首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
针对黄陇侏罗纪煤田中硬煤层渗透性差、瓦斯抽采浓度及流量衰减速度快等问题,利用自主研发的水力压裂成套工艺设备,提出煤层定向长钻孔水力压裂瓦斯高效抽采技术,并在黄陇煤田黄陵二号煤矿进行工程应用试验。现场共完成5个定向长钻孔钻探施工,单孔孔深240~285 m,总进尺1 320 m;采用整体压裂工艺对5个本煤层钻孔进行压裂施工,累计压裂液用量1 557.5 m3,单孔最大泵注压力19 MPa;压裂后单孔瓦斯抽采浓度及百米抽采纯量分别提升0.7~20.5倍、1.7~9.8倍;相比于普通钻孔,压裂孔瓦斯初始涌出强度提升2.1倍,钻孔瓦斯流量衰减系数降低39.6%。试验结果表明:采取水力压裂增透措施后,瓦斯抽采效果得到显著提升,煤层瓦斯可抽采性增加,为类似矿区低渗煤层瓦斯高效抽采提供了技术支撑。   相似文献   

2.
“十三五”以来,围绕“我国煤矿井下煤层区域增透瓦斯高效抽采和坚硬顶板岩层弱化区域治理”两大难题,将定向长钻孔与分段压裂技术结合,通过技术攻关与装备研发及工程试验,在煤矿井下定向长钻孔分段水力压裂技术和装备研发及工程示范应用等方面均取得了明显进展。主要表现在如下4个方面:(1)开发了适合于煤矿井下煤岩层裸眼定向长钻孔不动管柱和动管柱两种分段水力压裂工艺技术与工具,不动管柱分段压裂工程应用钻孔长度突破了500 m,单孔压裂实现了5段;动管柱分段压裂钻孔长度工程应用突破了800 m,单孔压裂实现了17段。(2)研发了煤矿井下低压端加砂压裂泵组和高压端加砂压裂装置,低压端加砂泵组压力达到了70 MPa,排量达到90 m3/h,携砂比达到20%;高压端加砂压裂装备耐压能力达到55 MPa,一次连续加砂压裂的砂量达到750 kg;低压端和高压端加砂装备均在现场进行了工程应用,应用结果表明装备均具有较好携砂压裂能力。(3)建立了碎软煤层围岩分段压裂和硬煤顺层钻孔分段压裂区域增透瓦斯高效抽采技术模式,前者在山西阳泉矿区和陕西韩城矿区应用钻孔瓦斯抽采纯量均值分别达到了2 811 m3/d和1 559 m3/d,后者在陕西彬长矿区应用钻孔瓦斯抽采纯量达到了2 491 m3/d。(4)探索出了坚硬顶板强矿压煤矿井下定向长钻孔分段水力压裂主动超前区域弱化治理的新模式,工程应用钻孔长度突破了800 m,坚硬顶板分段水力压裂治理后,顶板来压步距、动载系数和最高压力值较未压裂区分别下降了18.9%~70.6%,5.8%~7.9%,13.7%~19.4%,有效治理了工作面坚硬顶板引起的强矿压灾害。随着煤矿井下分段水力压裂技术改进和煤矿智能开采发展的实际需要,提出了煤矿井下大排量高压力智能压裂泵组、井下长钻孔裸眼分段压裂智能工具等装备和煤矿井?地联合分段水力压裂技术研发方向,以更好地推动煤矿井下水力压裂技术与装备发展,为煤矿安全高效绿色智能开采提供技术和装备支撑。   相似文献   

3.
韩城矿区碎软煤层发育,煤层透气性差,本煤层钻孔钻进困难,瓦斯抽采效果差。顶板梳状孔水力压裂技术结合了水力压裂技术和定向钻进技术二者的优势,是解决碎软低渗煤层瓦斯抽采难题的有效技术途径。在韩城矿区王峰煤矿3号煤层顶板粉砂岩中施工长钻孔并向煤层开分支,采用套管+封隔器座封的整体压裂方式进行水力压裂工程试验。钻孔总长度344 m,有效压裂长度284 m,累计注水量874.79 m3,最大泵注压力9.4 MPa。试验结束后对钻孔瓦斯抽采相关参数连续监测86 d,钻孔瓦斯抽采体积分数27%~51%,平均42.11%,钻孔瓦斯抽采纯量8.25~21.41 m3/min,平均17.02 m3/min,钻孔累计抽采瓦斯量约210万m3。与常规的穿层钻孔水力冲孔技术相比,该技术百米钻孔瓦斯抽采量提高了11.48倍,初步证明了该技术在碎软煤层瓦斯强化抽采领域的适用性。   相似文献   

