首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
潜水蒸发蒸腾(ETg)是干旱半干旱地区浅埋深地下水最主要的排泄方式,也是地下水系统中重要的均衡项。如果存在气压效应,用于估算地下水蒸发蒸腾强度的传统水位波动法则不适用。以黄土潜水为例,提出了一种基于水位变化和大气压变化规律的水位图方法,用于消除气压效应以获取潜水蒸发蒸腾强度。研究表明,大气压变化通常在午夜前,一般为22:00—24:00,会出现一个峰值,该时间段气压效应可以忽略,而且潜水蒸发蒸腾强度最小,此时潜水位的变化速率相当于净补给速率;在获取潜水净补给强度后,选择第二个时间段,0:00—4:00,此时潜水蒸发蒸腾强度最小,且气压一般处于连续下降阶段,可以用来估算气压效应系数。在此基础上,可利用水位均衡和水位波动法方便地估算潜水蒸发蒸腾强度。该方法数据获取容易,估算结果也较为准确。  相似文献   

2.
基于不同地质统计方法的渗透系数场对污染物运移的影响   总被引:1,自引:0,他引:1  
渗透系数场的空间变异性是影响污染物运移结果的决定因素,而地质统计方法是解决渗透系数空间变异性的主要技术手段。本文利用野外场地实测数据,采用普通克里格法和指示克里格法、顺序高斯模拟法和顺序指示模拟法四种地质统计方法,插值估测和模拟再现随机渗透系数场,进而对比研究四种渗透系数场对大尺度污染物运移的影响。研究结果表明,污染羽的质心位置(一阶矩)主要由渗透系数的平均值来决定;污染羽在空间上的展布范围(二阶矩)主要受渗透系数空间变异方差的影响;条件模拟克服了估计法的平滑效果,较好地再现真实曲线的波动性,渗透系数( lnK)估计方差与污染羽空间二阶矩随着条件模拟次数的增加而减小,并且顺序指示模拟程度更加明显。  相似文献   

3.
An approach is presented to quantify sensitivity of advective contaminant travel time to porosities of hydrogeologic units (HGUs) along the flowpaths when the porosities of different HGUs are correlated. The approach is an extension of the previous sensitivity analysis technique for independent input porosity cases. It is applicable in situations where a calibrated groundwater flow model exists, but a full contaminant transport model is not available. Three sensitivity indices are introduced based on the decomposition of covariance between the advective contaminant travel time and individual input porosities of HGUs. When the input HGU porosities are correlated, the three sensitivity indices quantify the total, intrinsic and correlated contributions from each individual HGU porosity, which should be considered in order to determine the relative importance to the uncertainty in advective contaminant travel time of the input HGU porosities contributing either independently or correlatedly. Two simple one-dimensional flow examples are presented to illustrate the applications of the approach to scenarios when each HGU has distinct porosity and situations of spatially variable porosity field. The approach is applicable to more complex multi-dimensional cases where advective contaminant travel time can be calculated based on simulated flow results from groundwater flow models.  相似文献   

4.
循环往复水流对反滤系统的作用机理研究   总被引:1,自引:1,他引:0  
庄艳峰  陈轮  许齐  王钊 《岩土力学》2008,29(7):1773-1777
通过自行研制的循环往复水流试验装置,研究了不同频率的正弦循环水流对反滤系统的作用机制,建立了与试验模型相一致的定解条件,并求得孔压微分方程的解析解。理论分析表明,土的固结系数与循环往复水流的频率的比值越小,靠近边界处土体的水力梯度就越大,土体内部的水力梯度就越小。试验中,当周期为0.5 min时,边界处水力梯度振幅接近系统平均水力梯度振幅的2倍;当周期为62.5 min时,则基本没有边界水力梯度集中现象。实测结果与理论分析结果较为一致。这种水力梯度边界集中现象,容易加剧渗透边界层的冲刷,降低反滤系统的渗透稳定性,应当在试验研究和工程实践中引起注意。  相似文献   

