首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Geochemical characterisation of 18 crude oils from the Potwar Basin (Upper Indus), Pakistan is carried out in this study. Their relative thermal maturities, environment of deposition, source of organic matter (OM) and the extent of biodegradation based on the hydrocarbon (HC) distributions are investigated. A detailed oil-oil correlation of the area is established. Gas chromatography-mass spectrometry (GC-MS) analyses and bulk stable carbon and hydrogen isotopic compositions of saturated and aromatic HC fractions reveals three compositional groups of oils. Most of the oils from the basin are typically generated from shallow marine source rocks. However, group A contains terrigenous OM deposited under highly oxic/fluvio-deltaic conditions reflected by high pristane/phytane (Pr/Ph), C30 diahopane/C29Ts, diahopane/hopane and diasterane/sterane ratios and low dibenzothiophene (DBT)/phenanthrene (P) ratios. The abundance of C19-tricyclic and C24-tetracyclic terpanes are consistent with a predominant terrigenous OM source for group A. Saturated HC biomarker parameters from the rest of the oils show a predominant marine origin, however groups B and C are clearly separated by bulk δ13C and δD and the distributions of the saturated HC fractions supporting variations in source and environment of deposition of their respective source rocks. Moreover, various saturated HC biomarker ratios such as steranes/hopanes, diasteranes/steranes, C23-tricyclic/C30 hopane, C28-tricyclic/C30 hopane, total tricyclic terpanes/hopanes and C31(R + S)/C30 hopane show that two different groups are present. These biomarker ratios show that group B oils are generated from clastic-rich source rocks deposited under more suboxic depositional environments compared to group C oils. Group C oils show a relatively higher input of algal mixed with terrigenous OM, supported by the abundance of extended tricyclic terpanes (up to C41+) and steranes.Biomarker thermal maturity parameters mostly reached to their equilibrium values indicating that the source rocks for Potwar Basin oils must have reached the early to peak oil generation window, while aromatic HC parameters suggest up to late oil window thermal maturity. The extent of biodegradation of the Potwar Basin oils is determined using various saturated HC parameters and variations in bulk properties such as API gravity. Groups A and C oils are not biodegraded and show mature HC profiles, while some of the oils from group B show minor levels of biodegradation consistent with high Pr/n-C17, Ph/n-C18 and low API gravities.  相似文献   

2.
This paper investigates the stable isotopic composition from late Pleistocene–Holocene (~ 13 to ~ 10.5 cal ka BP) shells of the land snail Helix figulina, from Franchthi Cave (Greece). It explores the palaeoclimatic and palaeoenvironmental implications of the isotope palaeoecology of archaeological shells at the time of human occupation of the cave. Modern shells from around the cave were also analysed and their isotopic signatures compared with those of the archaeological shells. The carbon isotope composition of modern shells depicts the consumption of C3 vegetation. Shell oxygen isotopic values are consistent with other Mediterranean snail shells from coastal areas. Combining empirical linear regression and an evaporative model, the δ18Os suggest that modern snails in the study area are active during periods of higher relative humidity and lower rainfall δ18O, probably at night. Late glacial and early Holocene δ18Os show lower values compared to modern ones. Early Holocene δ18Os values likely track enhanced moisture and isotopic changes in the precipitation source. By contrast, lower late glacial δ18O could reflect lower temperatures and δ18Op, compared to the present day. Shell carbon isotope values indicate the presence of C3 vegetation as main source of carbon to late glacial and early Holocene snails.  相似文献   

