首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantifying 21st-century France climate change and related uncertainties   总被引:1,自引:0,他引:1  
We tackle here the question of past and future climate change at sub-regional or country scale with the example of France. We assess France climate evolution during the 20th and 21st century as simulated by an exhaustive range of global climate simulations. We first show that the large observed warming of the last 30 years can be simulated only if anthropogenic forcings are taken into account. We also suggest that human influence could have made a substantial contribution to the observed 20th century multi-decadal temperature fluctuations. We then show that France averaged annual mean temperature at the end of the 21st century is projected to be on the order of 4.5 K warmer than in the early 20th century under the radiative concentration pathways 8.5 (RCP8.5) scenario. Summer changes are greater than their winter counterpart (6 K versus 3.7 K). Near-future (2020–2049) changes are on the order of 2.1 K (with 2.6 K in summer and 1.8 K in winter). Model projections also suggest a substantial summer precipitation decrease (−0.6 mm/day), in particular over southern France, and a moderate winter increase, (0.3 mm/day), mostly over the northernmost part of France. Uncertainties about the amplitude of these precipitation changes remain large. We then quantify the various sources of uncertainty and study how their ranking varies with time. We also propose a physically-based metric approach to reduce model uncertainty and illustrate it with the case of summer temperature changes. Finally, timing and amplitude of France climate change in case of a global average 2-K warming are investigated. Aggressive mitigation pathways (such as RCP2.6) are absolutely required to avoid crossing or barely exceeding the 2-K global threshold. However, France climate change requiring adaptation measures is still to be expected even if we achieve to remain below the 2-K global target.  相似文献   

2.
The effects of climate change on annual runoff were analyzed on the basis of hydrologic and meteorological data for the past 50 years recorded by six meteorological stations and the Kenswatt Hydrological Station in the headstream of the Manas River watershed. The long-term trends of climate change and hydrological variations were determined in a nonparametric test, and the periodicities were determined employing the extrapolation method of periodic variance analysis. Subsequently, a periodicity-trend superposition model was used to predict future change. The results show that both the climate factors (temperature and precipitation) and runoff have increased considerably and have significant relations; the relation between temperature and runoff is the more significant. There is periodicity of 18 years in the change in annual runoff, and the primary periodicity of changes in temperature and precipitation is, respectively, 3 and 15 years. The runoff variations are affected by climate change in the headstream, but do not shift simultaneously with abrupt changes in temperature and precipitation in the headstream. There is a significant positive relationship in winter between the North Atlantic Oscillation (NAO) and runoff, while there are negative correlations annually and in summer for the runoff lagging the NAO by 1 year. The NAO has certain effects on climate change that are mainly due to atmospheric circulation in the Manas River Basin, and thus, the NAO affects the runoff.  相似文献   

3.
In this study, an analysis of century scale climate trends in the central highlands of Sri Lanka is presented. Monthly rainfall and temperature records of the period 1869–2006 from five climatological stations were analyzed. The trend is calculated by the least square regression analysis and the significance of the observed trend is estimated using the Mann–Kendall statistic. The results clearly show that there is a statistically significant decrease in annual rainfall in the western slopes of the central highlands. Throughout the last century, the annual reduction of rainfall in Nuwara Eliya which is at an altitude of 1895 m was 5.2 mm/year. The decrease is largely due to the reduction in southwest monsoon rainfall which contributes to 75% of the total reduction. No significant change was observed on the eastern side of the central highlands which receives rainfall predominantly from the northeast monsoons. The mean annual temperature in the mountainous region shows a uniform increasing trend which is in line with the 100-year global temperature increase of 0.8 ± 0.2°C. Kandy, which is at an altitude of 477 m and closely linked with the rainfall climatology of Nuwara Eliya, showed no significant change in the mean annual temperature. If the current trend continues, in another 100 years, western and eastern slopes of central highlands will receive the same amount of rainfall from the southwest monsoon and the northeast monsoon which will have far reaching consequences for Sri Lanka’s economy and the ecology of the hill country.  相似文献   