5.
A common assumption with groundwater sampling is that low (<0.5 L/min) pumping rates during well purging and sampling captures primarily lateral flow from the formation through the well-screened interval at a depth coincident with the pump intake. However, if the intake is adjacent to a low hydraulic conductivity part of the screened formation, this scenario will induce vertical groundwater flow to the pump intake from parts of the screened interval with high hydraulic conductivity. Because less formation water will initially be captured during pumping, a substantial volume of water already in the well (preexisting screen water or screen storage) will be captured during this initial time until inflow from the high hydraulic conductivity part of the screened formation can travel vertically in the well to the pump intake. Therefore, the length of the time needed for adequate purging prior to sample collection (called optimal purge duration) is controlled by the in-well, vertical travel times. A preliminary, simple analytical model was used to provide information on the relation between purge duration and capture of formation water for different gross levels of heterogeneity (contrast between low and high hydraulic conductivity layers). The model was then used to compare these time–volume relations to purge data (pumping rates and drawdown) collected at several representative monitoring wells from multiple sites. Results showed that computation of time-dependent capture of formation water (as opposed to capture of preexisting screen water), which were based on vertical travel times in the well, compares favorably with the time required to achieve field parameter stabilization. If field parameter stabilization is an indicator of arrival time of formation water, which has been postulated, then in-well, vertical flow may be an important factor at wells where low-flow sampling is the sample method of choice.  相似文献   

6.
Combining groundwater flow models with solute transport models represents a common challenge in groundwater resources assessments and contaminant transport modeling. Groundwater flow models are usually constructed at somewhat larger scales (involving a coarser discretization) to include natural boundary conditions. They are commonly calibrated using observed groundwater levels and flows (if available). The groundwater solute transport models may be constructed at a smaller scale with finer discretization than the flow models in order to accurately delineate the solute source and the modeled target, to capture any heterogeneity that may affect contaminant migration, and to minimize numerical dispersion while still maintaining a reasonable computing time. The solution that is explored here is based on defining a finer grid subdomain within a larger coarser domain. The local-grid refinement (LGR) implemented in the Modular 3D finite-difference ground-water flow model (MODFLOW) code has such a provision to simulate groundwater flow in two nested grids: a higher-resolution sub-grid within a coarse grid. Under the premise that the interface between both models was well defined, a comprehensive sensitivity and uncertainty analysis was performed whereby the effect of a parameter perturbation in a coarser-grid model on transport predictions using a higher-resolution grid was quantified. This approach was tested for a groundwater flow and solute transport analysis in support of a safety evaluation of the future Belgian near-surface radioactive waste disposal facility. Our reference coarse-grid groundwater flow model was coupled with a smaller fine sub-grid model in two different ways. While the reference flow model was calibrated using observed groundwater levels at a scale commensurate with that of the coarse-grid model, the fine sub-grid model was used to run a solute transport simulation quantifying concentrations in a hypothetical well nearby the disposal facility. When LGR coupling was compared to a one-way coupling, LGR was found to provide a smoother flow solution resulting in a more CPU-efficient transport solution. Parameter sensitivities performed with the groundwater flow model resulted in sensitivities at the head observation locations. These sensitivities identified the recharge as the most sensitive parameter, with the hydraulic conductivity of the upper aquifer as the second most sensitive parameter in regard to calculated groundwater heads. Based on one-percent sensitivity maps, the spatial distribution of the observations with the highest sensitivities is slightly different for the upper aquifer hydraulic conductivity than for recharge. Sensitivity analyses were further performed to assess the prediction scaled sensitivities for hypothetical contaminant concentrations using the combined groundwater flow and solute transport models. Including all pertinent parameters into the sensitivity analysis identified the hydraulic conductivity of the upper aquifer as the most sensitive parameter with regard to the prediction of contaminant concentrations.  相似文献   

7.
焦作矿区岩溶水Cl-污染原因初探   总被引:12,自引:0,他引:12  
焦作裂隙岩溶水系统是我国北方岩溶区发育比较典型的系统之一,岩溶水资源丰富,水质优良,是城市供水的主要水源,据近几年水质监测,岩溶水Cl^-逐年增加,水质变咸,在对焦作矿区地质,水文地质条件,岩溶水补给来源,地表污染源和污染途径分析的基础上,建立了二维非稳定溶质运移数值模拟模型,模拟了岩溶水Cl^-时空分布,证实岩溶水Cl^- 升高是人为污染所致,不同区域岩溶水有不同的污染源和污染途径。  相似文献   