3.
During the Ordovician, huge biological revolutions and environmental changes happened in Earth’s history, including the Great Ordovician Biodiversification Event, global cooling and so on, but the cause of these events remains controversial. Herein, we conducted a paired carbon isotopic analysis of carbonate (δ13Ccarb) and organic matter (δ13Corg) through the Ordovician in the Qiliao section on the Yangtze platform of South China. Our results showed that the δ13Ccarb trend of the Qiliao section can be correlated with local and global curves. The δ13Corg trend seems is less clear than the δ13Ccarb trend for stratigraphic correlations, but some δ13Corg positive excursions in the Middle and Upper Ordovician may be used for correlation studies. These carbon isotopic records may have global significance rather than local significance, revealing several fluctuations to the global carbon cycle during the Ordovician. Several known δ13Ccarb and δ13Corg negative and positive excursions have been recognised in this study, including the early Floian Negative Inorganic Carbon (δ13Ccarb) Excursion (EFNICE), as well as the early Floian Positive Organic Carbon (δ13Ccarb) Excursion, the mid-Darriwilian Inorganic Carbon (δ13Ccarb and δ13Corg) Excursion (MDICE), and the early Katian Guttenberg Inorganic Carbon (δ13Ccarb and δ13Corg) Excursion (GICE). These positive excursions and a smooth decline trend of δ13Corg values during the early to mid-Floian may imply multiple episodes of enhanced organic carbon burial that began at the early Floian stage, probably resulting in further decline in atmospheric pCO2 and then global cooling.  相似文献   

4.
Isotope measurements (18O, D, 3H) indicate groundwater origin in the Lower Colorado River Valley (LCRV) and provide an alternative, or supplement, to the US Bureau of Reclamations proposed accounting surface method. The accounting surface method uses a hydraulic criterion to identify certain wells away from the flood plain that will eventually yield mainstream Colorado River water. New isotope data for 5 surface-water and 18 groundwater sites around Topock Marsh, Arizona, are compared with river-water data (1974–2002) from 11 sites between Utah and Mexico and with groundwater data from previous LCRV studies. Three groundwater sources are repeatedly identified in the LCRV: (1) local recharge derived from precipitation, usually winter rain, plots slightly below the global meteoric water line (GMWL) and has D values that are 20 greater than those of recent river water; (2) older (pre-1950) upper basin river-water plots on or near the GMWL, distinct from local rainfall and recent river water; and (3) recent (post-1950) Colorado River water, including Topock Marsh samples, plots below the GMWL along an evaporation trend. Large floods, as in 1983, complicate interpretation by routing less evaporated upper basin water into the LCRV; however, tritium content can indicate the age of a water. River-water tritium has declined steadily from its peak of 716 TU in 1967 to about 11 TU in 2002. Mixtures of all three groundwater sources are common.
Resumen Mediciones isotópicas (18O, D, 3H) indican cual es el origen del agua subterránea en el Valle Bajo del Río Colorado (LCRV) y aportan una alternativa, o complemento, para el método superficie de conteo propuesto por el Buró de Reclamación de Estados Unidos. El método superficie de conteo utiliza un criterio hidráulico para identificar ciertos pozos alejados de la planicie de inundación que eventualmente producirán agua a partir de la corriente principal del Río Colorado. Los nuevos datos isotópicos para 18 sitios de agua subterránea y 5 sitios de agua superficial cerca de los Pantanos Topock, Arizona, se comparan con datos de agua de río (1974–2002) provenientes de 11 sitios localizados entre Utah y México, y con datos de aguas subterráneas de estudios previos realizados en el LCRV. Se identifican reiteradamente tres fuentes de aguas subterráneas en el LCRV: (1) recarga local derivada de precipitación, generalmente lluvia de invierno, cuya composición cae ligeramente por debajo de la línea de agua meteórica global (GMWL) y tiene valores D que son 20 mayores que los reportados para agua de río reciente; (2) el agua de río más vieja (pre-1950) de la cuenca alta cuya composición cae sobre o cerca de la GMWL, diferente de la lluvia local y del agua de río reciente; (3) agua reciente (post-1950) del Río Colorado, incluyendo muestras de los Pantanos Topock, con composición por debajo de la GMWL a lo largo de una tendencia a la evaporación. Inundaciones grandes, como en 1983, complican la interpretación al transmitir menos agua evaporada de la cuenca alta hacia el LCRV; sin embargo, el contenido de tritio puede indicar la edad del agua. El contenido de tritio en agua de río ha disminuido constantemente desde la concentración pico de 716 TU en 1967 a cerca de 11 TU en 2002. Es común que exista mezclas de las tres fuentes de agua subterránea.

