首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Tamura et al. (2018) refined our understanding of formative processes that have resulted in a series of coarse‐sand beach ridges at Cowley Beach in north‐eastern Australia. Nott (2018) claimed that there are several shortcomings in the findings Tamura et al. (2018) presented. However, his criticism mostly derived from his misunderstanding of the data and discussion presented in Tamura et al. (2018), which thus should be clarified here. This reply also reiterates how his method for estimating the magnitude of past tropical cyclones from beach ridges is inconsistent with our observations of beach morphology and beach‐ridge formative processes.  相似文献   

2.
ABSTRACT Mixed‐sand‐and‐gravel beaches are a distinctive type of coarse‐clastic beach. Ground‐penetrating radar (GPR) and photographic records of previous excavations are used to investigate the stratigraphy and internal sedimentary structure of mixed‐beach deposits at Aldeburgh in Suffolk, south‐east England. The principles of radar stratigraphy are used to describe and interpret migrated radar reflection profiles obtained from the study site. The application of radar stratigraphy allows the delineation of both bounding surfaces (radar surfaces) and the intervening beds or bed sets (radar facies). The deposits of the main backshore berm ridge consist of seaward‐dipping bounding surfaces that are gently onlapped by seaward‐dipping bed sets. Good correspondence is observed between a sequence of beach profiles, which record development of the berm ridge on the backshore, and the berm ridge's internal structure. The beach‐profile data also indicate that backshore berm ridges at Aldeburgh owe their origin to discrete depositional episodes related to storm‐wave activity. Beach‐ridge plain deposits at the study site consist of a complex, progradational sequence of foreshore, berm‐ridge, overtop and overwash deposits. Relict berm‐ridge deposits, separated by seaward‐dipping bounding surfaces, form the main depositional element beneath the beach‐ridge plain. However, the beach ridges themselves are formed predominantly of vertically stacked overtop/overwash units, which lie above the berm‐ridge deposits. Consequently, beach‐ridge development in this progradational, mixed‐beach setting must have occurred when conditions favoured overtopping and overwashing of the upper beachface. Interannual to decadal variations in wave climate, antecedent beach morphology, shoreline progradation rate and sea level are identified as the likely controlling factors in the development of such suitable conditions.  相似文献   

3.
Beach ridges in macrotidal environments experience strong multi‐annual to multi‐decennial fluctuations of tidal inundation. The duration of tide flooding directly controls the duration of sediment reworking by waves, and thus the ridge dynamics. Flume modelling was used to investigate the impact of low‐frequency tidal cycles on beach ridge evolution and internal architecture. The experiment was performed using natural bioclastic sediment, constant wave parameters and low‐frequency variations of the mean water level. The morphological response of the beach ridge to water level fluctuations and the preservation of sedimentary structures were monitored by using side‐view and plan‐view photographs. Results were compared with the internal architecture of modern bioclastic beach ridges in a macrotidal chenier plain (Mont St. Michel Bay, France) surveyed with ground‐penetrating radar. The experimentally obtained morphologies and internal structures matched those observed in the field, and the three ridge development stages identified in ground‐penetrating radar profiles (early transgressive, late transgressive and progradational) were modelled successfully. Flume experiments indicate that flat bioclastic shapes play a key role in sediment sorting in the breaker zone, and in sediment layering in the beach and washover fans. Water level controls washover geometry, beach ridge evolution and internal structure. Low water levels allow beach ridge stabilization and sediment accumulation lower on tidal flats. During subsequent water level rise, accumulated sediment becomes available for deposition of new washover units and for bayward extension of the beach ridges. In the field, low‐frequency water level fluctuations are related to the 4·4 year and 18·6 year tidal cycles. Experimental results suggest that these cycles may represent the underlying factor in the evolution of the macrotidal chenier coast at the multi‐decadal to centennial time scale.  相似文献   