4.
About the observed and future changes in temperature extremes over India   总被引:1,自引:0,他引:1  
An attempt is made in the present study to analyse observed and model simulated temperature extremes over Indian region. Daily maximum and minimum temperature data at 121 well-distributed stations for the period 1970–2003 have been used to study the observed changes in objectively defined values of temperature extremes. In addition, an assessment of future scenarios of temperature extremes associated with increase in the concentration of atmospheric greenhouse gases is done using simulations of a state-of-the-art regional climate modelling system known as PRECIS (Providing Regional Climate for Impact Studies) performed to generate the climate for the present (1961–1990) and future projections for the period 2071–2100. Observational analysis done with 121 stations suggests the widespread warming through increase in intensity and frequency of hot events and also with decrease in frequency of cold events. More than 75% stations show decreasing trend in number of cold events and about 70% stations show increasing trend in hot events. Percentage of stations towards the warming through intensity indices of highest maximum temperature, lowest minimum temperature is 78 and 71% stations, respectively. Remaining stations show opposite trends, however, most of them are statistically insignificant. Observational analysis for India as a whole also shows similar results. Composite anomalies for monthly temperature extremes over two equal parts of the data period show increase (decrease) in the frequency of hot (cold) events for all months. In general, PRECIS simulations under both A2 and B2 scenarios indicate increase (decrease) in hot (cold) extremes towards the end of twenty-first century. Both show similar patterns, but the B2 scenario shows slightly lower magnitudes of the projected changes. Temperatures are likely to increase in entire calendar year, but the changes in winter season are expected to be prominent. Diurnal temperature range is expected to decrease in winter (JF) and pre-monsoon (MAM) months.  相似文献   

5.
A consistent map of the postglacial uplift of Fennoscandia   总被引:1,自引:0,他引:1  
Martin Ekman 《地学学报》1996,8(2):158-165
A consistent map of the recent postglacial rebound of Fennoscandia is constructed on the basis of sea-level records, lake-level records and repeated high-precision levellings.
The uplift rates calculated from the sea-level series form a consistent framework of the map. The sea-level stations used are 56 reliable stations in the Baltic Sea and adjacent waters with series spanning 60 years or more, many of them about 100 years. Using a reference station in the Baltic Sea and another one outside the Baltic, all results are reduced to a common time span, the 100-year-period 1892–1991, in order to eliminate oceanographic changes. Inland, uplift differences are obtained from the repeated national levellings and, in four of the large lakes, from long water level series in pairs. The levellings, however, yield less accurate land uplift values than the sea-level and lake-level data.
The resultant map shows a fairly smooth phenomenon, with a maximum apparent uplift in the Gulf of Bothnia of 9.0 mm yr-1. The standard error is typically 0.2 mm yr-I close to the sea level stations, larger inland.
Finally the pattern of the present uplift as determined here is observed to be very similar to that of the past uplift as determined from ancient shore-lines of the Litorina Sea. However, the ratio between the past uplift and the present uplift rate tends to increase somewhat towards the uplift centre. This might reflect a non-uniform mantle viscosity. Also, the uplift maximum seems to have migrated towards NNE.  相似文献   

6.

This paper presents a synthesis of the main characteristics of precipitation in the State of Rio de Janeiro (Brazil) based on extreme rainfall indicators. Daily precipitation data are derived from 56 rainfall stations during the second half of the twentieth century and the 2000s. Eight indices related to extreme precipitation were analyzed. The Mann–Kendall nonparametric test and the Sen's Curvature were employed to evaluate the significance and magnitude of trends. The primary climatological aspects and identified trends throughout the last decades are discussed, besides the hydrometeorological impacts associated with them. Lower values of annual total precipitation are recorded in northern Rio de Janeiro (around 800 mm) and higher in the southern State (up to 2,200 mm). The Serra do Mar affects the frequency of heavy precipitation, and the areas near the sea and high relief present the highest values of consecutive days with expressive rainfall (more than 150 mm in 5 days). These areas also showed a high concentration of flood and landslides events. Most of Rio de Janeiro exhibits precipitation intensity of about 13 mm/day. The maximum number of consecutive dry days shows a gradient from the coast (about 30 days) to the State's interior (around 50 days). Regarding trends, there is a growth of accumulated extreme precipitation in various stations near the ocean. The extreme rainfall in 24 h displays an increase in most Rio de Janeiro (+?1 to?+?5 mm/decade). The consecutive dry and rainy days present similar signs of decreasing trends, suggesting irregularly distributed precipitation in the State. This study is especially relevant for decision-makers who need detailed information in the short and long term to prevent natural hazards like floods and landslides and the related impacts in the environmental and socioeconomic sectors of the Rio de Janeiro.