Résumé Les mesures isotopiques (d18O, dD, 3H) indiquent les origine de leaux souterraines dans la Vallée de la Rivière du Bas Colorado (LCRV) et sont une alternative, ou un supplément, à la méthode des bilans hydrologiques proposée par du «US Bureau of Reclamation». Cette méthode de bilan hydrologique utilise un critère hydraulique permettant didentifier certains puits hors de la plaine dinondation qui pomperaient une part non négligeable de leur eau dans la rivière Colorado. De nouvelles données isotopiques provenant de 5 sites deau de surface et 18 deaux souterraines autour de Topock Marsh en Arizona, sont comparées avec les données (1974–2000) de 11 sites localisés entre Utah et Mexico, ainsi que des données dautres études sur la LCRV. Ces sources deaux souterraines sont identifiées à plusieurs reprises dans la LCRV: (1) la recharge locale dérivant des précipitations, généralement les pluies hivernales, se retrouvent légèrement sous la ligne deau météoritique globale (GMWL) et possède des valeurs de dD 20% supérieures aux valeurs des eaux récentes de la rivière; (2) les eaux vieilles (pre-1950) du bassin supérieur de la rivière possèdent une valeurs très proches de la GMWL, distinctes des valeurs de la pluie locale et des eaux récentes de la rivière; et (3) les eaux récentes (post-1950) de la Rivière Colorado, incluant les échantillons de Topock Marsh, se positionnent à côté de la GMWL sur une droite dévaporation. Les grandes inondations, par exemple celle de 1983, compliquent linterprétation en reprenant dans la LCRV moins deaux marquées comme évaporées et provenant du bassin supérieur; par ailleurs le pic de tritium est descendu de 716 TU en 1967 à 11 TU en 2002. Les mélanges de ces trois sources sont assez fréquentes.
  相似文献   

5.
The fluid composition, δD of channel H2O, and δ18O of lattice oxygen have been determined in beryl and emerald from a variety of geological environments and used to constrain the origin of the parental fluids from which beryl has grown. Step-heating analyses performed by quadrupolar mass spectrometry were used to quantify the composition of the fluid phases in beryl from granitic pegmatites and greisens and emerald from Brazil, Colombia, and Afghanistan. An important conclusion is that beryl and emerald have a similar fluid composition, with concentrations of H2O being greater than 90% of the total water in the mineral irrespective of the age of formation (2.0 Ga to 32 Ma) and tectonic settings. However, the Brazilian Santa Terezinha shear-zone emerald deposit contains abundant CO2, up to 13 wt% of the total fluid. A second conclusion is that the channel H2O content for some Brazilian emeralds is higher than the range defined for beryl in the literature, especially for those related to the shear-zone type (2.99 lt; H2O < 3.16 wt%) and the pegmatite type from the Pombos, Pela Ema, and Pirenopolis deposits (2.78 < H2O < 3.01 wt%). Colombian emeralds have very low H2O contents (1.30 < H2O < 1.96 wt%), among the lowest in the world.

Brazilian, Colombian, and Afghanistani emeralds have contrasting and restricted ranges of δ18O values. In Brazil, emeralds related to pegmatites have a systematic δ18O inter-deposit variability (+6.3 < δ18O < +12.4‰). The calculated δ18O of the fluid was buffered by the host ultrabasic rocks during fluid-rock interaction. Emerald and cogenetic phlogopite related to shear-zone-type deposits have a quite restricted δ18O range (+12.0 < δ18O 7lt; +12.4‰); the calculated is interpreted to represent the original isotopic composition of the hydrothermal fluid. Relative to Brazil, the δ18O of Colombian and Afghanistani emeralds shows strong enrichment in 18O (+13.4 < δ18O < +23.6‰), and the high calculated δ18O of the fluid suggests extensive reaction with 18O-rich sedimentary or metasedimentary rocks.