4.
Weekly topographic profile measurements across a southward migrating recurved-spit complex throughout a summer period have revealed three different mechanisms of berm development, each reflected by a distinctive sedimentary sequence. Each mechanism dominates berm widening along certain sections of the active spit with transition zones separating each one. Along the straight beach sections where a net longshore transport is well developed, sand accumulates at the distal high-tide swash mark during neap tide. These sandy accumulations are neap berms which are later redistributed over the main berm by swash occurring at spring high water. The main berm grows vertically and horizontally as a result. To the south, along the middle portion of the recurved spit, swash bars or ridge-and-runnel systems actively develop, migrate, and weld onto the established berms. This is the second method of berm widening and results from an excess of sand carried into this portion of the spit due to the steadily decreasing transport of the longshore current system. Berm-ridges develop along the southernmost portion of the active recurved spit and represent the third and most rapid form of beach progradation. Wide, broad swash bars build nearly up to the spring high tide level. At neap high tide, the swash cannot extend over this feature. Wave energy is expended on the seaward margin of the swash bar initially developing a low-angle beach face. Rapidly, this beach face steepens and a new berm (beach face and berm top) is developed on top of the swash bar. This berm structure still retains much of its swash bar or ridge appearance, hence the term‘berm-ridge'. Numerous trenches dug into the beach provide data to model the distribution of primary sedimentary structures in recurved spits. Berm-ridges are the most important features along rapidly accreting spits, and structures associated with these features are volumetrically the most significant. Berm-ridges also develop arcuate, vegetated ridges separated by low lying, marsh-infilled swales. These features are commonly seen within barrier islands and designate former inlets.  相似文献   

5.
The processes resulting in the formation of a coarse‐grained sand beach ridge plain at Cowley Beach, north‐east Australia have been questioned by Tamura et al. (2018). These authors now acknowledge the conclusions by Nott et al. (2009) and Nott (2014) that the dominant depositional mechanisms here are waves and inundations generated during tropical cyclones. The Tamura et al. (2018) new ground penetrating radar data highlights that scarping of incipient ridges is a common feature and occurs regularly under non‐storm conditions. The upper sedimentary units deposited during storms are not scarped and demonstrate the high preservation potential and usefulness of these deposits for reconstructing long‐term records of tropical cyclones. Tamura et al. (2018) question the robustness of the methodology used by Nott & Hayne (2001), Nott (2003) and Nott et al. (2009) in estimating the magnitude of the storms responsible for these sedimentary deposits. These supposed issues though have been dealt with in detail in a series of publications over the past nearly two decades. The shortcomings of the Tamura et al. (2018) criticisms are explained in detail here.  相似文献   

6.
《Sedimentology》2018,65(2):461-491
Gravelly beach ridges, which are formed solely by swash processes, may accurately reflect past wave conditions. The thickness (or height) of a gravelly beach ridge approximately equals the height of wave inundation, which is the sum of the surge and wave run‐up. Their ancient counterparts, if well‐preserved and identified, can be used to estimate palaeowave conditions, which can later be converted to palaeowind intensities based on wind–wave relationships. A technique is described for estimating the palaeowind speed in this paper, which is referred to as the gravelly beach‐ridge thickness technique. By comparing these estimates with instrumental wind records obtained at a modern lake, Qinghai Lake in north‐western China, the beach‐ridge thickness technique is shown to be useful for estimating the average wind speed (V avg). When applying this method to ancient fetch‐limited basins, five parameters are necessary: (i) the thickness of the isolated gravelly beach ridge; (ii) the average depth of the water body; (iii) the palaeofetch; (iv) the angle between the palaeowind direction and the normal to the shoreline; and (v) the particle size. This technique was applied to an ancient example in the Eocene Dongying Depression, located in eastern China. The results indicate that the average wind speed of the northern wind ranged between 2·27 m sec−1 and 8·36 m sec−1 from 45·0 Ma to 42·0 Ma, and displayed a generally decreasing trend that included early strengthening followed by weakening and later strengthening during this period. The beach‐ridge thickness technique provides a new perspective on delineating palaeowind conditions and can be applied to ancient fetch‐limited basins with gravelly beach ridges worldwide. Generally, if a water body is sufficiently large (fetch exceeding 40 km), deep (average depth exceeding 10 m) and waves (or winds) are determined to approach the shoreline with high angles (angle of incidence <35°), then the calculation errors will be small to negligible.  相似文献   