  相似文献   

7.
Rising sea levels due to climate change are expected to negatively impact the fresh-water resources of small islands. The effects of climate change on Shelter Island, New York State (USA), a small sandy island, were investigated using a variable-density transient groundwater flow model. Predictions for changes in precipitation and sea-level rise over the next century from the Intergovernmental Panel on Climate Change 2007 report were used to create two future climate scenarios. In the scenario most favorable to fresh groundwater retention, consisting of a 15% precipitation increase and 0.18-m sea-level rise, the result was a 23-m seaward movement of the fresh-water/salt-water interface, a 0.27-m water-table rise, and a 3% increase in the fresh-water lens volume. In the scenario supposedly least favorable to groundwater retention, consisting of a 2% precipitation decrease and 0.61-m sea-level rise, the result was a 16-m landward movement of the fresh-water/salt-water interface, a 0.59-m water-table rise, and a 1% increase in lens volume. The unexpected groundwater-volume increase under unfavorable climate change conditions was best explained by a clay layer under the island that restricts the maximum depth of the aquifer and allows for an increase in fresh-water lens volume when the water table rises.  相似文献   

8.
《Quaternary Science Reviews》2005,24(10-11):1217-1222
Tide gauge data at seven sites of the Permanent Service for Mean Sea Level (PSMSL), with information for relative sea-level during the past 140–200 yr, were analyzed to examine the rates and causes of the global sea-level rise (GSLR) during the twentieth century. By subtracting linear trends for relative sea-level rise during the past 100 yr from the observed data, we get the apparent GSLRs of ∼1 mm yr−1 for five sites around the Baltic Sea and Brest. The rate for San Francisco is significantly larger than this, with an optimum value ∼2 mm yr−1. The spatial difference of ∼1 mm yr−1 between these sites is reasonably explained by the recent melting of the Greenland ice sheet with an equivalent sea-level rise of ∼1 mm yr−1. The predicted relative sea-level change for this melting scenario is 0.5 mm yr−1 at sites around the Baltic Sea and Brest, and 1.5 mm yr−1 for San Francisco. The residuals between observations and predictions, ∼0.5 mm yr−1 at all sites, may be contributed by thermal expansion of seawater and/or other melting sources. These results suggest the rate of twentieth-century GSLR to be 1.5 mm yr−1.  相似文献   

9.
Coastal megacities and climate change   总被引:8,自引:0,他引:8  
Rapid urbanization is projected to produce 20 coastal megacities (population exceeding 8 million) by 2010. This is mainly a developing world phenomenon: in 1990, there were seven coastal megacities in Asia (excluding those in Japan) and two in South America, rising by 2010 to 12 in Asia (including Istanbul), three in South America and one in Africa.All coastal locations, including megacities, are at risk to the impacts of accelerated global sea-level rise and other coastal implications of climate change, such as changing storm frequency. Further, many of the coastal megacities are built on geologically young sedimentary strata that are prone to subsidence given excessive groundwater withdrawal. At least eight of the projected 20 coastal megacities have experienced a local orrelative rise in sea level which often greatly exceeds any likely global sea-level rise scenario for the next century.The implications of climate change for each coastal megacity vary significantly, so each city requires independent assessment. In contrast to historical precedent, a proactive perspective towards coastal hazards and changing levels of risk with time is recommended. Low-cost measures to maintain or increase future flexibility of response to climate change need to be identified and implemented as part of an integrated approach to coastal management.  相似文献   

