综合寄主岩及其暗色微粒包体的岩石学、地球化学、同位素特征,晚侏罗世八二花岗质岩体可能形成于陆内伸展背景,由于软流圈物质上涌底侵,导致中下地壳变基性岩为主的源岩部分熔融,并且源区有少量幔源物质的加入,局部可能存在岩浆混合作用;暗色微粒包体是由镁铁质岩浆与长英质岩浆混合形成的.   相似文献   

9.
西准噶尔地区广泛发育古生代中酸性侵入岩,部分岩体中含有暗色微粒包体,这些岩浆岩的年代学、地球化学研究对于西准噶尔地区的岩浆混合作用机制及其区域构造演化的研究具有重要意义。乌散岩体位于西准噶尔中部,岩体包含寄主岩石石英二长岩及暗色包体石英角闪二长岩。石英二长岩中锆石LA-ICP-MS U-Pb谐和年龄为280.0±3.8Ma,表明其成岩时代应为早二叠世。里特曼指数δ为3.27~3.36,寄主岩石属于高钾钙碱性岩石系列。岩石中Rb、Th、K、La、Ce、P、Zr、Hf相对富集,Ta、Nb、Sr、Ti相对亏损,轻重稀土元素分馏明显。在Y+Nb-Rb、Y-Nb构造环境判别图解中,乌散岩体石英二长岩落入板内花岗岩投点范围内,显示具有后碰撞花岗岩的特征。由于该岩体成岩年龄明显晚于该地区蛇绿岩、岛弧火山岩以及含矿斑岩体年龄,而与后碰撞伸展环境中形成的A型花岗岩和双峰式火山岩的形成年龄相近,证明此时该地区大洋可能已经闭合,因此地球化学和区域构造特征指示乌散岩体可能形成于后碰撞构造环境。乌散岩体中暗色微粒包体广泛发育,寄主岩石与包体相互包裹,多为截然接触关系。钾长石斑晶横跨寄主岩石及包体,包体中发育的针状磷灰石,表现出岩浆混合的岩相学特征,寄主岩石与包体中不同矿物的SiO_2含量与其他主量元素含量呈良好的线性关系,表现出较好的亲缘关系,说明两者的矿物成分变化与岩浆混合有关。  相似文献   

10.
东天山八大石黑云母二长花岗岩中广泛发育闪长质包体.闪长质包体与寄主花岗岩在矿物组合上不同,但两者中同类矿物的种属相似.与寄主花岗岩相比,闪长质包体的Fe、Mg、Ti、Ca含量较高,而Na、K、Si的含量较低;富HREE、Sr,贫Ba、Th、Hf、Zr.锆石LA-ICP-MS U-Pb年龄显示闪长质包体与寄主花岗岩在形成时间上非常接近(分别为301±1 Ma和298±2 Ma),表明两者均形成于早二叠世.闪长质包体和寄主花岗岩具有正的εNd(t)(+4.15和+3.06)、较低的(87Sr/86Sr)i (0.704 12和 0.704 75)和相近的模式年龄tDM(812 Ma和944 Ma),暗示其母岩浆来自新元古代时从亏损地幔分离出来的初生地壳源区.综合岩石学、地球化学和同位素等方面的对比研究,笔者认为八大石闪长质包体属于同源包体,为寄主花岗岩同源母岩浆经结晶分异作用形成的早期产物.  相似文献   