7.
A detailed assessment of the impact of a far-field tsunami on the Australian coastline was carried out in the Steep Point region of Western Australia following the July 17 2006 Java tsunami. Tsunami inundation and run-up were mapped on the basis of eyewitness accounts, debris lines, vegetation damage and the occurrence of recently deposited fish, starfish, corals and sea urchins well above high-tide mark. A topographic survey using kinematic GPS with accuracies of 0.02 m in the horizontal and 0.04 m in the vertical recorded flow depths of between 1 and 2 m, inundation of up to 200 m inland, and a maximum recorded run-up of 7.9 m AHD (Australian Height Datum). The tsunami impacted the sparsely populated Steep Point coastline close to low tide. It caused widespread erosion in the littoral zone, extensive vegetation damage and destroyed several campsites. Eyewitnesses reported three waves in the tsunami wave train, the second being the largest. A sand sheet, up to 14 cm thick and tapering landwards over 200 m, was deposited over coastal dunes. The deposits are predominantly composed of moderately well-sorted, medium-grained carbonate sand with some gravel and organic debris. A basal unconformity defines the boundary between tsunami sediments and underlying aeolian dune sand. Evidence for up to three individual waves is preserved as normally graded sequences mantled by layers of dark grey, organic-rich fine silty sand. Given the strong wind regimes in the area and the similarity of the underlying dune deposits to the tsunami sediments, it is likely that seasonal erosion will remove all traces of these sediment sheets within years to decades.  相似文献   

8.
Seaward of the Bosphorus Strait, the south‐west Black Sea shelf is dominated by the world's largest channel network maintained by a quasi‐continuous saline (ca 35 → 31 psu) underflow. Calculations indicate that >85% of the initial discharge of ca 104 m3s?1 spills overbank before the shelf edge. This paper documents interaction of the overspill with sea bed topography using multibeam bathymetry, echo‐sounder images of the water column, conductivity–temperature–depth profiles and sediment cores. Overbank spill is widespread, particularly through crevasse channels and on the middle shelf where confinement by channel banks is negligible. Towards the outer shelf, the wind‐driven Rim Current advects mud along the shelf, contributing to levée successions and deposition on stoss sides of elongate transverse ridges. Echo‐sounder profiles reveal metre‐scale eddies over megaflutes, and breaking lee waves and internal hydraulic jumps over ridges. Megaflutes reach 600 m long and 7 m deep, yet form where the underflow, outside the flute, is no thicker than ca 2 to 5 m. Two types of elongate seaward‐facing ridges are recognized. Type 1 ridges, 2 to 5 m high, consist of bivalve‐rich muddy sand in low‐angle (3·5° to 6°) cross‐sets created by the underflow. Type 2 ridges, ca 5 m high, have crests up to 2 km long and a buried wedge‐shaped foundation (the ‘ridge‐core’) comprised of facies similar to Type 1 ridges. These ridge‐cores are blanketed on the landward side by stratified muds, and are capped by obliquely oriented ribs supporting a diverse benthic community. This facies distribution is interpreted to result from stoss‐side and lee‐side velocity and turbulence fluctuations induced by internal hydraulic jumps and breaking lee waves in overspilling portions of the underflow. Experimental results published by W.H. Snyder and co‐workers effectively explain ridge evolution and flow across the ridges, and therefore can be applied with confidence to less easily studied deep‐marine settings swept by turbidity currents.  相似文献   

9.
Here we investigate the use of optically stimulated luminescence (OSL) for dating cobbles from the body of successive beach ridges and compare cobble surface‐derived ages to standard quartz OSL ages from sand. Between four and eight cobbles and sand samples (age control) were dated with the luminescence method, taken from the modern beach and from beach ridges on the south and north extremes of a prograding spit on the westernmost coast of Lolland, Denmark. Luminescence‐depth profiles perpendicular to the surfaces of the cobbles show that the feldspar infrared signals stimulated at 50 °C were fully reset to various depths into the cobbles prior to final deposition; as a result, the equivalent doses determined from close to the surface of such cobbles can be used to calculate burial ages. Beach‐ridge burial ages given by the average of ages of individual cobbles taken from the same site are consistent, within errors, with the ages derived from the sand samples. Cobble‐ and sand‐derived ages show that the southernmost beach ridge at Albuen was formed around 2 ka ago, indicating that this sandy spit is younger than other coastal systems in Denmark. The agreement between ages derived from clasts and from standard quartz OSL in this study confirms that, even in the absence of sandy sediments, we can reliably date sites using OSL by targeting larger clasts. In addition, the record of prior light exposure contained in the shape of the cobbles’ luminescence‐depth profile removes one of the major uncertainties (i.e. the degree of signal reset prior to burial) in the luminescence dating of high latitude sites.  相似文献   

