首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The long-term histories of the neighboring Nakuru–Elmenteita and Naivasha lake basins in the Central Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and the formation of disparate sedimentary environments. Although modern climate conditions in the Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen 14C and 40Ar/39Ar dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recorded in these basins based on fossil diatom assemblages and geologic field mapping. Our study shows a tendency towards increasing alkalinity and shrinkage of water bodies in both lake basins during the last million years. Ongoing volcano-tectonic segmentation of the lake basins, as well as reorganization of upstream drainage networks have led to contrasting hydrologic regimes with adjacent alkaline and freshwater conditions. During extreme wet periods in the past, such as during the early Holocene climate optimum, lake levels were high and all basins evolved toward freshwater systems. During drier periods some of these lakes revert back to alkaline conditions, while others maintain freshwater characteristics. Our results have important implications for the use and interpretation of lake sediment as climate archives in tectonically active regions and emphasize the need to deconvolve lacustrine records with respect to tectonics versus climatic forcing mechanisms.  相似文献   

2.
《Quaternary Science Reviews》2007,26(13-14):1771-1789
The Neogene geological history of East Africa is characterised by the doming and extension in the course of development of the East African Rift System with its eastern and western branches. In the centre of the Western Rift Rise Rwanda is situated on Proterozoic basement rocks exposed in the strongly uplifted eastern rift shoulder of the Kivu–Nile Rift segment, where clastic sedimentation is largely restricted to the rift axis itself. A small, volcanically and tectonically controlled depository in northwestern Rwanda preserved the only Neogene sediments known from the extremely uplifted rift shoulder. Those (?)Pliocene to Pleistocene/Holocene fluvio-lacustrine muds and sands of the Palaeo-Nyabarongo River record the influence of Virunga volcanism on the major drainage reversal that affected East Africa in the Plio-/Pleistocene, when the originally rift-parallel upper Nile drainage system became diverted to the East in order to enter the Nile system via Lake Victoria. Sedimentary facies development, heavy mineral distributions and palaeobiological controls, including hominid artefacts, signal a short time interval of <300–350 ka to complete this major event for the sediment supply system of the Kivu–Nile Rift segment.  相似文献   

3.
In this paper we present a review of sedimentological, geomorphological, lithological, geochronological and geophysical data from major, minor and satellite basins of the Baikal Rift Zone (BRZ) and discuss various aspects of its evolution. Previously, the most detailed sedimentological data have been obtained from the basins of the central BRZ, e.g., Baikal, Tunka and Barguzin, and have been used by many scientists worldwide. We add new information about the peripheral part and make an attempt to provide a more comprehensive view on BRZ sedimentation stages and environments and their relations to local and regional tectonic events. A huge body of sedimentological data was obtained many years ago by Soviet geologists and therefore is hardly accessible for an international reader. We pay tribute to their efforts to the extent as the format of a journal paper permits. We discuss structural and facial features of BRZ sedimentary sequences for the better understanding of their sedimentation environments. In addition, we review tectono-sedimentation stages, neotectonic features and volcanism of the region. Finally, we consider the key questions of the BRZ evolution from the sedimentological point of view, in particular, correlation of Mesozoic and Cenozoic basins, bilateral growth of the Baikal rift, Miocene sedimentation environment and events at the Miocene/Pliocene boundary, Pliocene and Pleistocene tectonic deformations and sedimentation rates. The data from deep boreholes and surface occurrences of pre-Quaternary sediments, the distribution of the Pleistocene sediments, and the data from the Baikal and Hovsgol lakes sediments showed that 1) BRZ basins do not fit the Mesozoic extensional structures and therefore hardly inherited them; 2) the Miocene stage of sedimentation was characterized by low topography and weak tectonic processes; 3) the rifting mode shifted from slow to fast at ca. 7–5 Ma; 4) the late Pleistocene high sedimentation rates reflect the fast subsidence of basin bottoms.  相似文献   