11.
Rocks of the Late Cretaceous Dagbasi Pluton (88-83 Ma), located in the eastern Pontides, include mafic microgranular enclaves (MMEs) ranging from a few centimetres to metres in size, and from ellipsoidal to ovoid in shape. The MMEs are composed of gabbroic diorite, diorite and tonalite, whereas the felsic host rocks comprise mainly tonalite, granodiorite and monzogranite based on both mineralogical and chemical compositions. MMEs are characterized by a fine-grained, equigranular and hypidiomorphic texture. The common texture of felsic host rocks is equigranular and also reveals some special types of microscopic textures, e.g., oscillatory-zoned plagioclase, poikilitic K-feldspar, small lath-shaped plagioclase in large plagioclase, blade-shaped biotite, acicular apatite, spike zones in plagioclase and spongy-cellular plagioclase textures and rounded plagioclase megacrysts in MMEs. Compositions of plagioclases (An33-An60), hornblendes (Mg#=0.77-1.0) and biotites (Mg#=0.61-0.63) of MMEs are slightly distinct or similar to those of host rocks (An12-57; hbl Mg#=0.63-1.0; Bi Mg#=0.50-0.69), which suggest partial to complete equilibration during mafic-felsic magma interactions.The felsic host rocks have SiO2 between 60 and 76 wt% and display low to slightly medium-K tholeiitic to calc-alkaline and peraluminous to slightly metaluminous characteristics. Chondrite-normalized rare-earth element (REE) patterns are fractionated (Lacn/Lucn=1.5-7.3) with pronounced negative Eu anomalies (Eu/Eu*=0.46-1.1). Initial εNd(i) values vary between −3.1 and 1.6, initial 87Sr/86Sr values between 0.7056 and 0.7067.Compared with the host rocks, the MMEs are characterized by relatively high Mg-number of 22-52, low contents of SiO2 (53-63 wt%), low ASI (0.7-1.1) and low to medium-K tholeiitic to calc-alkaline, metaluminous to peraluminous composition. Chondrite-normalized REE patterns are relatively flat [(La/Yb)cn=1.4-3.9; (Tb/Yb)cn=0.9-1.5] and show small negative Eu anomalies (Eu/Eu*=0.63-1.01). Isotope signatures of these rocks (87Sr/86Sr(i)=0.7054-0.7055; εNd(i)=-1.0 to 1.9) are largely similar to the host rocks. Gabbroic diorite enclaves have relatively low contents of SiO2, ASI; high Mg#, CaO, Al2O3, TiO2, P2O5, Sr and Nb concentrations compared to dioritic and tonalitic enclaves.The geochemical and isotopic similarities between the MMEs and their host rocks indicate that the enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and mantle-derived magmas. All the geochemical data suggest that a basic magma derived from an enriched subcontinental lithospheric mantle, interacted with a crustal melt that originated from dehydration melting of the mafic lower crust at deep crustal levels. The existence of compositional and textural disequilibrium and the nature of chemical and isotopic variation in these rock types indicate that magma mixing/mingling between an evolved mafic and a granitic magma was involved in their genesis. Microgranular enclaves are thus interpreted to be globules of a more mafic magma probably from an enriched lithospheric mantle source. Al-in-amphibole estimates the pluton emplacement at ca. 0.3-3.8 kbar, and therefore, magma mixing and mingling must have occurred at 3.8 kbar or below this level.  相似文献   

12.
Located in the Luonan county, Shaanxi Province, northwest China, Jinduicheng, Shijiawan and Huanglongpu molybdenum deposits constitute the most important molybdenum mineralized district in China. Among these three deposits, the Jinduicheng and Shijiawan molybdenum deposits are connected spatially and genetically with granitoid porphyry (124 ± 6 Ma, K-Ar biotite), and consist of disseminated-veinlet ores. Geochemical studies of rare earth elements (REE) furnish further evidence for understanding the rock- and ore-forming processes of these two porphyry molybdenum deposits and their related granitoid rocks. The REE distribution in molybdenum ore, granitoids and their Middle Proterozoic meta-volcanic wall rocks is discussed. The similarities between the REE signatures of the Shijiawan molybdenum-bearing monzogranite porphyry and the neighbouring Laoneushan monzogranite (130 ± 5 Ma, K-Ar biotite) show that they were produced at the same evolutional stage of granitoid magma derived mainly from crustal anatexis. The Shijiawan biotite monzogranite porphyry may be an apophysis of the Laoneushan granitoid batholith. Compared to the Shijiawan monzogranite porphyry, the Jinduicheng molybdenum-bearing granite porphyry is characterized by a high content of HREE, and depletion in LREE. The unique REE patterns indicates that the molybdenum-bearing granite porphyry was formed by thermogravitation diffusion of a granitoid magma. The slight depletion of REE abundance in the altered granitoid porphyry and meta-volcanic wall rocks shows that leaching of REE occurred during breakdown of the primary mineral assemblage, and crystallization of secondary minerals. The high REE content of molybdenum ore represented re-deposition of the mobilized molybdenum and REE.  相似文献   

13.
Rocks of the Late Cretaceous Tamdere Quartz Monzonite, constituting a part of the Eastern Pontide plutonism, include mafic microgranular enclaves (MMEs) ranging from spheroidal to ellipsoidal in shape, and from a few centimeters to decimeters in size. The MMEs are composed of diorite, monzodiorite and quartz diorite, whereas the felsic host rocks comprise mainly quartz monzonite, granodiorite and rarely monzogranite on the basis of both mineralogical and chemical compositions. The common texture of felsic host rocks is equigranular. MMEs are characterized by a microgranular texture and also reveal some special types of microscopic textures, e.g. antirapakivi, poikilitic K-feldspar, small lath-shaped plagioclase in large plagioclase, blade-shaped biotite, acicular apatite, spike zones in plagioclase and spongy-cellular plagioclase textures.