10.
预估喀斯特生态脆弱区的未来气候变化对于区域资源的合理开发利用及生态环境保护具有重要参考价值,而目前应用降尺度方法模拟喀斯特地区的未来气候情景仍存在较大的探讨空间。本文依据珠江流域红柳江区13个气象站1961-2001年的实测日气温、日降水量资料和全球大气NCEP再分析资料,采用SDSM模型预测流域在HadCM3模式SRES A2和B2两种排放情景下未来年份气温和降水的变化趋势。结果表明:(1)SDSM模型可以较为准确地模拟研究区的气温和降水变化,确定性系数分别可达99%和65%左右;(2)A2、B2两种情景下,21世纪气温和降水均表现出明显的上升趋势,且随时间推移增幅逐渐增大。截至21世纪末,A2、B2两种情景下的年平均气温变化分别为+3.39 ℃和+2.49 ℃,日均降水将分别增加117.30 %和80.90 %;(3)未来的气温上升以秋季和春季变化最为明显,降水则表现为夏季降水增幅最大。分析成果可为喀斯特区的气候变化影响评价与应对决策提供数据基础和理论依据。   相似文献   

11.
12.
《Comptes Rendus Geoscience》2008,340(9-10):564-574
An overview of the expected change of climate extremes during this century due to greenhouse gases and aerosol anthropogenic emissions is presented. The most commonly used methodologies rely on the dynamical or statistical downscaling of climate projections, performed with coupled atmosphere–ocean general circulation models. Either of dynamical or of statistical type, downscaling methods present strengths and weaknesses, but neither their validation on present climate conditions, nor their potential ability to project the impact of climate change on extreme event statistics allows one to give a specific advantage to one of the two types. The results synthesized in the last IPCC report and more recent studies underline a convergence for a very likely increase in heat wave episodes over land surfaces, linked to the mean warming and the increase in temperature variability. In addition, the number of days of frost should decrease and the growing season length should increase. The projected increase in heavy precipitation events appears also as very likely over most areas and also seems linked to a change in the shape of the precipitation intensity distribution. The global trends for drought duration are less consistent between models and downscaling methodologies, due to their regional variability. The change of wind-related extremes is also regionally dependent, and associated to a poleward displacement of the midlatitude storm tracks. The specific study of extreme events over France reveals the high sensitivity of some statistics of climate extremes at the decadal time scale as a consequence of regional climate internal variability.  相似文献   

13.
The northern coasts of the Gulf of Mexico (GoM) are highly vulnerable to the direct threats of climate change, such as hurricane-induced storm surge, and such risks are exacerbated by land subsidence and global sea-level rise. This paper presents an application of a coastal storm surge model to study the coastal inundation process induced by tide and storm surge, and its response to the effects of land subsidence and sea-level rise in the northern Gulf coast. The unstructured-grid finite-volume coastal ocean model was used to simulate tides and hurricane-induced storm surges in the GoM. Simulated distributions of co-amplitude and co-phase lines for semi-diurnal and diurnal tides are in good agreement with previous modeling studies. The storm surges induced by four historical hurricanes (Rita, Katrina, Ivan, and Dolly) were simulated and compared to observed water levels at National Oceanic and Atmospheric Administration tide stations. Effects of coastal subsidence and future global sea-level rise on coastal inundation in the Louisiana coast were evaluated using a “change of inundation depth” parameter through sensitivity simulations that were based on a projected future subsidence scenario and 1-m global sea-level rise by the end of the century. Model results suggested that hurricane-induced storm surge height and coastal inundation could be exacerbated by future global sea-level rise and subsidence, and that responses of storm surge and coastal inundation to the effects of sea-level rise and subsidence are highly nonlinear and vary on temporal and spatial scales.  相似文献   

14.
青藏高原气候变化的若干事实及其年际振荡的成因探讨   总被引:1,自引:0,他引:1  
利用1961-2012年青藏高原88个气象台站逐月气温、降水以及温室气体等气候系统监测资料和CMIP5输出的未来气候变化情景数据,分析了近52年来青藏高原气候变化暖湿化的若干事实,揭示了其年际振荡与温室气体、高原加热场、高原季风、AO等气候系统因子的关系,预测了未来20~40年青藏高原可能的气候变化趋势。研究表明:近52年来青藏高原在总体保持气候变暖的趋势下自2006年以来出现了某些增暖趋于缓和的迹象,较全球变化滞后了8年左右;降水量的增加在青藏高原具有明显的普遍性和显著性,气候变湿较变暖具有一定的滞后性,降水量变化的5年短周期日趋不显著,而12年、25年较长周期逐渐明显且仍呈增多趋势。由于温室气体、气溶胶持续增加、高原夏季风趋强、ENSO事件和太阳辐射减少,青藏高原气候持续增暖但有所缓和;春季高原加热场增强、高原夏季风爆发提前且保持强劲,使得高原春、夏季和年降水量增加,而秋、冬季AO相对稳定少动,东亚大槽强度无明显变化,高原冬季风变化不甚显著,导致了高原秋、冬季降水量无明显变化。未来20~40年青藏高原仍有可能继续保持气温升高、降水增加趋势。  相似文献   