10.
The beach‐bar reservoir play has become an important exploration target within the Bohai Bay Basin, especially in the Boxing Sag within the Dongying Depression, where a large‐scale lacustrine beach‐bar oil pool has been discovered recently. The sedimentary characteristics, distribution patterns and formation mechanisms of beach‐bar sand bodies in the upper fourth member of the Eocene Shahejie Formation (Es4s) in the Boxing Sag were studied in detail based on seismic, well log data and core data. The Es4s in the Boxing Sag is composed of a third‐order sequence consisting of three systems tracts, i.e. a lowstand systems tract, a transgressive systems tract and a highstand systems tract. Beach‐bar sand bodies were deposited widely in the basin during the lowstand systems tract period. The sandy beach‐bars are characterized by siltstones, fine‐grained silty sandstones interbedded with thin mudstone units. The presence of well‐developed sedimentary structures, such as swash bedding, parting lineation, parallel bedding, ellipsoidal mud clasts, ripples, terrestrial plant debris and vertical burrows, suggests that beach‐bars were deposited in a relatively shallow water environment under the influence of strong hydrodynamics. Laterally, the sandy beach facies occurred as a more continuous sheet‐like body around the sandy bar in most parts of the sag. Stratigraphically, beach‐bars were distributed mainly in the lowstand systems tract and they were less well‐developed in the transgressive systems tract and highstand systems tract. Several factors were probably responsible for the occurrence of the large‐scale beach‐bars during the lowstand systems tract period, including: (i) a gentle palaeoslope and relatively weak structural activities; (ii) a shallow‐water condition with a strong hydrodynamic environment; (iii) high‐frequency oscillations of the lake level; and (iv) an abundant terrigenous clastic feeding system with multiple‐point and linear sediment sources.  相似文献   

11.
Sediments exposed at low tide on the transgressive, hypertidal (>6 m tidal range) Waterside Beach, New Brunswick, Canada permit the scrutiny of sedimentary structures and textures that develop at water depths equivalent to the upper and lower shoreface. Waterside Beach sediments are grouped into eleven sedimentologically distinct deposits that represent three depositional environments: (1) sandy foreshore and shoreface; (2) tidal‐creek braid‐plain and delta; and, (3) wave‐formed gravel and sand bars, and associated deposits. The sandy foreshore and shoreface depositional environment encompasses the backshore; moderately dipping beachface; and a shallowly seaward‐dipping terrace of sandy middle and lower intertidal, and muddy sub‐tidal sediments. Intertidal sediments reworked and deposited by tidal creeks comprise the tidal‐creek braid plain and delta. Wave‐formed sand and gravel bars and associated deposits include: sediment sourced from low‐amplitude, unstable sand bars; gravel deposited from large (up to 5·5 m high, 800 m long), landward‐migrating gravel bars; and zones of mud deposition developed on the landward side of the gravel bars. The relationship between the gravel bars and mud deposits, and between mud‐laden sea water and beach gravels provides mechanisms for the deposition of mud beds, and muddy clast‐ and matrix‐supported conglomerates in ancient conglomeratic successions. Idealized sections are presented as analogues for ancient conglomerates deposited in transgressive systems. Where tidal creeks do not influence sedimentation on the beach, the preserved sequence consists of a gravel lag overlain by increasingly finer‐grained shoreface sediments. Conversely, where tidal creeks debouch onto the beach, erosion of the underlying salt marsh results in deposition of a thicker, more complex beach succession. The thickness of this package is controlled by tidal range, sedimentation rate, and rate of transgression. The tidal‐creek influenced succession comprises repeated sequences of: a thin mud bed overlain by muddy conglomerate, sandy conglomerate, a coarse lag, and capped by trough cross‐bedded sand and gravel.  相似文献   

