首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
张飞飞  彭乾云  朱祥坤  闫斌  李津  程龙 《地质学报》2013,87(9):1411-1418
本文报导了湖北古城锰矿含锰层位中黄铁矿Fe同位素的研究结果,并利用黄铁矿Fe同位素对黄铁矿成因和大塘坡早期阶段沉积环境的氧化还原状态进行了制约。黄铁矿δ56Fe值变化范围为-0.13‰~+0.54‰,平均值为+0.22‰,显示相对于当时海水(0~-0.5‰)明显富集Fe的重同位素。本文认为黄铁矿的Fe来自海水中Fe2+部分氧化形成的Fe3+,这些Fe3+在成岩过程中被全部还原,与细菌硫酸盐还原作用形成的H2S结合最终以黄铁矿形式保存在沉积物中。大塘坡式锰矿含锰层位中黄铁矿Fe同位素特征表明,古城冰期(Sturtian冰期)结束之后,大塘坡早期阶段海洋深部已经开始氧化,但是并没有完全被氧化。  相似文献   

2.
“大塘坡式”锰矿在我国华南黔湘渝地区广泛分布, 是我国最重要的锰矿资源类型之一。它的形成与新元古代Sturtian雪球事件密切相关, 但其具体的成矿机制尚不十分清楚, 还存在许多争论。本文对贵州铜仁地区新近发现的高地超大型锰矿和共伴生黑色页岩中的微量硫酸盐和黄铁矿的硫同位素、菱锰矿等碳酸盐岩及有机碳的碳同位素进行了系统研究, 对该类型锰矿的成矿环境和沉淀机制进行了探讨。高地锰矿大塘坡组一段含锰黑色页岩和锰矿石中硫酸盐的含量很低, 为30.9 ~ 20 439.7 μg/g, 平均3 322.5 μg/g, 硫酸盐的δ34SVCDT为51.5‰~68.1‰, 平均60.4‰。冰碛岩上部铁丝坳组含砾杂砂岩中黄铁矿的δ34SVCDT为26.8‰~59.6‰, 平均52.1‰; 上覆大塘坡组黑色页岩和锰矿石中黄铁矿的δ34SVCDT为53.7‰~65.6‰, 平均63.3‰, 与前人在该区域其它矿区得到的结果一致, 与硫酸盐的δ34SVCDT值差别不大; 黑色页岩和锰矿石全岩的δ34SVCDT为41.4‰~63.9‰, 平均55.7‰。同一样品中, 硫酸盐的δ34S均高于全岩的值, 但差异不大。铁丝坳组顶部含砾杂砂岩的δ13Ccarb为–11.3‰ ~ –8.3‰, 平均–9.6‰, δ13Corg为–31.7‰ ~ –30.1‰, 平均–30.9‰; 大塘坡组一段黑色页岩和锰矿石的δ13Ccarb为–12.4‰ ~ –4.6‰, 平均–8.5‰, δ13Corg为–34.3‰~ –32.6‰, 平均–33.6‰, 二者在含锰段同步下降, 有机碳含量明显升高, 说明有机质对锰矿的形成发挥了重要作用。综上提出, 大塘坡式锰矿形成于滨浅海相半封闭性的断陷盆地之中, 含锰地层中δ34S异常高的黄铁矿是在氧化还原分层明显的静水环境中, 由δ34S异常高的孔隙水硫酸盐在成岩过程中几乎全部还原形成的, 而海水硫酸盐的δ34S正异常与雪球事件、生物爆发和沉积演化等密切相关。雪球融化之后, 在断陷盆地的浅层海水中, 生物活动和光合作用强盛, 氧浓度高, 海水中Mn2+不断被氧化形成氧化锰并从海水中沉淀出来, 而深部还原缺氧富Mn2+的海水不断越过构造脊进来补充。浅层海水中微生物大量繁殖, 死亡后沉降于海底, 导致断陷盆地底部有机质大量聚集, 氧逸度急剧下降。在沉积成岩过程中氧化锰被沉积物中大量有机质全部还原为Mn2+, 有机质本身被氧化为CO2– 3, 二者结合形成菱锰矿。  相似文献   

3.
王萍  周琦  杜远生  余文超  徐源  齐靓  袁良军 《地球科学》2016,41(12):2031-2040
黔东松桃地区是我国重要的锰矿富集区,其中大塘坡组中黄铁矿δ34S存在比较大的差异.通过CF-IRSM法对松桃李家湾、道坨、西溪堡矿区菱锰矿样品中黄铁矿硫同位素组成开展研究,结果显示出两个明显的特征:(1) 样品中黄铁矿普遍具有极高的δ34S值,为47.69‰~66.76‰;(2) 在同一成锰盆地中,水深相对较浅的李家湾矿区黄铁矿δ34S值(47.69‰~59.15‰)明显低于水深相对较深的道坨矿区的δ34S值(53.85‰~62.86‰),且中心相δ34S的值(53.85‰~66.76‰)明显高于过渡相δ34S的值(47.69‰~59.15‰),黄铁矿硫同位素组成表现出明显的深度梯度效应.大塘坡组含锰层位黄铁矿异常高的δ34S值及其明显的深度梯度特征表明,在新元古代Sturtian冰期刚刚结束的间冰期初期,海水硫酸盐浓度极低,海洋呈现显著的分层现象,这一时期深部海洋可能并没有完全氧化.   相似文献   