4.
Tertiary sediments around Lake Rudolf (now Lake Turkana) in the East African Rift Valley have yielded abundant palaeontological and palaeoanthropological remains. The present study provides a basis for interpreting the ancient lake environment and furthering our knowledge of rift valley lacustrine deposits. Bottom sediments in Lake Rudolf are fine-grained (average 71% clay) well laminated and have montmorillonite, kaolinite and illite as the principal clay minerals. The sediments are relatively poor in silica (40–45%) but rich in Fe2O3 (10%). Both mineral proportions and chemical composition change systematically over the area of the lake and delineate four sedimentological provinces: (1) iron-rich, silty kaolinitic muds (Omo Delta); (2) iron-rich, fine-grained montmorillonite muds (North Basin); (3) silty montmorillonite muds rich in Na2O and K2O (Central Delta); and (4) argillaceous calcite silts (South Basin). Omo Delta and North Basin sediments are derived from the volcanics of the Ethiopian plateau; the source of Central Delta sediments is the Precambrian metamorphic terrain of the rift valley margin; the South Basin has a restricted detrital input. The water in the lake is alkaline (pH 9.2) and moderately saline (TDS = 2500 p.p.m.). Comparisons with influent water from the Omo River indicate a 200-fold concentration for the lake water. Models based on equilibrium between sediments and water column account for most of the non-conservative chemical components in the lake water. Sedimentation rates are high (about 1 m per 1000 years) and the dominance of detrital sediments makes Lake Rudolf unusual in comparison with other closed-basin lakes in the African Rift Valley although some similarities with ancient rift valley deposits are suggested.  相似文献   

5.
The assessment of water resources in the Rift Valley environment is important for population, agriculture and energy-related issues and depends on a good understanding of the relationship between freshwater lakes and regional groundwater. This can be hampered by the amount of fluid-rock interaction which occurs throughout the rift, obscuring original hydrochemical signatures. However, O and H stable isotope ratios can be used as tracers of infiltration over sometimes considerable distances, while showing that the volcanic edifices of the rift floor have varying effects on groundwater flow patterns. Specific cases from Kenya and Ethiopia are considered, including Lakes Naivasha, Baringo, Awasa and Zwai.In addition to their physical tracing role, stable isotopes can reveal information about processes of fluid-rock interaction. The general lack of O isotope shifting in rift hydrothermal systems suggests a high water:rock ratio, with the implication that these systems are mature. Carbon isotope studies on the predominantly bicarbonate waters of the rift show how they evolve from dilute meteoric recharge to highly alkaline waters, via the widespread silicate hydrolysis promoted by the flux of mantle carbon dioxide which occurs in most parts of the rift. There appears to be only minor differences in the C cycle between Kenya and Ethiopia.  相似文献   