In Brazil, the δD composition of channels in emerald and the calculated δ18OH2O for phlogopite are compatible with both magmatic and metamorphic origins. A magmatic origin is supported for emeralds associated with the pegmatitic Socotó and Carnaiba deposits (mean δD = ?37.8 ± 8‰) and a metamorphic origin is suggested for the Santa Terezinha shear-zone type (mean δD = ?32.4 ± 3‰). A metamorphic origin is proposed for Colombian emeralds. Afghanistani emeralds have a δD composition of channels (mean δD = ?46.3 ± 1.3‰) that is compatible with both magmatic and metamorphic origins.  相似文献   

6.
《Applied Geochemistry》2001,16(9-10):1269-1284
Chemistry of major and minor elements, 87Sr/86Sr, δD, and δ18O of oilfield waters, and 87Sr/86Sr of whole rock were measured from Paleozoic strata in the Central Tarim basin, NW China. The aim is to elucidate the origin and migration of formation water and its relation to petroleum migration. High salinity oilfield waters in Carboniferous, Silurian and Ordovician reservoirs have maintained the same Na/Cl ratio as seawater, indicative of subaerially evaporated seawater. Two possible sources of evaporitic water are Carboniferous (CII) and Cambrian, both of which contain evaporitic sediments. Geographic and stratigraphic trends in water chemistry suggest that most of the high salinity water is from the Cambrian. Strontium, H and O isotopes as well as ion chemistry indicate at least 3 end member waters in the basin. High-salinity Cambrian evaporitic water was expelled upward into Ordovician, Silurian and Carboniferous reservoirs along faults and fractures during compaction and burial. Meteoric water has likely invaded the section throughout its history as uplift created subaerial unconformities. Meteoric water certainly infiltrated Silurian and older strata during development of the CIII unconformity and again in recent times. Modern meteoric water enters Carboniferous strata from the west and flows eastward, mixing with the high salinity Cambrian water and to a lesser degree with paleometeoric water. The third end member is highly radiogenic, shale-derived water which has migrated eastward from the Awati Depression to the west. Enrichment of Ca and Sr and depletion of K, Mg, and SO4 relative to the seawater evaporation trajectory suggest waters were affected by albitization of feldspars, dolomitization, illitization of smectite, and SO4 reduction. The mixing of meteoric water occurred subsequently to seawater evaporation, main water-rock interactions, and brine migration. The direction of brine migration is consistent with that of petroleum migration, suggesting water and petroleum have followed the same migration pathways.  相似文献   

7.
We derive equations describing the evolution of the carbon and oxygen isotope composition of the bicarbonate in a calcite precipitating solution on the surface of a stalagmite using a classical Rayleigh approach. The combined effects of calcite precipitation, degassing of CO2 and the buffering effect of the water reservoir are taken into account. Whereas δ13C shows a progressive increase to a final constant value, δ18O shows an initial isotopic enrichment, which exponentially decays due to the buffering effect of the water reservoir. The calculated evolution is significantly different for both carbon and oxygen isotopes than derived in a recent paper [Dreybrodt W. (2008) Evolution of the isotopic composition of carbon and oxygen in a calcite precipitating H2O-CO2-CaCO3 solution and the related isotopic composition of calcite in stalagmites. Geochim. Cosmochim. Acta72, 4712-4724.].Furthermore, we discuss the isotopic evolution of the bicarbonate in the solution for long residence times on the stalagmite surface, i.e., for t. The equilibrium isotope ratio of the bicarbonate is then determined by isotopic exchange between the cave atmosphere and the bicarbonate in the solution and can be calculated by equilibrium isotope fractionation. For strongly ventilated caves exchange with the cave atmosphere will result in higher δ13C and δ18O values than those observed in a pure Rayleigh distillation scenario, for sparsely ventilated caves it will result in lower δ13C and δ18O values.  相似文献   

8.
A 7-cm long aragonite stalagmite, FR0510-1, from Furong Cave, Chongqing, was dated by 210Pb and 230Th methods, revealing a-2000-year record of climate history under the influence of the East Asian Monsoon. The FR0510-1 record resembles Dongge Cave DA record on 10–100-year scales, but quite different from the Wanxiang Cave WX42B record, indicating that while stalagmite δ18O record represents local/regional moisture change, spatial variability of the monsoonal rainfall over eastern China must take into account. During the past 2000 years, climate in Chongqing was relatively wet in the intervals of 50 BC–AD 250, AD 1150–1450 and AD 1600–1950, and relatively dry during the periods of AD 250–1150 and AD 1450–1600. Dry conditions were prevailing over the Medieval Warm Period, whereas wet climates were dominant during the most time of the Little Ice Age in Chongqing area.  相似文献   