15.
吴斌  王赛  王文祥  安永会 《中国地质》2019,46(2):369-380
基于物理过程的地表-地下水耦合模型能全面、系统地刻画流域水循环过程,并为水资源管理提供详细信息。同时,未来水资源的变化趋势受到气候变化的影响显著,在未来气候情景下水资源如何变化将影响水资源管理措施。本文以黑河中游盆地为例,基于地表水-地下水耦合模型GSFLOW,评估区域水资源对气候变化的响应,预测未来气候情景(CMIP5)下区域水资源变化趋势,为西北干旱区水资源管理提供参考。研究表明:(1)GSFLOW模型能很好地模拟黑河中游盆地复杂的水循环过程。(2)在中等排放强度(RCP4.5)下,平均每年降水上升0.6 mm,温度上升0.03℃,地下水储量减少0.38亿m3;在高排放强度(RCP8.5)下,降水上升0.8 mm,温度上升0.06℃,地下水储量减少0.34亿m3。  相似文献   

16.
气候变化下长江中下游水稻灌溉需水量时空变化特征   总被引:12,自引:0,他引:12       下载免费PDF全文
选择长江中下游单季中稻为研究对象,结合45个气象站1961~2010年逐日气象资料,基于统计降尺度模型(SDSM),生成HadCM3气候模式A2和B2两种情景下各站点参考作物腾发量和降水数据。基于联合国粮食及农业组织(FAO)推荐的作物系数法,并考虑有效性降雨和不同地区深层渗漏量,分析历史和未来的水稻灌溉需水时空变化特征。结果表明:过去50年,除了太湖流域以外的长江中下游大部分区域的参考作物腾发量和水稻需水量都呈显著下降趋势,而显著下降的水稻灌溉需水量主要位于鄱阳湖流域;未来两种情景下,参考作物腾发量、水稻需水量和水稻灌溉需水量均值都呈下降趋势,但水稻灌溉需水量降幅最小;水稻需水量和水稻灌溉需水量在长江中下游地区的变化趋势具有明显的空间异质性,水稻需水量大幅减少的区域由太湖流域向汉江和洞庭湖流域扩展。未来水稻灌溉需水量减少的区域主要分布在太湖流域、汉江流域东部和洞庭湖流域北部,并随时间推移呈扩大趋势。  相似文献   

17.
Pollen analysis from a peat-bog sequence located at 50° 24′ S, 72° 42′ W in the Subantarctic forest – Patagonian steppe ecotone gives information about vegetation and climate changes in Southwestern Patagonia since the glacier retreat. After 11 000 cal yr BP a change from grass steppe to open Nothofagus forest indicates that climatic conditions became rapidly warmer. Development of a closed Nothofagus forest between 5800 and 3200 cal yr BP is interpreted as precipitation increase. During the late Holocene colder climate conditions prevail in response to Neoglacial events. After ca 3000 cal yr BP Nothofagus forest became opener, and after 800 cal yr BP grass steppe expanded. Changes in the forest-steppe ecotone composition as well as the ecotone longitudinal shifts suggest changes in temperature and precipitation. Present-day mean annual precipitation between 300 and 400 mm is associated with grass steppe, and 500–600 mm with a greater forest representation. During the last century, low presence of forest in the area may be related to European settlement and repeated flooding caused by periodic advances of Perito Moreno glacier.  相似文献   

