首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Rapid (10 s) measurements of sediment transport and wind speed on the stoss slope of a transverse dune indicate that the majority of sand transported is associated with fluctuations in wind speed with a periodicity of 5–20 min duration. Increases in the sediment transport rate towards the dune crest are associated with a small degree of flow acceleration. The increase in wind speed is sufficient, however, to greatly increase values of the intermittency index ( γ ), so that the duration of saltation is extended in crestal regions of the dune. The pattern of sediment transport on the stoss slope and, therefore, the locus of areas of erosion and deposition change with the regional wind speed. Erosion of the crest occurs during wind speed events just above transport threshold, whereas periods of higher magnitude winds result in deposition of sand upwind of the crest, thereby increasing dune height. Although short-term temporal and spatial relations between sand transport and wind speed on the stoss slope are well understood, it is not clear how these relations affect dune morphology over longer periods of time.  相似文献   

2.
Large symmetric and asymmetric dunes occur in the Fraser River, Canada. Symmetric dunes have stoss and lee sides of similar length, stoss and lee slope angles <8°, and rounded crests. Asymmetric dunes have superimposed small dunes on stoss sides, sharp crests, stoss sides longer than lee sides, stoss side slopes <3° and straight lee side slopes up to 19°. There is no evidence for lee side flow separation, although intermittent separated flow is possible, especially over asymmetric dunes. Dune symmetry and crest rounding of symmetric dunes are associated with high sediment transport rates. High near-bed velocity and bed load transport near dune crests result in crest rounding. Long, low-angle lee sides are produced by deposition of suspended sediment in dune troughs. Asymmetric dunes appear to be transitional features between large symmetric dunes and smaller dunes adjusted to lower flow velocity and sediment transport conditions. Small dunes on stoss sides reduce near-bed flow velocity and bed load transport, causing a sharper dune crest. Reduced deposition of suspended sediment in troughs results in a short, steep lee slope. Dunes in the Fraser River fall into upper plane bed or antidune stability fields on flume-based bedform phase diagrams. These diagrams are probably not applicable to large dunes in deep natural flows and care must be taken in modelling procedures that use phase diagram relations to predict bed configuration in such flows.  相似文献   

3.
Grainfall processes in the lee of transverse dunes, Silver Peak, Nevada   总被引:6,自引:0,他引:6  
Grainfall deposition and associated grainflows in the lee of aeolian dunes are important in that they are preserved as cross‐beds in the geological record and provide a key to the interpretation of the aeolian rock record. Despite their recognized importance, there have been very few field, laboratory or numerical simulation studies of leeside depositional processes on aeolian dunes. As part of an ongoing study, the relationships among grainfall, wind (speed and direction), stoss sand transport rates and dune morphometry (height and aspect ratio) were investigated on four relatively small, straight‐crested transverse dunes at Silver Peak, Nevada. Between 55% and 95% of the total grainfall was found to be deposited within 1 m of the crest, and 84–99% within 2 m, depending primarily on dune size and shape. Grainfall decay rates on high dunes of large aspect ratio were observed to be very consistent, with a weak positive dependence on wind speed. For small dunes with low aspect ratios, grainfall deposition was more varied and decreased rapidly within 1 m of the dune crest, whereas at increased distance from the dune crest, it eventually approached the smaller decay rates observed on the large dunes. No dependence of grainfall on wind speed was observed for these small dunes. Comparison of field data with predictions from 1 ) saltation model of grainfall, based on the computation of saltation path lengths, indicates lack of agreement in the following areas: (1) deposition rate magnitude; (2) variation in decay rate with wind speed; and (3) the magnitude and location of the localized lee‐slope depositional maxima. The Silver Peak field results demonstrate the importance of dune aspect ratio and related wake effects in determining the rate and pattern of grainfall. This work confirms earlier speculation by 7 ) that temporary, turbulent suspension (or `modified saltation') of relatively large grains does occur within the dune wake, so that transport distances generally are larger than predicted by numerical simulations of `true' saltation.  相似文献   