4.
在海洋天然气水合物的地质系统中,甲烷的渗漏作用形成了独特的地球化学微环境。渗漏的甲烷在硫酸根—甲烷氧化还原界面与硫酸根之间发生厌氧氧化反应,同时硫酸盐发生还原反应,形成具有特殊同位素组成的自生碳酸盐、硫化物(AVS、黄铁矿等)和硫酸盐(重晶石、石膏)等。反应过程中硫酸盐还原菌的作用使得产物中硫的同位素发生了强烈分馏,具体表现为低3δ4S值的硫化物矿物和高3δ4S值的硫酸盐矿物的形成。沉积物中这种独特的硫同位素特征与海洋天然气水合物系统中独特地球化学微环境有关,是硫酸盐还原反应过程中细菌控制的硫酸盐分馏和厌氧细菌对硫的歧化反应(disproportionation)的共同作用结果。  相似文献   

5.
长阳锰矿位于扬子陆块北缘,赋存于南华系大塘坡组含锰黑色岩系中,含锰矿物主要是菱锰矿。通过对含锰岩系C、O同位素及黄铁矿单矿物S同位素的分析表明:δ13C、δ18O值分布范围和平均值分别为﹣6.2‰~﹣2.1‰、﹣2.9‰和﹣7.9‰~﹣5.3‰、﹣6.8‰,δ34S介于38.41‰~66.85‰,平均值为60.95‰。研究认为:长阳锰矿炭质主要来源于无机碳,在沉积过程中有有机质碳的加入。通过O同位素反演的古温度一般在39.4℃~58.2℃,均值为48.9℃,古温度偏高说明其沉积时水体较深。研究区古盐度Z值大部分大于120,为古盐度较高的海相沉积环境,有部分降水和陆源淡水进入沉积区。长阳锰矿含锰层位中黄铁矿具有异常高的δ34S值,δ34S介于38.41‰~66.85‰,平均值为60.95‰,沉积盆地的封闭性和冰川事件使海水浓度降低并富集重硫同位素,随着海水硫酸盐和硫化物之间的硫同位素分馏的减小,使黄铁矿的δ34S达到异常高值。  相似文献   

6.
塔河地区中下奥陶统储层硫化物成因分析   总被引:1,自引:0,他引:1  
研究表明塔河地区中下奥陶统碳酸盐岩储层后期受到了大气淡水和深部热卤水的成岩改造作用。这些储层天然气中含有高达8.3%H2S气体,裂缝与孔洞充填方解石流体包裹体中气相组分含有高达11%的H2S。这些方解石的均一化温度以110.2~198.9℃为主,而且,H2S气体、原油和黄铁矿集合体δ34S值主要介于18‰~22‰,这些特征显示,硫化物形成于相对高温条件下热化学硫酸盐还原-有机质氧化作用(TSR)。有机质被氧化的证据包括高温方解石具有轻δ13C特征(δ13C为-4.3‰~-8.3‰)以及现今地层水具有轻δ13CHCO3-值(-6.0‰~-13.8‰)。现今油气藏中TSR成因H2S浓度低于流体包裹体,应该与H2S沉淀为黄铁矿、合并入原油中而导致富硫原油产生有关。一些黄铁矿具有很轻的δ34S值,可轻达-26‰,为微生物硫酸盐还原成因,但是其分布比较局限。  相似文献   

7.
贵州东部及邻区南华纪锰矿层中的黄铁矿产出形态多样,为了研究它们的成因标志,通过野外和镜下观察发现黄铁矿主要呈浸染状、条带状和结核状产出,并以草莓状和自形-半自形粒状结构为主。硫同位素测试结果显示含锰岩系中黄铁矿具有异常高δ34S值的特征,介于+37.9‰~+62.6‰之间(平均52.7‰),呈塔式分布,峰值在+46‰~+59‰之间,沿同一矿体剖面从下到上逐渐减小,不同矿床间差异大。结果表明沉积盆地的封闭性和冰川事件使海水硫酸盐浓度降低并富集重硫同位素,随后形成的硫酸盐最低带进一步减小了硫同位素的分馏,使黄铁矿的δ34S达到异常高值。随着沉积盆地逐渐变开放,矿层由下而上黄铁矿的δ34S值逐渐减小,而不同矿床黄铁矿的δ34S值差异则是因为沉积盆地封闭性的差异。因此,封闭的局限沉积盆地是锰矿床形成的重要地质背景条件,而渗流热卤水或火山锰源可能是矿床的主要锰质来源。  相似文献   