18.
未来江苏中部沿海相对海面变化预测   总被引:2,自引:0,他引:2  
相对海面变化是由全球绝对海面变化和区域性地面和海面因素共同控制。通过对江苏沿海近几十年来的潮位记录的分析,得出江苏沿海近期的相对海面变化速率。在此基础上根据近期绝对海面的变化速率计算出局地因素对江苏沿海相对海面变化的贡献量。在假设未来局地因素影响基本不变的前提下与IPCC对未来100年绝对海面的变化趋势 进行叠加,预测了江苏沿海未来相对海面变化的趋势。结果显示,江苏中部沿海海面在2000-2100年的100年间将上升15~152 cm,较IPCC对同期全球平均海平面上升的预测结果大的多。最后就区域性海面气压对相对海面变化的影响进行了讨论。  相似文献   

19.
《Atmósfera》2014,27(2):117-140
This work focuses on evaluating the ability of the MM5 regional model to represent the basic features of present climate over South America. The spatial distribution of seasonal means and the interannual variability, as well as annual cycles for precipitation and near-surface temperature have been evaluated. The internal variability has also been investigated. The analysis has two objectives: one of them is to quantify the dynamic downscaling ability to represent the current climate and the other is to identify critical aspects of the regional climate model in South America in order to interpret the reliability of future projections for the end of the twenty-first century in the A2 scenario of the IPCC Special Report on Emissions Scenarios. In general, the MM5 model is able to reproduce adequately the main general features, seasonal cycle and year-to-year variability of near surface variables over South America. The spatial distribution of temperature is well represented, but some systematic errors were identified, such as an overestimation in central and northern Argentina and an underestimation in the mountainous regions throughout the year. The general structure of precipitation is also well captured by the regional model, although it overestimates the precipitation in the Andean region (specifically in central and southern Chile) in all seasons and underestimates the rainfall over tropical latitudes. The annual cycle of precipitation is adequately represented in the subregions analyzed, but its representation is better over La Plata basin (LPB), Cuyo (CU) and southeastern Pampas (SEP). The annual cycle of mean temperature is well represented, too. The model systematically overestimates the interannual variability of temperature and underestimates the interannual variability of precipitation. From the analyses of interannual and internal variability, as well as the biases, it can be concluded that regardless the season, the simulated precipitation is reliable at subtropical latitudes, Uruguay, southern Brazil and east-central of Argentina, but is less reliable over areas of complex topography. For temperature, the regional model is reliable over subtropical latitudes, Uruguay and the south of Brazil only during winter, but it is less reliable or it is even in the limit of reliability over central and southern Chile all along the year. Therefore, it is concluded that the MM5 model is a useful tool for the generation of regional climate change scenarios and for the evaluation of regional climate change scenarios over southern South America.  相似文献   

20.
Understanding the impacts of climate change on water quality and stream flow is important for management of water resources and environment. Miyun Reservoir is the only surface drinking water source in Beijing, which is currently experiencing a serious water shortage. Therefore, it is vital to identify the impacts of climate change on water quality and quantity of the Miyun Reservoir watershed. Based on long-time-series data of meteorological observation, future climate change scenarios for this study area were predicted using global climate models (GCMs), the statistical downscaling model (SDSM), and the National Climate Centre/Gothenburg University—Weather Generator (NWG). Future trends of nonpoint source pollution load were estimated and the response of nonpoint pollution to climate change was determined using the Soil and Water Assessment Tool (SWAT) model. Results showed that the simulation results of SWAT model were reasonable in this study area. The comparative analysis of precipitation and air temperature simulated using the SDSM and NWG separately showed that both tools have similar results, but the former had a larger variability of simulation results than the latter. With respect to simulation variance, the NWG has certain advantages in the numerical simulation of precipitation, but the SDSM is superior in simulating precipitation and air temperature changes. The changes in future precipitation and air temperature under different climate scenarios occur basically in the same way, that is, an overall increase is estimated. Particularly, future precipitation will increase significantly as predicted. Due to the influence of climate change, discharge, total nitrogen (TN) and total phosphorus (TP) loads from the study area will increase over the next 30 years by model evaluation. Compared to average value of 1961?~?1990, discharge will experience the highest increase (15%), whereas TN and TP loads will experience a smaller increase with a greater range of annual fluctuations of 2021 ~ 2050.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号