4.
为了解决碎软煤层本煤层钻孔施工困难,瓦斯抽采浓度低,抽采效果差,无法实现大面积区域预抽的问题,在现有煤矿井下定向钻进技术和水力压裂技术的基础上,结合前期研究成果,提出了顶板梳状长钻孔分段水力压裂技术,并在韩城矿区桑树坪二号井进行了现场试验。现场施工顶板梳状长钻孔主孔长度588 m,包含8个分支孔,钻孔总进尺1 188 m,主孔距煤层0~3.28 m,平面上覆盖约12.5 m。采用不动管柱分段水力压裂工艺,分4段进行水力压裂施工,累计注水2 012 m3,最大泵注压力8.74 MPa。压裂后最大影响半径大于30 m,且裂缝主要位于钻孔下方,向煤层延伸。压裂钻孔稳定抽采阶段瓦斯抽采纯量1.18 m3/min,抽采瓦斯体积分数平均43.54%。顶板梳状长钻孔分段水力压裂钻孔瓦斯抽采纯量是水力割缝钻孔的1.2倍,是本煤层顺层钻孔的4.0倍。试验结果表明,顶板梳状长钻孔分段水力压裂技术可有效避免本煤层常规钻孔施工过程中存在的塌孔、卡钻、喷孔等问题,实现了碎软低渗煤层大面积区域瓦斯预抽,为碎软低渗煤层区域瓦斯预抽提供了新思路和新方法。   相似文献   

5.
田坤云  张瑞林 《岩土力学》2014,35(11):3338-3344
针对目前相关的三轴渗流试验装置缺乏高压水及负压加载功能而不能对高压水及负压加载状态下煤样瓦斯渗流规律进行研究这一问题,研制出了煤样试件出口负压可调并可对其进行高压水加载的新型三轴应力渗流试验装置。该装置主要由三轴应力加载系统、气体渗透系统、水力压裂控制系统、气体流量测试系统、传感与控制系统5部分组成,能够进行高压水及负压载荷下的各种单轴与三轴渗流试验。研究表明,该装置能够模拟抽采钻孔负压状态下煤体内的瓦斯运移规律及考察高压水对煤体的压裂效果,在实验室能完成对煤体试样负压状态下的渗流规律研究以及试件采取水力压裂措施后的增透效果考察。  相似文献   

6.
针对我国低透气性煤层普遍存在瓦斯抽采效果差的现状,提出了利用大直径长钻孔水力压裂对煤层进行增透的技术措施,探讨了长钻孔水力压裂增透机理,并进行了煤矿井下煤层水力压裂瓦斯抽采试验。在成功施工顺层长钻孔的基础上,研发了一套适合井下水力压裂施工的快速封孔工具组合,分析了压裂过程中参数变化规律,提出了水力压裂影响范围、压裂效果和瓦斯抽采效果评价方法,并进行了考察和评价。研究表明:该技术克服了传统井下水力压裂存在的封孔质量差、压裂影响范围小等问题,压裂后煤层透气性系数提高了2.67倍,压裂最大影响半径达到了58 m,压裂后连续抽采130 d累计抽采纯瓦斯量为31.39万m3,日最高抽采量2 668 m3,瓦斯体积分数平均70.05%,百米钻孔瓦斯抽采纯量达到0.55 m3/min。   相似文献   