4.
The dynamics of large isolated sand dunes moving across a gravel lag layer were studied in a supply‐limited reach of the River Rhine, Germany. Bed sediments, dune geometry, bedform migration rates and the internal structure of dunes are considered in this paper. Hydrodynamic and sediment transport data are considered in a companion paper. The pebbles and cobbles (D50 of 10 mm) of the flat lag layer are rarely entrained. Dunes consist of well‐sorted medium to coarse sand (D50 of 0·9 mm). Small pebbles move over the dunes by ‘overpassing’, but there is a degree of size and shape selectivity. Populations of ripples in sand (D50 < 0·6 mm), and small and large dunes are separated by distinct breaks in the bedform length data in the regions of 0·7–1 m and 5–10 m. Ripples and small dunes may have sinuous crestlines but primarily exhibit two‐dimensional planforms. In contrast, large dunes are primarily three‐dimensional barchanoid forms. Ripples on the backs of small dunes rarely develop to maximum steepness. Small dunes may achieve an equilibrium geometry, either on the gravel bed or as secondary dunes within the boundary layer on the stoss side of large dunes. Secondary dunes frequently develop a humpback profile as they migrate across the upper stoss slope of large dunes, diminishing in height but increasing in length as they traverse the crestal region. However, secondary dunes more than 5 m in length are rare. The dearth of equilibrium ripples and long secondary dunes is probably related to the limited excursion length available for bedform development on the parent bedforms. Large dunes with lengths between 20 m and 100 m do not approach an equilibrium geometry. A depth limitation rather than a sediment supply limitation is the primary control on dune height; dunes rarely exceed 1 m high in water depths of ≈4 m. Dune celerity increases as a function of the mean flow velocity squared, but this general relationship obscures more subtle morphodynamics. During rising river stage, dunes tend to grow in height owing to crestal accumulation, which slows downstream progression and steepens the dune form. During steady or falling stage, an extended crestal platform develops in association with a rapid downstream migration of the lee side and a reduction in dune height. These diminishing dunes actually increase in unit volume by a process of increased leeside accumulation fed by secondary dunes moving past a stalled stoss toe. A six‐stage model of dune growth and diminution is proposed to explain variations in observed morphology. The model demonstrates how the development of an internal boundary layer and the interaction of the water surface with the crests of these bedload‐dominated dunes can result in dunes characterized by gentle lee sides with weak flow separation. This finding is significant, as other studies of dunes in large rivers have attributed this morphological response to a predominance of suspended load transport.  相似文献   

5.
Wind is the primary control on the formation of aeolian geomorphology. In this study, we combined wind regime data from automated weather stations in the western and southwestern Tengger Desert of the Inner Mongolia region in China with remote‐sensing data to analyse the relationship between the wind energy environment and aeolian geomorphology. Tengger Desert is one of the main dust storm sources in northwestern China. Therefore, efforts aimed at controlling desertification and dust storm require a deeper understanding of the processes that govern the formation and subsequent evolution of dunes in this area. Wind speed was largest in the northwest (3.3 m/s in the Xiqu station) and smallest in the southeast (1.2 m/s in the Haizitan station). Potential sand transport was also largest in the northwest (195 in the Jiahe station) and smallest in the southeast (33 in the Tumen station). The sand‐driving wind (5.92 m/s) directions were from the NW and SE quadrant across the study area, at >76% of all sand‐driving wind, reaching 99% in the Tumen station. The sand‐driving wind in the NW quadrant reached >48%, and in the SE quadrant, >12% of all sand‐driving wind in all stations. In the study area, sand dunes included crescent, dune networks, transverse, and coppice dunes. Dune crest directions had similar trends from upwind to downwind, at 133° in the middle region, and 124° in the southwestern region. Mean dune spacing changed with dune patterns; the maximum spacing for crescent dunes was 147 m, for dune networks 118 m, and for transverse dunes it was 77 m. The mean crest length was 124 m (maximum) for crescent dunes in the northwest, 121 m for transverse dunes, and 84 m for dune networks. However, because of gullies in the southern region, the mean crest length was only 58 m (least) for the crescent dunes in that area. The defect density ranged from 0.007 to 0.014. The spatial differences in dune patterns reflected the evolution of the dune field, where older dunes had been formed upwind and younger downwind. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Aeolian dune motion is thought to be driven by an annual cycle of sediment‐transporting wind events. Each wind event drives uneven motion of dune crestlines, yet dune crestlines align as a trend to an annual cycle of wind. Understanding the variability in dune motion over such a cycle aids the interpretation of aeolian cross‐stratification, often available only in the limiting exposure of core and outcrop. Digital elevation models obtained by light detection and ranging are used to estimate dune brink motion and sediment flux along the sinuous crestlines of crescentic dunes at White Sands gypsum dune field (south‐central New Mexico, USA) over an annual cycle of wind. In tandem, meteorological observations over the same annual cycle are used to drive a kinematic model of dune crestline motion. Wind‐driven kinematic modelling does well to predict the mean and overall variation in sediment flux with compass direction. Digital elevation model‐based estimations of brink motion and sediment flux reveal that dune motion and sediment flux very nearly follow a circular normal distribution. Dunes at White Sands were found to achieve steady mean values of lee surface dip direction, brink motion and sediment flux within a sample window the size of approximately six dunes of average crestline length. Due to the symmetrical distribution of dune motion about the average lee surface dip direction, uneven motion of dune crestlines averages to become motion of dune crestlines normal to a trend, as predicted by wind‐driven kinematic models.  相似文献   