8.
The need to understand flow within aquiferous formations for a complete evaluation of groundwater resource and quality control prompts the determination of groundwater velocities through well dilution technique. Well dilution techniques utilize tracer solutions after establishing an initial homogenous condition to monitor the flow rate of ambient groundwater into the wells. Application of dilution techniques in wells makes it feasible to determine the velocities of groundwater in the aquiferous formation surrounding the well. In this study, a simple trigger-tube tracer dilution technique was employed to determine the Darcy and apparent velocities of groundwater in the phreatic aquiferous formation in Bamenda, Cameroon. Eighteen(18) hand dug-wells at different locations within Bamenda were sampled by utilizing sodium chloride(NaCl) as the conservative tracer. Field estimates of groundwater flow velocities in the phreatic aquiferous formation in Bamenda reveal Darcy's groundwater velocity in the range of 0.39 m/d at Nacho to 130.64 m/d at Foncha Street and apparent velocity in the range of 0.78 m/d at Nacho to 277.86 m/d at Foncha Street. The immense variations in the velocities of groundwater indicate that the groundwater flows at different rates and directions within the aquiferous formation in Bamenda, possibly due to variations in their hydraulic conductivities. Moreover, the spatial variations in the formation types, facies changes, thickness, and layering of the aquiferous formation also contribute to the variation of velocities. Areas with low groundwater velocities are associated with a lower contaminant transport rate when compared to areas with high groundwater velocities. The findings of this study are important for assessing the rates of pollutant movement in the subsurface, as well as the effectiveness and efficacy of the trigger-tube technique in evaluating the hydraulic properties of aquiferous formations.  相似文献   

9.
The need to understand flow within aquiferous formations for a complete evaluation of groundwater resource and quality control prompts the determination of groundwater velocities through well dilution technique. Well dilution techniques utilize tracer solutions after establishing an initial homogenous condition to monitor the flow rate of ambient groundwater into the wells. Application of dilution techniques in wells makes it feasible to determine the velocities of groundwater in the aquiferous formation surrounding the well. In this study, a simple trigger-tube tracer dilution technique was employed to determine the Darcy and apparent velocities of groundwater in the phreatic aquiferous formation in Bamenda, Cameroon. Eighteen (18) hand dug-wells at different locations within Bamenda were sampled by utilizing sodium chloride (NaCl) as the conservative tracer. Field estimates of groundwater flow velocities in the phreatic aquiferous formation in Bamenda reveal Darcy’s groundwater velocity in the range of 0.39 m/d at Nacho to 130.64 m/d at Foncha Street and apparent velocity in the range of 0.78 m/d at Nacho to 277.86 m/d at Foncha Street. The immense variations in the velocities of groundwater indicate that the groundwater flows at different rates and directions within the aquiferous formation in Bamenda, possibly due to variations in their hydraulic conductivities. Moreover, the spatial variations in the formation types, facies changes, thickness, and layering of the aquiferous formation also contribute to the variation of velocities. Areas with low groundwater velocities are associated with a lower contaminant transport rate when compared to areas with high groundwater velocities. The findings of this study are important for assessing the rates of pollutant movement in the subsurface, as well as the effectiveness and efficacy of the trigger-tube technique in evaluating the hydraulic properties of aquiferous formations.  相似文献   

10.
Industrially sourced dense non-aqueous phase liquids (DNAPLs) contaminated an alluvial aquifer in France decades ago. The location(s) and nature of the pollution source zone(s) were unknown, and the dissolved concentrations of volatile organic compounds in the monitoring wells varied greatly with time. The aquifer was in hydraulic equilibrium with an artificial canal whose water level was highly variable (up to 5 m). These variations propagated into the aquifer, causing changes in the groundwater flow direction; a transient numerical model of flow and solute transport showed that they correlate with the concentration variations because the changes in the flow direction resulted in the contaminant plume shifting. The transient hydrogeological numerical model was built, taking into account solvent biodegradation with first-order chain, since biodegradation has a significant influence on the pollutant concentration evolution. The model parameterization confirms the position of the source zones among the potential troughs in the bedrock where DNAPLs could have accumulated. The groundwater model was successfully calibrated to reproduce the observed concentration variations over several years and allowed a rapid validation of the hypotheses on the functioning of the polluted system.  相似文献   