9.
10.
A 30 ka paleo-climate record of the Boise area, Idaho, USA has been delineated using groundwater stable isotopic compositions. Groundwater ages are modern (cold batholith), 5-15 ka (thermal batholith) , 10-20 ka (frontal fault) , and 20-30 ka (Snake River plain thermal). The stable isotopic composition of groundwaters have been used as a surrogate for the stable isotopic composition of precipitation. Using δ2H and δ18O compositions, local groundwater lines (LGWL's) were defined for each system. Each LGWL has been evaluated with defined slopes of 6.94 and 8, respectively, and resulting deuterium excess values (d) were found for each groundwater system for each slope. Time dependent changes in moisture source humidity and temperature, and Boise area recharge temperatures, calculated from stable isotopic data and the deuterium excess factors, agree with previous paleo-climate studies. Results indicate that from the last glacial maximum to the present time the humidity over the ocean moisture source increased by 9%, sea surface temperature at the moisture source increased 6-7°C, and local Boise temperature increased by 4-5°C. A greater increase of temperature at the moisture source as compared to the Boise area may impart be due to a shift in the moisture source area.  相似文献   

11.
Soils in the McMurdo Dry Valleys, Antarctica contain ice and considerable amounts of salt. Ice often occurs at shallow depth throughout the Dry Valleys and other areas of hyperarid permafrost, notably on Mars. This common occurrence of shallow ice is enigmatic; however, since according to published sublimation models it should disappear relatively quickly (at rates of order 0.1 mm a−1) due to vapor loss to the atmosphere. This loss may be offset by recharge from snowmelt infiltrating and freezing in the soil. Herein, we present a first quantitative estimate of this recharge based on measured vertical profiles of δD and δ18O that reveal considerable detail about the sources and sinks of ice. We model these profiles, taking into account the salt content and a soil temperature record along a 1.6 m depth profile of ∼10 ka old ice-cemented soils in Victoria Valley, Antarctica. The stable isotopes of ice are enriched in heavy isotopes at the top of the ice cement (20 cm depth); both δD and δ18O values plotted against depth exhibit a concave upward curve. At depth, the isotope composition is similar to that of Lake Victoria and modern meteoric water. The concave shape of the isotope profile is suggestive of downward advection-dispersion of snowmelt water enriched in heavy isotopes into the ice cement. Our advection-dispersion model, coupled with field data, enables us to quantify the advective flux and dispersion of melt water into the ice. The advective velocity and dispersion coefficient depend on the time since advection began and the ice-to-brine ratio; they are, respectively, of the order of 10−11-10−10 m s−1 and 10−12-10−11 m2 s−1. These values suggest that over the ∼10 ka time period, a total of 190 mm water infiltrated into the ice-cemented ground. The isotope composition and deuterium excess values of the uppermost ice cement can be modeled from snowmelt water enriched in salts using open system-Rayleigh fractionation. To develop the isotopic signature of the upper ice cement requires evaporation of ∼95% of the snowmelt water. Based on 190 mm brine infiltrating into the soil requires an initial total of ∼4 m of snowmelt water. This corresponds to ∼0.4 mm a−1 suggesting that, under the current climate condition, water from snowmelt is sufficient to compensate modeled sublimation rates, and therefore conserve ground ice in Victoria Valley.  相似文献   

12.
Seasonal and spatial variations in the δ13C and δ18O values of the modern endogenic (thermogene) travertine deposited in a calcite-depositing canal at Baishuitai, Yunnan, SW China were examined to understand their potential for paleoclimatic and paleoenvironmental implications. The sampling sites were set in the upstream, middle reach and downstream of the canal, and the modern endogenic travertine samples were collected semimonthly to measure their δ13C and δ18O values. It was found that both δ13C and δ18O values of the endogenic travertine were low in the warm rainy season and high in the cold dry season, and correlated with each other. The low δ18O values in warm rainy season were mainly related to the higher water temperature and the lower δ18O values of rainwater, and the low δ13C values are caused by the dilution effect of overland flow with low δ13C values in the warm rainy season and the reduced CO2-degassing of canal-water caused by the dilution effect of the overland flow. The linear negative correlation between the travertine δ18O (or δ13C) values and rainfall amount may be used for paleo-rainfall reconstruction if one knows the δ18O (or δ13C) values of the fossil endogenic travertine at Baishuitai though the reconstruction was not straightforward. It was also found that there was a progressive downstream increase of the δ18O and δ13C values of the travertine along the canal, the former being mainly due to the preferential evaporation of H216O to the atmosphere and the latter to the preferential release of 12CO2 to the atmosphere during CO2-degassing. However, the downstream increase of the travertine δ18O and δ13C values was less intensive in rainy season because of the reduced evaporation and CO2-degassing during the rainy season. To conclude, the downstream travertine sites could be more favorable for the paleo-rainfall reconstruction while the upstream travertine sites are more favorable for the paleo-temperature reconstruction. So, this study demonstrates that endogenic travertine, like epigenic (meteogene) tufa, could also be a good candidate for high-resolution paleoclimatic and paleoenvironmental reconstruction.  相似文献   