7.
8.
The development of mudwaves on the levees of the modern Toyama deep‐sea channel has been studied using gravity core samples combined with 3·5‐kHz echosounder data and airgun seismic reflection profiles. The mudwaves have developed on the overbank flanks of a clockwise bend of the channel in the Yamato Basin, Japan Sea, and the mudwave field covers an area of 4000 km2. Mudwave lengths range from 0·2 to 3·6 km and heights vary from 2 to 44 m, and the pattern of mudwave aggradation indicates an upslope migration direction. Sediment cores show that the mudwaves consist of an alternation of fine‐grained turbidites and hemipelagites whereas contourites are absent. Core samples demonstrate that the sedimentation rate ranged from 10 to 14 cm ka?1 on the lee sides to 17–40 cm ka?1 on the stoss sides. A layer‐by‐layer correlation of the deposits across the mudwaves shows that the individual turbidite beds are up to 20 times thicker on the stoss side than on the lee side, whereas hemipelagite thicknesses are uniform. This differential accretion of turbidites is thought to have resulted in the pattern of upcurrent climbing mudwave crests, which supports the notion that the mudwaves have been formed by spillover turbidity currents. The mudwaves are interpreted to have been instigated by pre‐existing large sand dunes that are up to 30 m thick and were created by high‐velocity (10°ms?1), thick (c. 500 m) turbidity currents spilling over the channel banks at the time of the maximum uplift of the Northern Japan Alps during the latest Pliocene to Early Pleistocene. Draping of the dunes by the subsequent, lower‐velocity (10?1ms?1), mud‐laden turbidity currents is thought to have resulted in the formation of the accretionary mudwaves and the pattern of upflow climbing. The dune stoss slopes are argued to have acted as obstacles to the flow, causing localized loss of flow strength and leading to differential draping by the muddy turbidites, with greater accretion occurring on the stoss side than on the lee slope. The two overbank flanks of the clockwise channel bend show some interesting differences in mudwave development. The mudwaves have a mean height of 9·8 m on the outer‐bank levee and 6·2 m on the inner bank. The turbidites accreted on the stoss sides of the mudwaves are 4–6 times thicker on the outer‐bank levee than their counterparts on the inner‐bank levee. These differences are attributed to the greater flow volume (thickness) and sediment flux of the outer‐bank spillover flow due to the more intense stripping of the turbidity currents at the outer bank of the channel bend. Differential development of mudwave fields may therefore be a useful indicator in the reconstruction of deep‐sea channels and their flow hydraulics.  相似文献   