11.
开采孔隙承压含水系统,引起含水层水头下降。通常认为相邻含水层一经出现水头差,便会有通过粘性土层的越流渗透。但在粘性土两侧含水层出现水头差初期,粘性土内部水头降低缓慢,并伴随有释水压密过程。本文采用多用途饱水粘性土固结和渗透试验装置,对不同岩性的粘性土原状样进行了释水、吸水与越流发展过程之间关系的试验。试验表明,含水层水位升、降变化,首先引起相邻粘性土吸水回弹或释水压密,而后出现粘性土吸水或与释水越流并存阶段。越流的出现。明显滞后于含水层水头变化,当吸水或释水过程结束后,越流渗透达到稳定。越流滞后时间与土的固结程度有关,笔者采用一维固结理论提出了计算越流滞后时间的方法。  相似文献   

12.
文章从一维地下水运动和渗透力学的角度,分析比较潜水位上升与承压水位下降对岩溶地区透—阻型盖层中阻水层渗透稳定性的影响,重点讨论了承压水位下降速度(降速)与下降深度(降深)对阻水层中渗透坡降的影响,结果表明:地下水位变化(潜水位上升或承压水位下降)产生的非稳定渗流不利于岩溶洞穴开口上方阻水层的稳定,承压水位的下降对岩溶开口附近处阻水层中渗透力的影响远大于潜水位的变化;在承压层水位最大降深确定的条件下,承压水位下降速度愈快,岩溶开口附近处阻水层中向下渗透力愈大。因此,在覆盖型岩溶地区抽取地下水时,为了减缓或避免覆盖型塌陷的发生,应同时控制好最大降深和最大开采速度。   相似文献   

13.
14.
When groundwater pollution occurs,to come up with an efficient remediation plan,it is particularly important to collect information of contaminant source(location and source strength)and hydraulic conductivity field of the site accurately and quickly.However,the information can not be obtained by direct observation,and can only be derived from limited measurement data.Data assimilation of observations such as head and concentration is often used to estimate parameters of contaminant source.As for hydraulic conductivity field,especially for complex non-Gaussian field,it can be directly estimated by geostatistics method based on limited hard data,while the accuracy is often not high.Better estimation of hydraulic conductivity can be achieved by solving inverse groundwater problem.Therefore,in this study,the multi-point geostatistics method Quick Sampling(QS)is proposed and introduced for the first time and combined with the iterative local updating ensemble smoother(ILUES)to develop a new data assimilation framework QS-ILUES.It helps to solve the contaminant source parameters and non-Gaussian hydraulic conductivity field simultaneously by assimilating hydraulic head and pollutant concentration data.While the pilot points are utilized to reduce the dimension of hydraulic conductivity field,the influence of pilot points’layout and the ensemble size of ILUES algorithm on the inverse simulation results are further explored.  相似文献   

15.
Flow and solute transport monitoring in the karst aquifer in SW Slovenia   总被引:1,自引:0,他引:1  
The role of the unsaturated zone in the karst aquifer hydraulic behaviour was brought into focus in these studies of the catchment of the Hubelj spring (SW Slovenia). The variations of natural tracers in precipitation and in groundwater during a summer storm event made it possible to trace local flow and solute transport in the observed aquifer. The results produced data on the aquifer recharge, storage and discharge processes, as well as on mechanisms that affected them, which reflects a karst groundwater dynamics also at a regional scale. They point out the significance of effects of the fast preferential flow—epiflow that is the main factor controlling solute/contaminant transport towards the aquifer saturated zone. Numerous arguments indicate that the karst aquifer flow and solute transport mechanisms depend on the hydraulic behaviour of the epikarst zone.  相似文献   

16.
A new semi-analytical solution for the transport of a conservative contaminant species in a fractured medium having a regular two- or three-dimensional fracture network is presented. The application of the technique and some of the practical implications arising from an examination of contaminant migration in fractured systems is discussed. Particular consideration is given to the effects of Darcy velocity, fracture spacing, matrix porosity, dispersivity and the mass of contaminant available for transport. The implications of uncertainty with respect to fracture opening size and ground-water velocity is also discussed and it is shown that provided one can obtain a reasonable estimate of the hydraulic gradient and hydraulic conductivity for the rock mass, uncertainty regarding the magnitude of the opening size and the groundwater velocity does not have a significant effect on predicted contaminant migration for the class of problems being considered.  相似文献   

17.