6.
7.
Giacomo Corti   《Earth》2009,96(1-2):1-53
The Main Ethiopian Rift is a key sector of the East African Rift System that connects the Afar depression, at Red Sea–Gulf of Aden junction, with the Turkana depression and Kenya Rift to the South. It is a magmatic rift that records all the different stages of rift evolution from rift initiation to break-up and incipient oceanic spreading: it is thus an ideal place to analyse the evolution of continental extension, the rupture of lithospheric plates and the dynamics by which distributed continental deformation is progressively focused at oceanic spreading centres.The first tectono-magmatic event related to the Tertiary rifting was the eruption of voluminous flood basalts that apparently occurred in a rather short time interval at around 30 Ma; strong plateau uplift, which resulted in the development of the Ethiopian and Somalian plateaus now surrounding the rift valley, has been suggested to have initiated contemporaneously or shortly after the extensive flood-basalt volcanism, although its exact timing remains controversial. Voluminous volcanism and uplift started prior to the main rifting phases, suggesting a mantle plume influence on the Tertiary deformation in East Africa. Different plume hypothesis have been suggested, with recent models indicating the existence of deep superplume originating at the core-mantle boundary beneath southern Africa, rising in a north–northeastward direction toward eastern Africa, and feeding multiple plume stems in the upper mantle. However, the existence of this whole-mantle feature and its possible connection with Tertiary rifting are highly debated.The main rifting phases started diachronously along the MER in the Mio-Pliocene; rift propagation was not a smooth process but rather a process with punctuated episodes of extension and relative quiescence. Rift location was most probably controlled by the reactivation of a lithospheric-scale pre-Cambrian weakness; the orientation of this weakness (roughly NE–SW) and the Late Pliocene (post 3.2 Ma)-recent extensional stress field generated by relative motion between Nubia and Somalia plates (roughly ESE–WNW) suggest that oblique rifting conditions have controlled rift evolution. However, it is still unclear if these kinematical boundary conditions have remained steady since the initial stages of rifting or the kinematics has changed during the Late Pliocene or at the Pliocene–Pleistocene boundary.Analysis of geological–geophysical data suggests that continental rifting in the MER evolved in two different phases. An early (Mio-Pliocene) continental rifting stage was characterised by displacement along large boundary faults, subsidence of rift depression with local development of deep (up to 5 km) asymmetric basins and diffuse magmatic activity. In this initial phase, magmatism encompassed the whole rift, with volcanic activity affecting the rift depression, the major boundary faults and limited portions of the rift shoulders (off-axis volcanism). Progressive extension led to the second (Pleistocene) rifting stage, characterised by a riftward narrowing of the volcano-tectonic activity. In this phase, the main boundary faults were deactivated and extensional deformation was accommodated by dense swarms of faults (Wonji segments) in the thinned rift depression. The progressive thinning of the continental lithosphere under constant, prolonged oblique rifting conditions controlled this migration of deformation, possibly in tandem with the weakening related to magmatic processes and/or a change in rift kinematics. Owing to the oblique rifting conditions, the fault swarms obliquely cut the rift floor and were characterised by a typical right-stepping arrangement. Ascending magmas were focused by the Wonji segments, with eruption of magmas at surface preferentially occurring along the oblique faults. As soon as the volcano-tectonic activity was localised within Wonji segments, a strong feedback between deformation and magmatism developed: the thinned lithosphere was strongly modified by the extensive magma intrusion and extension was facilitated and accommodated by a combination of magmatic intrusion, dyking and faulting. In these conditions, focused melt intrusion allows the rupture of the thick continental lithosphere and the magmatic segments act as incipient slow-spreading mid-ocean spreading centres sandwiched by continental lithosphere.Overall the above-described evolution of the MER (at least in its northernmost sector) documents a transition from fault-dominated rift morphology in the early stages of extension toward magma-assisted rifting during the final stages of continental break-up. A strong increase in coupling between deformation and magmatism with extension is documented, with magma intrusion and dyking playing a larger role than faulting in strain accommodation as rifting progresses to seafloor spreading.  相似文献   

8.
This work focuses on the transition from the Las Leoneras to Lonco Trapial Formations, in the lower part of the Early Jurassic succession of the incipient rift phase of the Cañadon Asfalto Basin (western part of Chubut Province – Patagonia, Argentina). Twenty lithofacies have been identified and grouped into seven facies associations on the basis of field characteristics (sedimentological and lithological) and optical microscope analysis, from two localities representing proximal and distal locations in the basin. The spatial relationship between all the lithofacies provided a four-dimensional reconstruction of the palaeoenvironmental evolution, showing how the original, clastic sedimentation in alluvial/fluvial and lake environments was modified by short-lived volcanic events during three volcanic cycles, and how the environment reacted after the input of huge amounts of volcaniclastics. Progradation of small deltas and subaqueous lobes, retrogradation caused by rising lake levels, and frequent erosion of valleys were typical processes in this environment. When explosive volcanism began, the original tectono-climatic control on sedimentation was replaced by the volcanic control, and the volcanically-forced sedimentation broke the equilibrium among production, delivery and accumulation of sediments. The nature of the volcanic eruptions and the different propensity of volcanic lithofacies to produce particles of different size and types (lithics, crystals and glass) are also analyzed. The role of volcanism in the production and transport of great volumes of sediments across sedimentary systems needs to be carefully re-examined, and the analysis on the variability in the composition of volcaniclastic deposits must take into account that volcaniclastic particle types may not simply reflect a linear deepening in the dissection of magmatic arcs through time but are often controlled by the style of the eruptions and the lithological variation of the volcanic products.  相似文献   

9.
British, German, American and Kenyan seismologists undertook a preliminary crustal seismic programme in the Kenya Rift in the summer of 1985. Thirteen explosions, totalling 7 tonnes, were fired in lakes and boreholes, and were recorded by 42 three-component stations. Preliminary results show that the deep structure along the axis of the Rift is more complex than previous models have suggested.  相似文献   