13.
The Song Hien rift basin is considered to be one of the most important regions of gold mineralisation in North East Vietnam. A number of gold deposits in the Song Hien rift basin are hosted in Triassic and Devonian sedimentary formations of the basin. The largest among them are the Bo Va, Tham Riem and Khung Khoang deposits. The Bo Va deposit is hosted in carbonaceous sedimentary rocks of Triassic age, whereas the Tham Riem and Khung Khoang deposits are hosted in carbonaceous sedimentary rocks of Devonian ages. Based on the mineral composition of the ores, the deposits can be divided into to two types: (i) pyrite dominated and (ii) pyrite-arsenopyrite dominated. The Khung Khoang is of the first type and the Bo Va and Tham Riem deposits belong to the second type. The isotopic composition of pyrite and arsenopyrite in the Tham Riem deposit however, is close to that for the ores of the Bo Va deposit. The δ34S value for pyrite ranging from −3.7‰ to −7.4‰ and for arsenopyrite ranging from −3.2‰ to 7.4‰. The δ34S of pyrite in the ore from the Khung Khoang deposit however, has a much heavier isotopic composition of +18.9 to +20.2‰. A narrow range of the variation of sulfur isotopic composition of pyrite and arsenopyrite, the presence of visible gold as inclusions, the presence of chalcopyrite, sphalerite and other inclusions in arsenopyrite and pyrite, the large size of the grains of major ore minerals allow us to assume that the primary gold ores of the Bo Va and Tham Riem deposits underwent metamorphic transformations. The absence of arsenic, antimony, mercury and other characteristic elements in the ores of the Khung Khoang deposit, and substantially heavier isotopic composition of sulfur similar to the sulfur isotopic composition of marine sulfates in the Devonian, allow us to assume another source of the ore components, not connected with the Triassic sedimentary rocks of the Song Hien rift.  相似文献   

14.
The δ13C values of 23 unevenly spaced guano samples from a 17-cm long clay sediment profile in Gaura cu Musc? Cave (GM), in SW Romania, made it possible to preliminarily characterize the Medieval Warm Period summer hydroclimate regime. The beginning of the sequence (AD 990) was rather wet for more than a century, before becoming progressively drier. After a brief, yet distinct wet period around AD 1170, drier conditions, with a possible shift from C3 to a mixed C3-dominated/C4 type vegetation (2 ‰ lower δ13C values), prevailed for almost half a century before the climate became colder and wetter at the onset of the Little Ice Age, when bats left the cave. The guano-inferred wet and dry intervals from the GM Cave are mirrored by changes in the color and amount of clay accumulated in the cave. They also agree well with reconstructions based on pollen and charcoal from peat bogs and δ13C and δ18O on speleothems from other Romanian sites. Overall, these results indicate that the δ13C of bat guano can provide a sensitive record of the short-term coupling between local/regional climate and the plant–insect–bat–guano system.  相似文献   