9.
Using ground‐penetrating radar, optically stimulated luminescence dating, particle‐size distribution and morphological analysis, the study of the construction phases of a vegetated linear dune in the arid north‐western Negev dunefield of Israel during the last millennium improves current knowledge about vegetated linear dunes that developed in the late Pleistocene. Vertical accretion in rapid pulses forming horizontally bedded units along the axis of vegetated linear dunes, regardless of their age, was found to be characteristic of vegetated linear dunes. The combination of the unique topographic feature of a longitudinal 5 m step‐like fall in dune crest elevation with the substantial narrowing of dune width constitutes a distinct morphological marker for interpreting local dune growth and stabilization of the last, albeit localized, dune mobilization episode at ca 0·5 ka. Evidence for lateral dune migration was not observed. Where local sediment supply exists, short episodes of powerful winds within the Holocene (with recurrence intervals separated by hundreds of years) can lead to the construction of vegetated linear dunes. The spatially constrained extent of such young dunes in the north‐western Negev may be due to limited sand availability because most of the Negev dunes were stable during the Holocene. These findings imply that vegetated linear dune construction can occur in glacial and interglacial (including Holocene) environments in semi‐arid to arid climates if certain conditions are met. In times of increased wind power during the Anthropocene, a period characterized by simultaneous rises in the human impact on the landscape and in climate variability (i.e. drought), local growth of vegetated linear dunes can be expected. This study demonstrates that ground‐penetrating radar is a reliable tool for interpreting the shallow internal structure of young vegetated linear dunes.  相似文献   

10.
Current understanding of bedform dynamics is largely based on field and laboratory observations of bedforms in steady flow environments. There are relatively few investigations of bedforms in flows dominated by unsteadiness associated with rapidly changing flows or tides. As a consequence, the ability to predict bedform response to variable flow is rudimentary. Using high‐resolution multibeam bathymetric data, this study explores the dynamics of a dune field developed by tidally modulated, fluvially dominated flow in the Fraser River Estuary, British Columbia, Canada. The dunes were dominantly low lee angle features characteristic of large, deep river channels. Data were collected over a field ca 1·0 km long and 0·5 km wide through a complete diurnal tidal cycle during the rising limb of the hydrograph immediately prior to peak freshet, yielding the most comprehensive characterization of low‐angle dunes ever reported. The data show that bedform height and lee angle slope respond to variable flow by declining as the tide ebbs, then increasing as the tide rises and the flow velocities decrease. Bedform lengths do not appear to respond to the changes in velocity caused by the tides. Changes in the bedform height and lee angle have a counterclockwise hysteresis with mean flow velocity, indicating that changes in the bedform geometry lag changes in the flow. The data reveal that lee angle slope responds directly to suspended sediment concentration, supporting previous speculation that low‐angle dune morphology is maintained by erosion of the dune stoss and crest at high flow, and deposition of that material in the dune trough.  相似文献   

11.
Star dunes have received less study than other major dune types, though they are widely recognized to represent a major dune type that develops under a multi-directional wind regime. Several types that include simple, compound, and complex star dunes are identified in the south of China’s Kumtagh Desert. It is suggested that the formation and development of these star dunes is controlled by wind regime, the underlying and surrounding topography, and sediment availability. A complex wind regime and rich sediment availability are generally required for the development of star dunes. Especially, wind regime appears to be the most important control factor. The wind regime under which star dunes arise is characterized by the drift potential, amount of variability in drift direction, and the direction distribution mode of the drift potential. It is strongly suggested that a rectangular bimodal wind direction distribution mode has unique significance in star dune formation. Under this mode, star dunes can develop in areas with a directional variability index typical of linear dunes or even barchan dunes. A development model is proposed for star dunes based on the following evolution: barchan dunes → transverse ridges → dune networks → simple star dunes → compound star dunes → star dunes atop complex linear dunes.  相似文献   