7.
This study investigates the deformation and the resultant pressure relief of highly gassy coal seams where a double seam mining operation takes place at lower depths at the Wulan Coal Mine, China. In order to predict the depressurization effect in the overlying coal seams, we simulate the extraction process by constructing a scaled model in the laboratory using similar rock materials. Analyses of experimental results concluded that due to the mining-induced stress redistribution, the pressure within target coal seams, which were 109 m above the mined seams, could be fully relieved to attain the statutory approval for gas drainage.In addition to scaled-model studies, computational modeling studies were conducted using UDEC (Universal Distinct Element Code), which showed that the features of deformation resulting from the double-seam extraction were different from that of in the case of single-seam extraction. The results of the numerical studies revealed that in addition to the panel margin on the air return side, areas near the intake entry could also be considered as borehole drilling positions. Besides, it was found that the gob of the extracted seams below the gassy one provided a “buffering effect” for the would-mined protective coal seam and that the depressurization effect was largely weakened.The laboratorial findings are instructive to the field practice of methane drainage. During the mining operation, a “displacement comparison method” was adopted to measure the dilated amount of protected coal seams, and as expected, the maximum dilation percentage was much more than 0.2% — the critical value upon which the target coal seam is appropriately depressurized to allow gas drainage to be safely and effectively implemented.  相似文献   

8.
贵州对江南井田煤层气开发进展缓慢,通过前期勘探阶段实践,该区块存在的主要问题是钻井效率低、固井漏失严重、压裂改造周期长,单井产量低,客观评价井田煤层气地质特征及开发技术对后续煤层气的开发至关重要。通过对井田煤层厚度、煤体结构、储层压力、含气量、渗透性等方面进行了系统研究,结合井田以往钻井、压裂及排采实践,提出了井田煤层气开发以定向井为主,在M18煤层构造简单、煤体结构好、含气量高、煤层稳定且厚度大于3 m的区域,宜采用水平井的开发方式,在M25和M29煤,M78和M79煤构造简单、含气量高、煤层稳定且层间距小于5 m的区域,宜采用层间水平井的开发技术,漏失井段宜采用空气潜孔锤快速钻进技术,非漏失井段宜采用螺杆复合钻进技术,固井宜采用变密度水泥浆+无水氯化钙的固井方式,直井和定向井压裂宜采用复合桥塞层组多级压裂,水平井宜采用油管拖动水力喷砂射孔压裂技术,排采宜采用合层排采+分层控压技术,形成一套适宜于对江南井田地形地质条件下的煤层气开发技术,为今后研究区大规模煤层气商业开发提供参考。   相似文献   

9.
瓦斯区域超前治理是实现煤矿安全、高效及智能化开采的重要保障,针对碎软煤层区域瓦斯高效抽采难题,以陕西韩城矿区3号煤层为研究对象,提出井下煤层顶板梳状长钻孔水力压裂区域瓦斯抽采模式。采用理论分析、数值模拟和现场试验等多手段相结合的方法,验证模式适用性,阐明紧邻煤层顶板梳状钻孔压裂裂缝延展规律、抽采机理和压裂曲线特征,进而建立适用于500 m孔深的集地质条件动态分析、分段水力压裂、封隔器遇阻解卡和压裂范围连续探查于一体的顶板梳状长钻孔裸眼分段水力压裂关键技术体系,实现煤层顶板梳状钻孔主孔轨迹距离煤层5 m左右、多段均匀压裂、压裂范围全孔监测和孔内事故高效处理。以此为基础,在韩城桑树坪二号井开展2孔次的工程实践:压裂主孔深度588 m、距3号煤层2 m左右,单孔压裂6段,压裂范围探查深度381 m、压裂影响半径20 m以上;压裂后,钻孔抽采瓦斯平均体积分数40%以上、瓦斯抽采量1 m3/min以上,抽采效果是常规钻孔的4倍,120 d瓦斯抽采有效半径可达9 m,实现了碎软煤层瓦斯区域高效抽采。并提出了适用于碎软煤层大区域瓦斯抽采以及高瓦斯压力碎软强突煤层远程区域抽采卸压等规模化应用技术思路。   相似文献   