15.
工业革命以来由人类活动带来的大量化石燃料燃烧导致严重的环境污染,并引起气候变化。我国自1970年代开始大量排放人类活动产生的CO2和SO2,而且现在我国已经成为世界最大的CO2和SO2排放国。树轮碳-硫同位素及硫含量能很好地记录长时间尺度的气候变化,水利用效率,及化石燃料燃烧。本摘要报道了来自南方森林115年全树树轮碳-硫同位素及硫含量,目的在于记录人类活动产生的CO2和SO2历排放历史,及试图探讨人类活动产生的CO2和SO2对树碳同位素及水利用效率的影响。结果显示树轮碳同位素自1940年代后期至2000年代后期持续下降,是由持续增加的化石燃料产生的CO2导致的;大气CO2校正后的树轮碳同位素反映了全年降雨量。此外,树轮细胞内CO2浓度及水利用效率自1940年代后期持续升高,其原因是大气CO2浓度增加。另一方面,树轮硫含量没有明显的变化,表明硫是树的基本元素,而硫同位素自1890年代后期以来持续下降,记录了化石燃料(北方煤)使用历史。与之前发表的数据,显示最近几年或几十年来树轮碳同位素的增加(1.2‰~2.5‰),但不能证明是由大气污染(SO2增加)引起的,因其被气候变化所掩盖。  相似文献   

16.
The isotopic composition of ancient wood may be a useful archive of some climatic or geochemical conditions of the past, but presently there are many uncertainties that constrain such interpretations. We sampled naturally growing, predominantly native trees in forested regions of North America and the Caribbean to evaluate the strength of the relationships among cellulose δ18O (δ18Ocel), relative humidity (RH), precipitation δ18O (δ18Oppt), and mean annual temperature (MAT) at the continental scale, and the general range of variability in δ18Ocel associated with site hydrologic conditions and species differences. We found up to 4‰ differences among different species growing at the same site, that conifer cellulose at a site is more enriched than angiosperm cellulose by 1.5‰ (p < 0.001), and that differences in landscape position, reflecting differing access to the water table, produced differences of <1‰ in δ18Ocel. At the continental scale, δ18Ocel was strongly influenced by modeled δ18Oppt (R2 = 0.80, p < 0.001). Average summer minimum RH (RHmin) combined with δ18Oppt explained more of the variability (R2 = 0.93, p < 0.001) in δ18Ocel across North American and Caribbean forests. MAT and δ18Ocel were also strongly correlated across North America (R = 0.91 and 0.95, p < 0.001, for angiosperms and conifers, respectively). The difference between δ18Oppt and δ18Ocel is not constant (varying from 35-44‰) and is inversely correlated with δ18Oppt. The relationships among δ18Oppt, RHmin, δ18Ocel, and MAT established for North America and the Caribbean applied reasonably well when δ18Ocel was used to estimate MAT and δ18Oppt in Asia, Europe, and South America, but there were important exceptions. The most accurate predictions of MAT and δ18Oppt from δ18Ocel require RHmin. Predictions of δ18Oppt and MAT made from δ18Ocel alone produced errors of up to 8‰ and 16 °C, respectively.  相似文献   

17.
We dissolved Boulder Creek Granodiorite in a plug flow reactor for 5794 h at pH = 1 and T = 25 °C. The primary purpose of the experiment was to identify controls on dissolved δ44/40Ca, δ44/42Ca, and δ26/24Mg values during granite weathering. Herein, we also examine the origin of Ca and Mg isotopic variability among minerals composing the Boulder Creek Granodiorite, and we constrain fundamental characteristics of granite weathering important for quantifying the elemental and isotopic geochemistry of the reactor output. Nine Ca-bearing minerals display an 8.80‰ range of δ44/40Ca values and a 0.51‰ range of δ44/42Ca values. Three Mg-bearing minerals display a 1.53‰ range of δ26/24Mg values. These ranges expressed at the mineralogical scale are higher than the ranges thus far reported for bulk igneous rocks. Most of the δ44/40Ca variability reflects 40Ca enrichment in K-feldspar, and to a lesser extent, biotite, due to the radioactive decay of 40K over the 1.7 Ga age of the rock, whereas the entire range of δ44/42Ca values reflects mass-dependent isotope fractionation during igneous differentiation and crystallization. The range of δ26/24Mg values may represent either fractionation during the chloritization of biotite or interaction of the Boulder Creek Granodiorite with Mg-rich metamorphic fluids having low δ26/24Mg values.The elemental and isotopic composition of the reactor output varied substantially during the experiment. We synthesize the mineralogical and fluid data using coupled mass-conservation equations solved at non-steady-state. Model calculations reveal an intricate balance between increasing specific surface area and decreasing mineral concentrations. While surface area normalized dissolution rate constants were time-invariant, specific surface area increased as a power-law function of time through positive feedbacks between mechanical disaggregation, chemical dissolution, and mineral depletion. Variations in dissolved δ44/40Ca, δ44/42Ca, and δ26/24Mg values reflect conservative mixing rather than fractionation. Apatite and calcite initially control δ44/40Ca and δ44/42Ca values, followed by biotite, titanite, epidote, hornblende, and plagioclase. The release of radiogenic 40Ca clearly defines the period where biotite dissolution dominates. The brucite layer of chlorite initially controls δ26/24Mg values, followed by biotite, the TOT layer of chlorite, and hornblende. Through direct isotopic tracking, these results demonstrate that trace minerals, such as apatite and calcite in the case of Ca and brucite in the case of Mg, dominate elemental release during the incipient stages of granite weathering. The results further show that biotite dissolution dominates the middle stages of granite weathering and that plagioclase dissolution only becomes important during relatively late stages. The Ca and Mg isotope variations associated with these stages are distinct and potentially resolvable in soil mineral weathering studies.  相似文献   