12.
Perennially ice‐covered lakes can have significantly different facies than open‐water lakes because sediment is transported onto the ice, where it accumulates, and sand grains preferentially melt through to be deposited on the lake floor. To characterize the facies in these lakes, sedimentary deposits from five Antarctic perennially ice‐covered lakes were described using lake‐bottom observations, underwater video and images, and sediment cores. One lake was dominated by laminated microbial mats and mud (derived from an abutting glacier), with disseminated sand and rare gravel. The other four lakes were dominated by laminated microbial mats and moderately well to moderately sorted medium to very coarse sand with sparse granules and pebbles; they contained minor interstitial or laminated mud (derived from streams and abutting glaciers). The sand was disseminated or localized in mounds and 1 m to more than 10 m long elongate ridges. Mounds were centimetres to metres in diameter; conical, elongate or round in shape; and isolated or deposited near or on top of one another. Sand layers in the mounds had normal, inverse, or no grading. Nine mixed mud and sand facies were defined for perennially ice‐covered lakes based on the relative proportion of mud to sand and the style of sand deposition. While perennially ice‐covered lake facies overlap with other ice‐influenced lakes and glaciomarine facies, they are characterized by a paucity of grains coarser than granules, a narrow range in sand grain sizes, and inverse grading in the sand mounds. These facies can be used to infer changes in ice cover through time and to identify perennially ice‐covered lakes in the rock record. Ancient perennially ice‐covered lakes are expected on Earth and Mars, and their characterization will provide new insights into past climatic conditions and habitability.  相似文献   

13.
The morphodynamic behavior of a mesotidal sandy beach was monitored during both calm and energetic conditions. Two years of seasonal surveys were carried out on Charf el Akab, a gently sloped beach in the North Atlantic coast of Morocco. The method of survey consisted of a 3D study of the beach morphological changes and provided 2 cm vertical accuracy. During the surveyed period, Charf el Akab beach underwent very energetic wave conditions, and the breaking wave height was of H b ≥ 1.5 m. The beach is characterized by a nonpermanent swash bar and composed of well-sorted medium sand. The application of environmental parameters revealed a dissipative state with very low beach gradient which did not vary significantly over the studied period. Morphological changes consist of beach erosion and bar decay under high-energy waves, whereas the intertidal bar re-established and the beach recorded an accentuated accretion due to relatively fair weather conditions. The beach volume reveals a seasonal behavior; the sand accumulated during summer is dramatically removed during winter season. The range in beach sand volume from the most accreted to the most eroded conditions observed is about −5,493 m3. The average sand volume flux between surveys reaches −1 and 0.4 m2/day during peak erosion and accretion periods. The relationships between the wave forcing and the sand volume adjustments were examined. The sand volume change was found to be highly correlated (0.91) with the wave energy flux. The highest correspondence (0.95) was found between the sand flux rate and the wave energy flux. The wave forcing is expected to be the main factor governing beach morphodynamics at Charf el Akab site.  相似文献   

14.
在烟台第一海水浴场,利用经纬仪进行2条海滩横剖面形态测量,并在不同地貌单元采集沉积物样品进行粒度分析。测量显示,该海滩仅有小规模沙坝和沟槽体系。后滨上有风成沉积,但滩肩和海岸沙丘发育均不明显。粒度分析结果表明,海滩沉积物以中砂、粗砂为主,杂以砾或细砂,比山东半岛其他海滩沉积物明显要粗。由陆向海沉积物呈带状分布,平均高潮线附近和沙坝迎水坡侵蚀作用均显著。因此认为缺乏沙源供应的基岩岬湾式海岸是导致沙滩地貌发育不典型、海滩侵蚀作用显著的主要原因。  相似文献   