10.
The mountain province of East Siberia, which includes the Baikal Rift system, is a zone of high tectonic and seismic hazard. Earthquakes and coseismic faulting are dangerous not only by themselves but also as far as they initiate rock collapse and downslope movement of unconsolidated deposits, which may block river valleys and produce rockfall-dammed lakes. Within some rifts of the rift system, evidence of past dammed lakes was discovered that arose instantly, in a geological sense, and flooded large areas of forest. In mountains around some rift basins, small living dammed lakes were encountered, as well as traces of catastrophic debris flows that may have accompanied breaching of earlier collapse-produced dams. Analysis of geomorphological setting in the region, especially in the Muya Rift Basin, revealed conditions favourable to hazardous origination of rockfall-dammed lakes. A large dammed lake may come into existence due to the collapse of bedrock over the narrow antecedent valley of Vitim in the Muya Rift. Preliminary estimates based upon data on the Vitim River discharge showed that the lake might form in as short as 27 days, though the rapidity of its formation, and hence the degree of the risk, can vary as a function of the highly variable amount of summer discharge of the river. Rockfall-dammed lakes may also originate in the floors of Chara and Tunka Rift Basins. Due to their rapid formation, lakes will bring about extensive flooding and cause danger to the taiga, railways and constructions in this populated developing area, and will cause degradation of the permafrost.  相似文献   

11.
The stress fields in the Tunka Rift at the southwestern flank of the Baikal Rift Zone are reconstructed and analyzed on the basis of a detailed study of fracturing. The variation of these fields is of a systematic character and is caused by a complex morphological and fault-block structure of the studied territory. The rift was formed under conditions of oblique (relative to its axis) regional NW-SE extension against the background of three ancient tectonic boundaries (Sayan, Baikal, and Tuva-Mongolian) oriented in different directions. Such a geological history resulted in the development of several en echelon arranged local basins and interbasinal uplifted blocks, the strike-slip component of faulting, and the mosaic distribution of various stress fields with variable orientation of their principal vectors. The opening of basins was promoted by stress fields of a lower hierarchical rank with a near-meridional tension axis. The stress field in the western Tunka Rift near the Mondy and Turan basins is substantially complicated because the transform movements, which are responsible for the opening of the N-S-trending rift basins in Mongolia, become important as Lake Hövsgöl is approached. It is concluded that, for the most part, the Tunka Rift has not undergone multistage variation of its stress state since the Oligocene, the exception being a compression phase in the late Miocene and early Pliocene, which could be related to continental collision of the Eurasian and Indian plates. Later on, the Tunka Rift continued its tectonic evolution in the transtensional regime.  相似文献   

12.
The Olorgesailie Formation (1.2-0.49 Ma) consists of fluvial and lacustrine rift sediments that have yielded abundant Acheulean artifacts and a fossil hominin (Homo cf. erectus). In testing prior understandings of the paleoenvironmental context, we define nine new geochemical zones. A Chemical Index of Alteration suggests increased catchment weathering during deposition of Members 1, 2, 7, 11, and 13. Biophile elements (Br, S) peak in M8-9 and lower M13 possibly reflecting increased input from soil erosion. REE data show that the Magadi Trachytes supplied most siliciclastic grains. Sixteen diatom stages indicate conductivities of 200-16,000 μS cm− 1 and pH of 7.5-9.5 for five deep-water lakes, ten shallow lakes and sixteen wetlands. These results are compared with diatom data from other sections in the basin and show aquatic spatial variability over km-scale distances. Similar floras are traceable over several kilometers for M2, M3 and M9, indicating broadly homogeneous lacustrine conditions during these times, but diatoms in other members imply variable conditions, some related to local tectonic controls. This lateral and temporal variability emphasizes the importance of carrying out stratigraphic sampling at multiple sites within a basin in efforts to define the environmental context relevant to human evolution.  相似文献   