12.
This experimental investigation examined the controls on the geometry of cross‐sets formed by subaqueous dunes. A range of steady, unidirectional flow conditions spanning the field of dune existence was investigated, and aggradation rate ranged from 0 mm s?1 to 0·014 mm s?1. Data from an ultrasonic depth profiler consist of high‐resolution temporal and spatial series of bed profiles from which dune height and length, migration rate and the depth of trough scour were measured. Cross‐set thickness and length were measured from sediment peels. The size and shape of dunes from an equilibrium assemblage change continuously. Individual dunes commonly increase in height by trough scouring and, occasionally, by being caught‐up by the upstream dune. Both types of behaviour occur suddenly and irregularly in time and, hence, do not appear to depend on dunes further upstream. However, dune climbing or flattening is a typical response of dunes that disappear under the influence of the upstream dune. All types of behaviour occur at any flow velocity or aggradation rate. Successive dune‐trough trajectories, defined by dunes showing various behaviours, affect the geometry of the preserved cross‐sets. Mean cross‐set thickness/mean dune height averages 0·33 (±0·7), and mean cross‐set length/mean dune length averages 0·49 (±0·08), and both show no systematic variation with aggradation rate or flow velocity. Mean cross‐set thickness/mean cross‐set length tends to decrease with increasing flow velocity and Froude number, therefore allowing a qualitative estimation of flow conditions. Quantitative analysis of the temporal changes in the geometry and migration rate of individual dunes allows the development of a two‐dimensional stochastic model of dune migration and formation of cross‐sets. Computer realizations produced stacks of cross‐sets of comparable shape and thickness to laboratory flume observations, indicating a good empirical understanding of the variability of dune‐trough trajectories. However, interactions among dunes and aggradation rates of the order of 10?2 mm s?1 should be considered in future improved models.  相似文献   

13.
库布齐沙漠南缘抛物线形沙丘表面粒度特征   总被引:5,自引:0,他引:5  
对库布齐沙漠南缘抛物线形沙丘特征断面上下层(0~5cm、5~10cm)沉积物采样分析结果表明,沙丘粒径与分选参数及其分布随沙丘形态、发育程度和植被生长状况发生变化。抛物线形沙丘丘体迎风坡下凹背风坡上凸,丘顶始终处于侵蚀亚环境。在顺风向断面,平均粒径从迎风坡脚到丘顶变粗,从丘顶到背风坡脚又变细,且这种变化在高大沙丘上更为明显;分选性在迎风坡为中等和较好,丘顶较差,顺风向到背风坡脚逐渐由中等变为较好;粒径频率曲线在丘顶双峰正偏,除迎风坡脚单峰正偏外,其余部位均单峰近对称。在垂直于风向的两翼断面,平均粒径在成熟沙丘由翼顶向两侧坡脚趋于变细,而在欠成熟沙丘无明显的变化趋势。翼间平地沉积物受植被等影响,平均粒径偏细但分选性差,偏度为正偏和极正偏,峰度为尖锐和非常尖锐。受不同时期风况的影响,成熟抛物线形沙丘上下层粒度参数在沙丘断面的分布较欠成熟沙丘一致。  相似文献   

14.
Pattern formation is a fundamental aspect of self‐organization in fields of bedforms. Time‐series aerial photographs and airborne light detection and ranging show that fully developed, crescentic aeolian dunes at White Sands, New Mexico, interact and the dune pattern organizes in systematically similar ways as wind ripples and subaqueous dunes and ripples. Documented interactions include: (i) merging; (ii) lateral linking; (iii) defect repulsion; (iv) bedform repulsion; (v) off‐centre collision; (vi) defect creation; and (vii) dune splitting. Merging and lateral linking are constructive interactions that give rise to a more organized pattern. Defect creation and bedform splitting are regenerative interactions that push the system to a more disorganized state. Defect/bedform repulsion and off‐centre collision cause significant pattern change, but appear to be neutral in overall pattern development. Measurements of pattern parameters (number of dunes, crest length, defect density, crest spacing and dune height), dune migration rates, and the type and frequency of dune interactions within a 3500 m box transect from the upwind margin to the core of the dune field show that most pattern organization occurs within the upwind field. Upwind dominance by constructive interactions yields to neutral and regenerative interactions in the field centre. This spatial change reflects upwind line source and sediment availability boundary conditions arising from antecedent palaeo‐lake topography. Pattern evolution is most strongly coupled to the pattern parameters of dune spacing and defect density, such that spatially or temporally the frequency of bedform interactions decreases as the dunes become further apart and have fewer defects.  相似文献   