15.
Clastic, depositional strandplain systems have the potential to record changes in the primary drivers of coastal evolution: climate, sea‐level, and the frequency of major meteorological and oceanographic events. This study seeks to use one such record from a southern Brazilian strandplain to highlight the potentially‐complex nature of coastal sedimentological response to small changes in these drivers. Following a 2 to 4 m highstand at ca 5·8 ka in southern Brazil, falling sea‐level reworked shelf sediment onshore, forcing coastal progradation, smoothing the irregular coastline and forming the 5 km wide Pinheira Strandplain, composed of ca 500 successive beach and dune ridges. Sediment cores, grab samples and >11 km of ground‐penetrating radar profiles reveal that the strandplain sequence is composed of well‐sorted, fine to very‐fine quartz sand. Since the mid‐Holocene highstand, the shoreline prograded at a rate of ca 1 to 2 m yr?1 through the deposition of a 4 to 6 m thick shoreface unit; a 1 to 3 m thick foreshore unit containing ubiquitous ridge and runnel facies; and an uppermost beach and foredune unit. However, the discovery of a linear, 100 m wide barrier ridge with associated washover units, a 3 to 4 m deep lagoon and 250 m wide tidal inlet within the strandplain sequence reveals a period of shoreline transgression at 3·3 to 2·8 ka during the otherwise regressive developmental history of the plain. The protected nature of Pinheira largely buffered it from changes in precipitation patterns, wave energy and fluvial sediment supply during the time of its formation. However, multiple lines of evidence indicate that a change in the rate of relative sea‐level fall, probably due to either steric or ice‐volume effects, may have affected this coastline. Thus, whereas these other potential drivers cannot be fully discounted, this study provides insights into the complexity of decadal‐scale to millennial‐scale coastal response to likely variability in sea‐level change rates.  相似文献   

16.
A three-dimensional model for a tidal inlet-barrier island depositional system was constructed through examination of 37 vibracores and 10 auger drill holes on Capers and Dewees Islands, South Carolina. Two cycles of southerly inlet migration and subsequent abandonment resulted in beach ridge truncation on the northern ends of both barriers. Historical evidence indicates that these tidal inlets migrated 1.5 km to the south owing to a dominant north-south longshore transport direction. The hydraulic inefficiency of these over-extended inlet channels caused shorter, more northerly-oriented channels to breach through the ebbtidal deltas. After inlet reorientation, large wave-formed swash bars migrated landward closing former inlet channels. Weakened tidal currents through the abandoned channels permitted clay plugs to form thick impermeable seals over active channel-fill sand and shell. Price and Capers Inlets formed during the onset of the Holocene transgression following submergence of the ancestral Plio-Pleistocene Santee River drainage system. Coarse, poorly sorted inlet-deposited sand disconformably overlies Pleistocene estuarine clay and is capped by a dense clay plug. Shoreline reorientation and landward retreat of a primary barrier island chain occurred between the first and second cycles of inlet-channel migration and abandonment. Beach ridges prograded seaward over the first inlet sequence. A second cycle of inlet migration truncated the northernmost portion of these beach ridges and scoured into the clay plug of the earlier inlet deposit. Abandonment of this channel resulted in deposition of a second abandoned inlet-channel clay plug. Abandoned tidal inlet channels exhibit U-shaped strike and crescentic- to wedge-shaped dip geometries. Basal, poorly sorted inlet sands are sealed beneath impermeable, abandoned-channel silt and clay, washover deposits, and salt marsh. Multiple episodes of inlet migration and abandonment during a rising sea-level deposited stacked inlet-fill sequences within the barrier islands. The resultant stratigraphy consists of interlayered, fining-upward, active inlet-fill sand overlain by thicker abandoned inlet-fill clay plugs. These clay plugs form impermeable zones between adjacent barrier island sand bodies. Shoreline transgression would remove the uppermost barrier island deposits, sealing the inlet-fill sequences between Pleistocene estuarine clay and shoreface to shelf silt and clay.  相似文献   