10.
针对硬煤层瓦斯抽采衰减快,抽采周期长、效率低等问题,提出了中硬煤层顺层长钻孔分段压裂增加煤层透气性瓦斯强化抽采技术。以陕西彬长矿区4号煤层为研究对象,在实验室采用SEM高分辨率电子显微镜对比分析了水力压裂前后煤体微观孔隙结构变化特征;利用Abaqus软件模拟了封隔器受力特征及钻孔的稳定性;在彬长矿区大佛寺煤矿井下4号煤层进行水力压裂工业性试验。结果表明:煤层在加载压力15 MPa,保压48 h,煤体的孔隙、裂隙数量增多,孔径尺寸增大,且连通性增强,裂隙间的连通性明显提升。压裂过程中,封隔器同时受到内压和外压载荷产生膨胀变形,内压15 MPa、外压10 MPa时,可保持硬煤钻孔结构完整同时,产生最大的封隔摩擦力。工程试验完成3个顺煤层定向长钻孔分段压裂施工,孔深540~568 m,每孔分8 段压裂,单孔注液量910~1 154 m3,累计注液量3 011 m3;压裂后,利用孔内瞬变电磁测试确定压裂影响半径34~46 m。压裂钻孔平均瓦斯抽采纯量0.72~1.73 m3/min,平均抽采瓦斯体积分数42.60%~67.48%;对比试验区常规钻孔,瓦斯抽采体积分数提高1.20~2.49 倍,百米钻孔瓦斯抽采纯量是3.93~10.03 倍,实现了试验区域瓦斯超前增透和预抽,该工艺技术为类似地质条件大区域瓦斯超前治理提供技术借鉴。   相似文献   

11.
近年来在煤层气勘探开发实践中遇到诸多技术瓶颈,针对其中关键技术适用性开发问题,基于贵州地区煤储层呈薄煤层群赋存且构造复杂的地质背景,结合贵州地区煤层气成功开发、利用案例,提出了适用于贵州复杂地质条件下的煤层气开发及利用技术。贵州地区不同薄煤层群可根据实际间距情况采用光套管合层压裂、可捞式桥塞分段压裂等技术,煤层松软地区要加强防煤粉压裂技术及缝内转向技术的综合利用;松软低透煤层群应优选首采层,采动卸压后瓦斯抽采效果较好,同时加强定向长钻孔"以孔代巷"、松软煤层全程下套管、低透煤层CO2相变致裂或水力割缝等技术的综合应用,实践证明可有效增强瓦斯抽采效果。   相似文献   

12.
为了实现沁水盆地郑庄区块北部深部煤层气高效开发,通过深入分析煤储层地质条件和开发资料,并对比浅部煤层气开发数据,以含气量评价资源为基础,综合储层渗透性、地解压差,煤体结构和地应力状态等评价煤层气采出难易程度,明确郑庄区块北部煤层气井低产原因,并提出高效开发的适应技术。结果表明,郑庄北部煤层含气量整体较高,在20 m3/t以上;郑庄北部绝大部分地区裂隙发育指数均小于140,渗透率极低;绝大部分地区地解压差大于6 MPa,导致煤层气井有效解吸范围小,宏观解吸效率低;绝大部分地区煤层中碎煤比例在0.7以上,导致水力压裂裂缝较短;垂向应力大于水平应力,为大地静力场形地应力,水力压裂易形成垂直裂缝,裂缝延伸较短。极低的渗透率、相对较高的地解压差、高碎煤占比和大地静力场形地应力状态耦合导致郑庄北部煤层气开发效果较差。仿树形水平井采用人工井眼实现煤层密切割,缩短了煤层气、水渗流距离,利于实现协同降压增产,有力克服了高地解压差的不利影响;同时采用人工井眼代替压裂裂缝,解决研究区水力压裂造缝短的难题,取得了产量突破,但存在不利于排水降压和井眼易垮塌的风险,且其成本高、收效低。L形水平井密切割分段压裂技术克服了仿树形水平井不利因素。与直井相比,L形水平井成本增加2倍,但煤层气产量增加近100倍;且L形水平井与仿树形水平井产量相当,但其成本仅是后者的 40%。由此可知,L形水平井可以实现郑庄北部深部煤层气的高效开发。   相似文献   

13.
压裂施工曲线是反映压裂效果的重要依据,而压裂阶段储层渗透率的动态变化能够更直观地反映造缝效果。借鉴试井渗透率测试原理,建立一种压裂阶段储层动态渗透率定量评价方法,并将该方法应用到准南某区块2口煤层气井水力压裂效果评价中,获得压裂阶段储层动态渗透率曲线;同时采用G函数对压裂效果进一步评价。结果表明:动态渗透率曲线所反映压裂效果与G函数分析和基于排量、井底流压关系的评价结果吻合较好,能够反映储层内裂缝开启、延伸效果;其中,CMG-01井通过实施煤储层与围岩大规模缝网改造,压裂阶段储层渗透率最高达到2.5 μm2,造缝效果良好;而CBM-02井实施煤储层常规水力压裂,储层渗透率保持在1.8 μm2之下,显示出煤储层常规水力压裂与煤储层?围岩大规模缝网改造的差异性。动态渗透率定量评价方法弥补前期压裂改造效果缺乏量化评价的不足,为煤层气/煤系气储层水力压裂工艺的优化提供依据。   相似文献   