15.
Data from a moderate energy, meso-tidal beach on the east side of Delaware Bay, New Jersey, USA, revealed the significance of both beach width as a source for aeolian transport and the effect of tidal rise on source width. Wind speeds averaged over 17·1 min, recorded 6 m above the crest of a 0·5 m high dune, ranged from 11·6 to 12·7 m s?1 during the experiment. The highest observed rate of transport on the beach was 0·0085 kg m?1 s?1, monitored at rising low tide when the average wind speed was 11·6 m s?1 across 0·35 mm diameter surface sediments. The wind direction was oblique to the shoreline, creating a source width of 34 m. The reduction in the width of the beach as a source for aeolian transport during rising tide was approximately arithmetic, whereas the reduction in volume of sediment trapped was exponential. Aeolian transport effectively ceased when source width was less than 8 m. Wind conditions, moisture content of the surface sediments and presence of binding salts did not appear to vary dramatically, and no coarse grained lag deposit formed on the surface of the beach. The decrease in rate of sediment trapped through time in the tidal cycle is attributed to differences in source width. Sediment deposited in the litter behind the active beach by strong winds during the rising tide was eroded during the high water period by the high waves and storm surge generated by these winds, and net losses of sediment were observed despite initial aeolian accretion.  相似文献   

16.
Subaqueous dunes are formed on the KwaZulu-Natal outer-shelf due to sediment transport by the Agulhas Current (geostrophic current). These dunes occur within two dune fields at depths of ? 35 to ? 70 m. The net sediment transport direction is south, but short-period reversals form northward-migrating bedforms. The dune fields are physically bounded by late Pleistocene beachrock and aeolianite ledges. A bedform hierarchy has been recognized in the dune fields comprising a system of three generations of climbing bedforms. The outer dunefield has given rise to a sand ridge (H=12 m; L=4 km; W=1.1 km; and an 8° lee slope) whereas the inner dune fields have achieved large-scale dune status. Bedload parting zones within the dune fields occur where the sediment transport direction switches from north to south due to reversals in the geostrophic flow; these zones occur at depths of ? 60, ? 47 and ? 45 m. An interpretative stratigraphic model is presented on what such geostrophite deposits would look like in the ancient sedimentary record.  相似文献   

17.
A second‐generation, source‐to‐sink cellular automaton‐based model presented here captures and quantifies many of the factors controlling the evolution of aeolian dune‐field patterns by varying only a small number of parameters. The role of sediment supply, sediment availability and transport capacity (together defined as sediment state) in the development and evolution of an aeolian dune‐field pattern over long time scales is quantified from model simulations. Seven dune‐field patterns can be classified from simulation results varying the sediment supply and transport capacity that control the type and frequency of dune interactions, the sediment availability of the system and, ultimately, the development of dune‐field patterns. This model allows predictions to be made about the range of sediment supply and wind strengths required to produce the dune‐field patterns seen in the real world. A new clustered dune‐field pattern is identified from model results and used to propose an alternative mechanism for the formation of superimposed dunes. Bedforms are hypothesized to cluster together, simultaneously forming two spatial scales of bedforms without first developing a large basal dune with small superimposed dunes. Manipulation of boundary conditions produces evolving dune fields with different spatial configurations of sediment supply. Trends of spacing and crest length increase with decreasing variability as the dune field matures. This simple model is a valuable tool which can be used to elucidate the dominant control of aeolian sediment state on the construction and evolution of aeolian dune‐field patterns.  相似文献   