The distribution of major, trace and RE elements apparently reflect exchange between the MMEs and the felsic host rocks mainly due to thermal, mechanical and chemical interactions between coeval felsic host magma and mafic magma. The most evident major element transfer from felsic host magma to mafic magma blob is that of alkalis such as Na and K. LILEs such as Rb, Sr, Ba and some HFSEs such as Nb, Y, Zr and Th have been migrated from felsic host magma to MMEs. Apart from these major and trace elements, the other element transfer from felsic host magma to mafic one concerns REE contents. Such a transfer of REEs has evidently increased the LREE contents of MMEs. Enrichments in alkalis, LILEs, HFSEs and REEs could have been achieved by diffusional processes during the solidification of magma sources. The felsic and mafic magma sources behave as Newtonian and visco-plastic materials. In such an interaction, small MMEs behave as a closed system due to immediate rapid cooling, whereas the bigger MMEs suffer greater diffusion from the Newtonian felsic host magma due to slow cooling.  相似文献   


14.
黑马河岩体位于西秦岭北缘青海南山构造带内,岩体中发育大量闪长质包体,但对其成因却有一定的争议.从岩石学、矿物学、地球化学和年代学等方面对黑马河岩体花岗闪长岩及其中的闪长质包体进行了详细研究.包体的野外产出状态、形态、结构构造和矿物学特征均显示出,它们是基性岩浆注入到中酸性岩浆中快速冷凝结晶的产物.在主量元素协变图解中,花岗闪长岩和闪长质包体显示出壳幔岩浆混合作用的趋势.另外,两者稀土总量和相似的稀土元素配分模式及Eu负异常程度,也显示二者具有岩浆混合的特征.LA-ICPMS锆石U-Pb定年结果显示,花岗闪长岩形成于246 Ma,闪长质包体形成于245 Ma,两者具有几乎一致的结晶年龄,排除了包体为源区难熔残余或围岩捕掳体的可能性,也排除了基性岩浆在花岗质岩浆固结后再侵入的可能性.结合区域地质资料,认为黑马河岩体形成于西秦岭北缘有限小洋盆向南的俯冲阶段,青海南山构造带与天峻南山一带具有相同的构造岩浆演化历史.   相似文献   

15.
Plutonic rocks associated with the Latir volcanic field comprise three groups: 1) 25 Ma high-level resurgent plutons composed of monzogranite and silicic metaluminous and peralkaline granite, 2) 23–25 Ma syenogranite, and alkali-feldspar granite intrusions emplaced along the southern caldera margin, and 3) 19–23 Ma granodiorite and granite plutons emplaced south of the caldera. Major-element compositions of both extrusive and intrusive suites in the Latir field are broadly similar; both suites include high-SiO2 rocks with low Ba and Sr, and high Rb, Nb, Th, and U contents. Moreover, both intermediateto siliciccomposition volcanic and plutonic rocks contain abundant accessory sphene and apatite, rich in rare-earth elements (REE), as well as phases in which REE's are essential components. Strong depletion in Y and REE contents, with increasing SiO2 content, in the plutonic rocks indicate a major role for accessory mineral fractionation that is not observed in volcanic rocks of equivalent composition. Considerations of the rheology of granitic magma suggest that accessory-mineral fractionation may occur primarily by filter-pressing evolved magmas from crystal-rich melts. More limited accessory-mineral crystallization and fractionation during evolution of the volcanic magmas may have resulted from markedly lower diffusivities of essential trace elements than major elements. Accessory-mineral fractionation probably becomes most significant at high crystallinities. The contrast in crystallization environments postulated for the extrusive and intrusive rocks may be common to other magmatic systems; the effects are particularly pronounced in highly evolved rocks of the Latir field. High-SiO2 peralkaline porphyry emplaced during resurgence of the Questa caldera represents non-erupted portions of the magma that produced the Amalia Tuff during caldera-forming eruption. The peralkaline porphyry continues compositional and mineralogical trends found in the tuff. Amphibole, mica, and sphene compositions suggest that the peralkaline magma evolved from metaluminous magma. Extensive feldspar fractionation occurred during evolution of the peralkaline magmas, but additional alkali and iron enrichment was likely a result of high halogen fluxes from crystallizing plutons and basaltic magmas at depth.  相似文献   