18.
Soil n-alkane δD vs. altitude gradients along Mount Gongga, China   总被引:1,自引:0,他引:1  
The altitude effect on the isotopic composition of precipitation and its application to paleoelevation reconstruction using authigenic or pedogenic minerals have been intensively studied. However, there are still no studies on variations in biomarker δD along altitude transects to investigate its potential as a paleoelevation indicator, although it has been observed that δD of higher plant lipid may record changes in precipitation δD (δDp). Here, we present δD values of higher plant-derived C27, C29, and C31n-alkanes from surface soil along the eastern slope of Mount Gongga, China with great changes in physical variables and vegetation over a range from 1000 to 4000 m above sea level. The weighted-mean δD values of these n-alkanes (δDwax) show significant linear correlations with predicted δDp values (R2 = 0.76) with an apparent isotopic enrichment (εwax-p) of −137 ± 9‰, indicating that soil δDwax values track overall δDp variation along the entire altitudinal transect. Leaf δDwax is also highly correlated with mountain altitude by a significant quadratic relationship (R2 = 0.80). Evapotranspiration is found declining with altitude, potentially lowering δDwax values at higher elevations. However, this evapotranspiration effect is believed to be largely compensated by the opposing effect of vegetation changes, resulting in less varied εwax-p values over the slope transect. This study therefore confirms the potential of using leaf δDwax to infer paleoelevations, and more generally, to infer the δD of precipitation.  相似文献   

19.
20.
Deuterium and oxygen isotope fractionations between liquid and vapor water were experimentally-determined during evaporation of a NaCl solution (35 g L−1) as a function of water temperature and wind velocity. In the case of a null wind velocity, slopes of δD18O trajectories of residual waters hyperbolically decrease with increasing water temperatures in the range 23-47 °C. For wind velocities ranging from 0.8 to 2.2 m s−1, slopes of the δD18O trajectories linearly increase with increasing wind velocity at a given water temperature. These experimental results can be modeled by using Rayleigh distillation equations taking into account wind-related kinetics effects. Deuterium and oxygen isotope compositions of water inclusions trapped by the precipitated halite crystals were determined by micro-equilibration techniques.These isotopic compositions accurately reflect those of the surrounding residual waters during halite growth. Isotopic compositions of water inclusions in twenty natural halites from the Messinian Realmonte mine in Sicily suggest precipitation temperatures of that match the homogenization temperatures obtained by microthermometry (median = 34 ± 5 °C). The similarity between the measured and experimental slopes of the δD18O evaporation trajectories suggests that the effect of wind was negligible during the genesis of these halite deposits. Hydrogen and oxygen isotope compositions of water inclusions from Realmonte halite also define a linear trend whose extrapolation until intersection with the Mediterranean Meteoric Water Line allows the characterization of the water source with δD and δ18O values of −70 ± 10‰ and −11.5 ± 1.5‰, respectively. These results reveal that the huge amounts of salts deposited in Sicily result from the evaporation of seawater mixed with a dominant fraction (?50%) of meteoric waters most likely deriving from alpine fluvial discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号