18.
Nebkhas (coppice dunes) have formed throughout the gobi desert regions of China in response to the decreased near-surface wind speed caused by vegetation, combined with deposition of aeolian sediment in and around the vegetation. Although nebkhas have been extensively studied on several land surfaces, they have not yet been fully described where they form in areas of gobi desert. Based on field investigations of nebkha morphology and adjacent land surface sediment content on and inside the surface of these dunes, the following were found: (i) the nebkhas that develop in gobi deserts consist of two types – dunes with or without a depositional tail (a shadow dune); (ii) the nebkhas in the area of gobi desert were smaller than those found in sandy deserts, oases, or other areas with a rich sediment source, with a mean height of 0.28 m, mean width 1.63 m and mean length 1.34 m; and (iii) the dune height, length and width were significantly positively linearly related to the vegetation height, length and width. These patterns were similar at all four of the study sites, but the relationships with dune width differed among the sites. The average particle-size distributions on and inside the vegetation did not differ between the four sites. However, significant spatial differences in the sediments on and inside the dunes indicate that nebkhas can capture both local and distant sediments driven by the wind. These findings suggest a potential role of nebkhas in dust emission, although this role must be confirmed in future research.  相似文献   

19.
The links between large‐scale turbulence and the suspension of sediment over alluvial bedforms have generated considerable interest in the last few decades, with past studies illustrating the origin of such turbulence and its influence on flow resistance, sediment transport and bedform morphology. In this study of turbulence and sediment suspension over large sand dunes in the Río Paraná, Argentina, time series of three‐dimensional velocity, and at‐a‐point suspended sediment concentration and particle‐size, were measured with an acoustic Doppler current profiler and laser in situ scattering transmissometer, respectively. These time series were decomposed using wavelet analysis to investigate the scales of covariation of flow velocity and suspended sediment. The analysis reveals an inverse relationship between streamwise and vertical velocities over the dune crest, where streamwise flow deceleration is linked to the vertical flux of fluid towards the water surface in the form of large turbulent fluid ejections. Regions of high suspended sediment concentration are found to correlate well with such events. The frequencies of these turbulent events have been assessed from wavelet analysis and found to concentrate in two zones that closely match predictions from empirical equations. Such a finding suggests that a combination and interaction of vortex shedding and wake flapping/changing length of the lee‐side separation zone are the principal contributors to the turbulent flow field associated with such large alluvial sand dunes. Wavelet analysis provides insight upon the temporal and spatial evolution of these coherent flow structures, including information on the topology of dune‐related turbulent flow structures. At the flow stage investigated, the turbulent flow events, and their associated high suspended sediment concentrations, are seen to grow with height above the bed until a threshold height (ca 0·45 flow depth) is reached, above which they begin to decay and dissipate.  相似文献   

20.
ABSTRACT The ephemeral braided Hoanib River of NW Namibia flows for a few days a year, and only high discharges enable the river to pass through interdunal depressions within the northern Namib Desert dune field to the Atlantic. The dune field comprises mainly large transverse dunes resulting from predominant SSW winds. River flood deposits between aeolian dunes are analogous to mudstone layers conformably interbedded with ancient aeolianite dune foresets. Deep floods pond laterally to considerable depths (metres to >10 m) in adjacent interdunes, depositing mud layers (1–50 cm) to considerable heights on avalanche and stoss faces of bounding dunes. Fairly passive flooding only disturbs aeolian stratification minimally. Floodwater clay infiltrates and settles as an impermeable seal, with a flood pond on top, perched, above regional groundwater. Flood ponds evaporate slowly for long periods (>3 years). Early emergence desiccates higher parts of a mud layer. Subsequent floods can refill a predecessor pond, benefiting from the existing impervious seal. Potential preservation of such mud layers is lower on the stoss face, but high on the avalanche face after burial by subsequent dune reactivation and migration. The leeward (right) Hoanib bank, a dune stoss face, is river and wind eroded to exhume fossil interdune pond mud layers of an earlier Hoanib channel. The highly inclined layers are interbedded with dune avalanche foresets and represent the edges of two successive fossil ponds exposed in plan. Ancient flood pond mudstones occur in the Permian–Triassic hydrocarbon reservoir, the Sherwood Sandstone Group of the Cheshire Basin (Kinnerton Formation) and Irish Sea Basin and were previously used erroneously to argue against the aeolian origin of cross‐bed sets. Hoanib studies show that primary river interaction with a dune field might preserve only localized erosional omission surfaces in ancient aeolianites, with little sandy barform preservation, prone to aeolian reworking. Around the main fluvial channel locus, however, flood pond mudstone layers should form a predictable halo, within which fluid permeability will decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号