14.
晋城矿区寺河井田3号煤层经多年的煤矿开采,形成了大面积的采空区,大面积的卸压提高了下组煤(9号、15号)的渗透率,但由于采空区阻隔和煤层气地面预抽技术的局限,致使下组煤煤层气尚未得到有效抽采。为保证煤矿的安全生产和产能的释放,结合采空区特征,采用过采空区钻完井及压裂工艺新技术,分析施工参数及后期产能情况,评价过采空区抽采下组煤煤层气技术的应用效果。结果表明:地面钻井开发过采空区下组煤煤层气资源时,应首先进行井位优选及井身结构优化,以保证钻井的成功率;采用氮气置换套管钻井工艺及低压易漏注浆加固等穿采空区钻完井技术,不仅可以有效降低采空区煤层气自燃甚至爆炸风险,而且保证了穿采空区段固井质量;优化采空区下组煤层压裂施工参数并设计不同井位的煤层气井压裂工艺,有效扩展裂缝长度,同时也避免了“压穿”等压裂事故发生;精细化排采管控措施可以有效扩大泄流半径,提高单井产能。现场一百余口过采空区煤层气井排采实践表明,单井最高产气量达到8 832 m3/d,日均产气量达到2 694 m3,验证了过采空区抽采下组煤煤层气技术可行,可推广应用。   相似文献   

15.
冀前辉 《探矿工程》2014,41(11):28-30,56
针对我国松软低透气性煤层瓦斯抽采难题,提出了采用跟管钻进和水力压裂技术提高松软煤层钻孔深度和煤层透气性,通过布孔设计、应力分析论证了该方法的施工可行性,讨论了该方法的施工步骤。该技术有望成为解决松软低透气性煤层瓦斯抽采难题的新工艺方法。  相似文献   

16.
水压致裂后煤岩应力分布规律对水压致裂防冲效果起关键性作用。采用理论研究方法得出高压注水压致裂后及卸水后水区和气区的孔隙、瓦斯压力和煤体应力解析解。结果表明,致裂后水区孔隙压力沿径向变化不大,与注水压力接近;气区瓦斯压力沿径向呈递减趋势;在水区外围一定范围内形成瓦斯压力升高区;水区煤体环向应力将会减小,直到变为拉应力;气区煤体径向应力沿径向递减。卸水后水区孔隙压力、煤体径向应力沿径向呈递增趋势;气区煤体径向应力沿径向呈递增趋势,趋近于原始煤体应力;气区煤体环向应力沿径向呈递减趋势;气区孔隙压力沿径向呈递减趋势。这为煤层水压致裂预防冲击地压提供理论基础。   相似文献   

17.
谭强  高明忠  谢晶  李圣伟  邱治强 《岩土力学》2016,37(12):3553-3560
低透煤层增透效果的定量描述和评价一直处于盲目状态,使得煤矿瓦斯治理中致裂措施、瓦斯抽采不能因地制宜。增透率可反映采动或人工增透措施对煤岩体渗透特性的改变,并可定量评价煤层增透效果,其分布和演化规律可精准圈定瓦斯富集区域,指导瓦斯抽采钻孔的合理布置。在简化钻孔和裂隙模型基础上,求解了采动条件下钻孔的体积应变,提出了针对单孔的增透率计算方法;依托同煤矿塔山矿8212采面,开展现场裂隙探测试验,研究了工作面前方采动裂隙网络发育演化及卸压增透变化规律,并分析了单孔增透率随回采面推进的演化特征。结果表明:裂隙网络呈现“从无到有、从短变长、从窄变宽、不断贯通”的趋势,煤岩体单孔增透率随回采面推进呈现先逐渐上升后保持平稳的趋势,该成果有望直接优化煤矿现场瓦斯抽采孔的布置设计。  相似文献   