8.
沉积环境细菌作用下的硫同位素分馏   总被引:4,自引:0,他引:4       下载免费PDF全文
缺氧的沉积环境中存在大量的细菌,它们消耗硫的化合物为其新陈代谢提供能量,并导致硫的化合物被还原、氧化或(和)歧化。细菌的还原作用和歧化作用都能造成明显的硫同位素分馏。细菌硫酸盐还原造成的硫同位素分馏一般在4‰~46‰之间,平均为21‰;细菌参与的氧化作用所造成的硫同位素分馏很小,不到5‰;硫的中间价态物质(S0、S2O2-3和SO2-3)的歧化作用可以造成7‰~11‰的硫同位素分馏。主要依据实验研究和现代海洋观测获得的细菌还原和歧化作用的硫同位素分馏结果已经被用于解释古代沉积物中的硫同位素记录,成为研究地球历史上古海洋的化学演化的重要手段。  相似文献   

9.
相山铀矿田黄铁矿微量元素、硫同位素特征及其地质意义   总被引:2,自引:1,他引:1  
相山铀矿田位于江西省境内的相山火山盆地中,是中国目前最大的火山岩型铀矿田。文章利用电子探针(EPMA)和激光剥蚀多接收电感耦合等离子质谱仪(LA-MC-ICP-MS)技术对矿田内几个典型铀矿床(居隆庵、河元背和沙洲矿床)中矿前期热液蚀变阶段形成的黄铁矿分别进行了微量元素及S同位素组成特征研究。研究结果表明,矿田内铀矿床中黄铁矿的Co/Ni比值主要介于2.00~6.00,支持其为热液成因。黄铁矿的δ34S值总体变化于+0.1‰~+16.2‰,但西部与北部铀矿床之间黄铁矿δ34S值存在显著差异:西部铀矿床(居隆庵、河元背)中黄铁矿δ34S值为+0.1‰~+8.4‰,介于矿田内新元古代基底变质沉积岩δ34S值(+7.9‰~+9.4‰)与壳源岩浆δ34S值(-5.0‰~+5.0‰)之间,暗示S可能来自基底变质沉积岩硫与围岩(流纹英安岩和碎斑熔岩)中硫化物的硫的混合;北部沙洲铀矿床中黄铁矿的δ34S值为+7.5‰~+16.2‰,与蒸发硫酸盐δ34S值相接近,表明硫的来源可能主要与矿田西北侧红盆内硫酸盐的热化学还原(TSR)相关,围岩(花岗斑岩)中的Fe2+在还原过程中发挥了重要作用。同时,热化学还原产生的H2S与围岩中的Fe2+进一步结合形成黄铁矿。铀成矿期含铀热液中的六价U(Ⅵ)与铀成矿前期形成的上述黄铁矿发生氧化还原反应,导致铀沉淀成矿。  相似文献   

10.
位于黔西北地区的纳雍枝铅锌矿床,是目前报道的贵州省境内规模最大的铅锌矿床,已探明铅锌储量超过130万吨。纳雍枝铅锌矿床赋存于下寒武统清虚洞组和上震旦统灯影组碳酸盐岩中,受岩性和构造的双重控制,断层和背斜是主要控矿构造,铅锌成矿地质特征与MVT铅锌矿床较为相似。纳米离子探针(NanoSIMS)获得的纳雍枝铅锌矿床中黄铁矿和闪锌矿原位δ~(34)S分析数据表明,黄铁矿的δ~(34)S值变化范围在-16.6‰~+27.0‰之间,闪锌矿的δ~(34)S值范围为+11.8‰~+33.0‰,这与传统全矿物法获得的黄铁矿(δ~(34)S=+4.7‰~+18.1‰)和闪锌矿(δ~(34)S=+11.3‰~+25.22‰)的S同位素组成明显差异。根据矿物组合和晶体形态特征等,本文认为早期胶状、集合体状或交代残余黄铁矿(δ~(34)S=-16.6‰~-14.9‰)的还原S是由细菌引起的海相硫酸盐还原(BSR)产物,而晚期它形粒状黄铁矿和闪锌矿(δ~(34)S=+11.8‰~+33.0‰)的还原S是海相硫酸盐热化学还原作用(TSR)的产物。因此,纳雍枝铅锌矿床还原S的形成经历了BSR和TSR过程。综合以往地质地球化学研究资料,本文认为五指山地区铅锌矿床的空间分布受原地蒸发膏岩层的控制,BSR发生在成矿前,而TSR则是热流体加入后诱发的,矿床形成是构造-岩性-流体耦合作用的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号