16.
浙东白垩纪北漳和梁弄花岗岩体及其暗色岩石包体研究   总被引:7,自引:0,他引:7  
浙东地区晚中生代花岗岩类在岩性上分为三类:花岗岩-二长花岗岩、钾长花岗岩和A型花岗岩。对后两类花岗岩已有较多研究,但对前一类,尤其是二长花岗岩的研究还较薄弱。选择浙东具代表性的北漳和梁弄二长花岗岩体及其所含暗色岩石包体,以及共生的石英闪长岩类,通过系统的岩石学与地球化学对比研究,提出浙东二长花岗岩属准铝质、高钾钙碱性Ⅰ型花岗岩类演化系列,暗色岩石包体是由花岗质岩浆在深部析离出的镁铁质微粒包体(MME),成分特征类似于石英闪长岩,说明三者具内在成因联系,均与俯冲作用关系密切。  相似文献   

17.
西秦岭德乌鲁岩体位于夏河-合作断裂和力士山-围当山断裂之间,寄主岩石以花岗闪长岩为主,石英闪长岩和石英二长闪长岩次之,并含有大量暗色微粒包体(MMEs)。对德乌鲁岩体开展了年代学研究,获得的花岗闪长岩的LA-ICP-MS锆石U-Pb年龄为225.9±1.3 Ma,表明该岩体形成于晚三叠世早期,可能与扬子板块与华北板块陆陆碰撞有关。岩石地球化学研究表明,寄主岩石具有高K2O,低Y、MgO的特点,而暗色微细粒包体(MMEs)具低K2O,高Y、MgO的特点,在微量元素蛛网图解和稀土元素配分模式上它们具有类似的曲线,在Al_2O_3/MgOSiO_2/MgO图上呈现明显的线性关系,表明这些岩石之间发生了明显的物质交换,说明德乌鲁岩体中的石英闪长岩、石英二长闪长岩和花岗闪长岩是由镁铁质岩浆和长英质岩浆混合产生的,可能与扬子板块和华北板块陆陆碰撞后伸展环境下发生的强烈壳-幔相互作用有关。MMEs可能是镁铁质岩浆的残余物,地球化学特征显示可能有幔源物质的加入,并带来了Au、Cu等成矿元素,在岩体形成演化过程中生成富含Cu和Au的含矿热液,从而在德乌鲁岩体中形成了热液型铜金矿床。  相似文献   

18.
The origin of magmas that are linked to economic mineralization in porphyry deposits formed in continental collisional belts is controversial. In this paper, we studied the mafic microgranular enclaves (MMEs) and their host monzogranite porphyries (HMPs) from the Dabu porphyry Cu–Mo deposit in southern Tibet. Zircon SHRIMP U–Pb ages indicate coeval formation for the MMEs and HMPs in middle Miocene time (~15 Ma). The MMEs have high Mg# (50.7–60.8), low SiO2 (53.2–62.5 wt.%), and high Cr (95–175 ppm) contents, with positive εHf(t) values ranging from +3.4 to +9.4. These results, along with the presence of phlogopite, suggest that the MMEs were most likely generated by partial melting of a metasomatic lithospheric mantle source region. The HMPs have high Sr/Y (88.2–135.7), La/Yb (25.0–31.9) ratios, and moderate Mg# (46.2–49.3) values. They have the same εHf(t) values (+3.3 to +7.7) with arc-like Palaeogene rocks. The HMPs also show typical arc magma characteristics such as enrichment in LILEs (e.g. Rb, Ba, Sr, and K) and depletion in HFSEs (e.g. Nb, Ta, Ti, Zr, and P). These results suggest a possible origin involving high-pressure remelting of thickened lower crustal arc cumulates related to earlier Neo-Tethyan subduction. The lower crustal arc cumulates dominated by garnet-bearing amphibolite facies could be the potential copper sources of the Dabu porphyry Cu–Mo deposit. Underplating of the mantle-derived mafic magmas could have provided heat input for melting of the hydrous lower crust. Reaction between the mafic and felsic magmas might have further increased Cu concentrations and contributed to subsequent mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号