18.
This paper is concerned with the mechanism of coal breakage under high-pressure water jet (HPWJ) and its applications. A model of HPWJ impinging on coal target was established to study the cracking mechanism of coal under impact load. The characteristic and pressure distribution of HPWJ, the propagation characteristics of stress wave in coal, the mechanical properties of different coal particles, and the fracture characteristics of coal under HPWJ erosion were investigated theoretically and numerically. The results show that the shock wave and water wedge pressure are the main factors that cause coal breakage and crack propagation. The damage to the far-field coal particles affected by HPWJ is primarily caused by tensile stress, and the damage to the near-field coal particles affected by HPWJ is caused by the coupled effects of tensile stress and compressive stress. An erosion cavity is formed in the coal model with diameters of 1.25 to 2.5 times that of the jet at different depths. Meanwhile, the strong quasi-static pressure at the crack discontinuities further promotes the propagation of radial cracks around the erosion cavity to form a fracture zone, and the diameter of the fracture zone at different depths is 3.5 to 4.0 times that of the jet. In addition, the results of field application show that there is a significant difference between the methane parameters in the hydraulic flushing borehole and the conventional borehole; the average methane volume fraction and the average methane flow rate in hydraulic flushing boreholes are 3.85 and 3.67 times, respectively, that in conventional boreholes. Indicating hydraulic flushing can effectively promote the initiation and propagation of coal cracks. These results are of great significance to improve coalbed methane drainage technology and prevent gas disaster accidents in coal mines.  相似文献   

19.
直井开发煤层气钻井和压裂成本高,控制面积小,单井产气量低;煤层内水平井钻进难度大,风险高,薄煤层中井眼轨迹控制难度大,钻井液有害固相对储层伤害严重,采收率低。基于此,分析贵州织金区块煤系地质构造,提出在煤系地层内稳定的非储层内布水平井,通过压裂造缝沟通水平井上下煤层同时开发多层煤层的新思路。与常规开发方式相比,非储层内水平井具有钻井风险小、储层伤害小、单井产量高的优点,同时还可以开发煤系致密气和页岩气,提高非常规天然气利用率。研究非储层内水平井开发贵州织金煤层气技术,为解决贵州煤系地层煤层多而薄、层间距小等特性煤层气开发难题以及综合利用煤系气提供新的方式。  相似文献   

20.
针对碎软煤层渗透率低、瓦斯抽采衰减快、压裂不均匀、裂缝易闭合、瓦斯抽采效果差、无法实现区域瓦斯超前预抽的问题,提出了煤层顶板定向长钻孔水力加砂分段压裂强化瓦斯抽采的技术思路,研发适合煤矿井下煤层顶板定向长钻孔水力加砂分段压裂煤层增透技术,研制了成套的煤矿井下水力加砂压裂泵组装备、定向喷砂射孔装置及工具组合、防砂封隔器及工具组合。水力压裂泵组装备最大排量90 m3/h,最大泵注压力70 MPa,最大携砂能力20%,支撑剂粒径小于等于1 mm;定向喷砂射孔装置通过水压驱动喷射器定向,最大旋转角度180°;防砂封隔器最大承压70 MPa,最大膨胀系数为2。研发的定向长钻孔连续定向喷砂射孔工艺技术和定向长钻孔拖动式水力加砂分段压裂工艺技术,在山西阳泉新景煤矿井下开展工程试验,完成2个压裂钻孔(孔深均为609 m)共计16段水力加砂分段压裂施工,累计实施80次定向喷砂射孔作业,石英砂的体积分数2%~3%,定向喷砂射孔压力22.6~28.6 MPa,共计使用石英砂19.8 t;水力加砂分段压裂单段注入压裂液153.8~235.1 m3、核桃壳砂的体积分数2.02%~2.56%,累计注入压裂液2 808.57 m3,注入核桃壳砂36.47 t;综合评价本次水力加砂分段压裂影响半径为20~38 m,统计分析压裂后2个钻场100 d瓦斯抽采数据,1号钻场、2号钻场日均瓦斯抽采纯量分别为1 025、2 811m3。试验结果表明:压裂装备加砂量大,施工排量大,能够实现连续作业,压裂后煤层透气性显著增加,极大地提高瓦斯抽采浓度和瓦斯抽采纯量。研究成果对碎软煤层区域瓦斯增透提供新思路,为我国类似矿区区域瓦斯超前治理提供技术借鉴。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号