17.
<正>This study examined spatial variations in the concentration,grain size and heavy mineral assemblages on Cedar Beach(Lake Erie,Canada).Magnetic studies of heavy mineral-enriched,dark-reddish sands present on the beach showed that magnetite(~150μm) is the dominant magnetic mineral.Surficial magnetic susceptibility values defined three zones:a lakeward region close to the water line(Zone 1),the upper swash zone(Zone 2) and the region landwards of the upper swash zone (Zone 3).Zone 2 showed the highest bulk and mass susceptibility(κ,χ) and the highest mass percentage of smaller grain-size(250μm) fractions in the bulk sand sample.Susceptibility(i.e.κandχ) values decreased and grain size coarsened from Zone 2 lakewards(into Zone 1) and landwards (into Zone 3),and correlated with the distribution of the heavy mineral assemblage,most probably reflecting preferential separation of large,less dense particles by waves and currents both along and across the beach.The eroded western section of Cedar Beach showed much higher concentrations of heavy minerals including magnetite,and finer sand grain sizes than the accreting eastern section, suggesting that magnetic techniques could be used as a rapid,cost-effective way of examining erosion along sensitive coastline areas.  相似文献   

18.
Grain size and sorting represent two key parameters when characterizing sediments or modelling beach morphology and sediment transport. Traditionally, an average value for grain size or sorting is often assumed for the entire area, determined from only a few sediment samples, ignoring any spatial (or temporal) variability in sediment characteristics. This contribution uses a data set of physical surface sediment samples from 53 beach locations around the south‐west peninsula of the United Kingdom, in addition to bi‐monthly, high spatial resolution (mean 240 samples) digital grain‐size surveys from a high‐energy, oceanic, sandy beach (Perranporth, North Cornwall). Systematic spatial variations in grain size and sorting were consistently observed in the seaward direction across the intertidal zone of sandy beaches, with grain‐sizes coarsening and sorting improving by up to 51·7% and 64·3%, respectively. This variability was deterministically related to the time‐averaged, antecedent‐adjusted energy dissipated by breaking waves, with the observed maximum grain‐size and sorting values correlating with the location of peak wave energy dissipation (r2 = 0·998, < 0·01).  相似文献   

19.
The sedimentological and chronological analysis of the last deglacial reef sequences of Tahiti (French Polynesia), drilled during the Integrated Ocean Drilling Program Expedition 310, provide a high‐resolution data set allowing a well‐constrained forward modelling study. This study represents the first attempt to model in three dimensions the coral reef development of Tahiti during the last deglacial sea‐level rise (23 000 to 6000 cal yr bp ) using the software dionisos developed by IFP Energies nouvelles. It allows the testing of the reconstructed last deglacial sea‐level curve and the different environmental parameters (for example, wave energy and sediment fluxes) that could have influenced the reef development. These last deglacial reef sequences form two prominent ridges occurring seaward of the living barrier reef that consist of successive submerged reefs. These reefs have been prone to drowning because the window of maximum carbonate production rate is inhibited by high water turbidity (sediment supply from a nearby river), shallow depth of wave action and substrate availability. These factors, combined with rapid sea‐level rise, have driven the growth of retrograding reef pinnacles. Local factors (substratum nature, sediment supply and wave energy) were the main processes that induced the drowning of the inner ridge, whereas interplay of local and global factors (acceleration of the sea‐level rise) was responsible for the drowning of the outer ridge. This particular acceleration of sea‐level rise of 16 m between 14·6 ka and 14 ka bp corresponds to meltwater pulse 1A.  相似文献   

20.
The influence of vegetation on aeolian sediment transport rate in the region from a backshore to a foredune was investigated at the Hasaki Coast in Japan, where an onshore wind was predominant and the creeping beach grasses Carex kobomugi and Calystegia soldanella were major species. The comparison of cross-shore distributions of the cross-shore component of aeolian sand transport rate with and without vegetation, which were estimated on the basis of the beach profile changes and a mass conservation equation, showed that the creeping grasses influenced the aeolian sand transport rate. The landward aeolian sand transport rate rapidly decreased landward from the seaward limit of vegetation when the grasses grew. The aeolian sand transport rate reduced by 95% with a vegetation cover of 28%. On the other hand, when the grasses were absent, the landward aeolian sand transport rate did not decrease near the seaward vegetation limit, but near the foot of the foredune.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号