Waterlogging (WL) refers to the process by which water flow is resisted in vertical and horizontal directions and thus water stagnates for a short or long span of time; it is induced by a combination of human and natural factors. In the southwestern region of Bangladesh, including Natore District, WL is a significant issue that needs to be addressed if agricultural activity is to be successful. This study aimed to identify surface WL in Natore District and to characterise the WL scenario in the study area in terms of hydrogeology. Waterlogged areas were identified with a geographic information system using satellite images corresponding to the premonsoon and postmonsoon periods. Using groundwater level data (1990–2017), the pre- and postmonsoon scenarios of the waterlogged areas were indicated by seasonal and perennial types of WL. Groundwater recharge scenarios were classified as long and short lag times. Most of the study area was characterised by thick clay or silty clay surficial layers with low water penetration rates, resulting from low porosity and low hydraulic conductivity. The cross-correlation between rainfall and groundwater level revealed the response of groundwater to rainfall, with a lag time of 1–5 months. Long lag time areas exhibited slow groundwater recharge and significant groundwater level fluctuation, with lower hydraulic conductivity values of 49.37–76.24 m/day. In contrast, short lag time areas displayed rapid groundwater recharge and small groundwater fluctuation due to a good proportional relationship with rainfall and higher hydraulic conductivity values of 74.74–117.79 m/day.

  相似文献   

18.
Predictive modeling of hydrological time series is essential for groundwater resource development and management. Here, we examined the comparative merits and demerits of three modern soft computing techniques, namely, artificial neural networks (ANN) optimized by scaled conjugate gradient (SCG) (ANN.SCG), Bayesian neural networks (BNN) optimized by SCG (BNN.SCG) with evidence approximation and adaptive neuro-fuzzy inference system (ANFIS) in the predictive modeling of groundwater level fluctuations. As a first step of our analysis, a sensitivity analysis was carried out using automatic relevance determination scheme to examine the relative influence of each of the hydro-meteorological attributes on groundwater level fluctuations. Secondly, the result of stability analysis was studied by perturbing the underlying data sets with different levels of correlated red noise. Finally, guided by the ensuing theoretical experiments, the above techniques were applied to model the groundwater level fluctuation time series of six wells from a hard rock area of Dindigul in Southern India. We used four standard quantitative statistical measures to compare the robustness of the different models. These measures are (1) root mean square error, (2) reduction of error, (3) index of agreement (IA), and (4) Pearson’s correlation coefficient (R). Based on the above analyses, it is found that the ANFIS model performed better in modeling noise-free data than the BNN.SCG and ANN.SCG models. However, modeling of hydrological time series correlated with significant amount of red noise, the BNN.SCG models performed better than both the ANFIS and ANN.SCG models. Hence, appropriate care should be taken for selecting suitable methodology for modeling the complex and noisy hydrological time series. These results may be used to constrain the model of groundwater level fluctuations, which would in turn, facilitate the development and implementation of more effective sustainable groundwater management and planning strategies in semi-arid hard rock area of Dindigul, Southern India and alike.  相似文献   

19.
随着我国地下水监测工作的高速发展,高频率高密度水位监测数据的出现催生了对其进行深入信息挖掘的需求。在传统地下水模型研究中,地下水水位监测值常位于模型构建过程的下游,当水位监测的时空密度逐渐增大时,新增信息无法有效传导至模型的规划阶段并指导概念模型的修订。文章提出了一种地下水系统补排边界的识别方法,在不建立地下水数值模型的前提下,以监测井空间位置为节点,按照德劳内原则建立三角网格。在此网格系统中,首先定义一个水力梯度变换函数gradF,以求取网格中任意位置的水力梯度;借鉴机器学习领域的优化算法,使用水力梯度场驱动含水层中随机分布质点的运行轨迹,并以此推断和识别区域内地下水补给和排泄边界。在环境地学计算平台EnviFusion-CGS中实现,并构建了详细工作流程。以山东省青岛市大沽河中下游含水层为示范区,对含水系统的补给区和排泄区的空间分布及其动态变化进行了分析,取得了良好效果。本研究为构建和修订已有含水层概念模型提供了新思路。  相似文献   

20.
确定咸淡水界面的位置是滨海地区海水入侵研究的主要任务之一。对于天然条件承压含水层而言,含水层顶板向海底延伸的距离直接影响了咸淡水界面的位置,它可以通过承压含水层中地下水的潮汐效应信息来确定。考虑到咸淡水之间密度的差异,建立了山东省夹河中下游地区滨海含水系统地下水三维变密度潮汐效应模型。通过反复对比潮汐效应观测中的地下水水头波动与模型计算出的水头波动,确定了滨海承压含水系统的海底边界。同时,也初步估计出海区与近海陆区含水层的水文地质参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号