13.
The Buchan Rift, in northeastern Victoria, is a north–south-trending basin, which formed in response to east–west crustal extension in the Early Devonian. The rift is filled mostly with Lower Devonian volcanic and volcaniclastic rock of the Snowy River Volcanics. Although the structure and geometry of the Buchan Rift and its major bounding faults are well mapped at the surface, a discrepancy exists between the surface distribution of the thickest rift fill and its expected potential field response. To investigate this variation, two new detailed land-based gravity surveys, which span the rift and surrounding basement rocks in an east–west orientation, have been acquired and integrated with pre-existing government data. Qualitative interpretation of the observed magnetic data suggests the highly magnetic rocks of the Snowy River Volcanics have a wider extent at depth than can be mapped at the surface. Forward modelling of both land-based gravity data and aeromagnetic data supports this interpretation. With the Snowy River Volcanics largely confined within the Buchan Rift, resolved geometries also allow for the interpretation of rift boundaries that are wider at depth. These geometries are unusual. Unlike typical basin inversions that involve reactivation of rift-dipping faults, the bounding faults of the Buchan Rift dip away from the rift axis and thus appear unrelated to the preceding rifting episode. Limited inversion of previous extensional rift faults to deform the rift-fill sequences (e.g. Buchan Synclinorium) appears to have been followed by the initiation of new reverse faults in outboard positions, possibly because the relatively strong igneous rift fill began to act as a rigid basement ramp during continued E–W crustal shortening in the Middle Devonian Tabberabberan Orogeny. Overthrusting of the rift margins by older sediments and granite intrusions of the adjacent Tabberabbera and Kuark zones narrowed the exposed rift width at surface. This scenario may help explain the steep-sided geometries and geophysical expressions of other rift basins in the Tasmanides and elsewhere, particularly where relatively mechanically strong basin fill is known or suspected.  相似文献   

14.
A review of seismological data on the crustal structure of the East African Rift zone is presented. The only refraction line is that along the Gregory Rift, which indicates a 7.5 km/sec refractor which is presumed to be the Moho. The bulk of data is provided by surface-wave dispersion studies. Some preliminary measurements of crustal and sub-Moho velocities using the University of Durham array at Kaptagat in Kenya are included.

There is now a growing body of evidence that the crust is generally of shield type over the whole rift zone. The exception is along the axis of the Gregory Rift, where a low-velocity Moho and some crustal modification is apparent. This is presumably the result of magma intrusions and suggests some crustal separation along this section of the rift. Sub-Moho velocities are probably normal outside the rifts themselves, though anomalously low upper-mantle velocities are to be associated with rifting. There is firm evidence for thinning of the lithosphere along the eastern branch of the rift. A cross-section of the Gregory Rift which is consistent with the current data is presented.  相似文献   


15.
The data obtained from long-term field studies in the Baikal Rift area are summarized. A new stratigraphic scheme is developed on the basis of previous stratigraphic research of N.A. Logachev. The new elements of the scheme are (1) the use of regional correlation horizons; (2) recognition of pre-Tankhoi (pre-Late Oligocene) sediments correlated with the Maastrichtian-Early Oligocene deposits of the Baikal Fore-deep; (3) elimination from the scheme of the Khalagai and Anosovka formations and distinction on their basis of the Tagai, Sasa, Osinovka, and Shankhaikha formations; (4) recognition of several weathering crust beds and Neogene paleosols. The “lower Eopleistocene (Upper Pliocene)” red-rock formation of Logachev is subdivided into the following stratigraphic units: the Cretaceous-Paleogene unit characterized by a few finds of Early Oligocene fossils, the Upper Miocene-Lower Pliocene red clay bearing numerous fossil remains, and the Upper Pliocene reddish clay with abundant localities of fossils. The sections examined in the land portion of the Baikal Rift are correlated with bottom sediments of the Baikal depression and are subdivided into three instead of the two commonly accepted large tectonic-lithological-stratigraphic complexes. Stratigraphic studies provide a new insight into the history of the Baikal Rift and into some general questions of the continental rift formation.  相似文献   

16.
Lithologic Hydrocarbon Deposits in Rift Lake Basins in Eastern China   总被引:2,自引:0,他引:2  
The rift lake basins in the eastern China have abundant hydrocarbon resources of lithologic deposits, which resulted from excellent source rocks and multi-type sandbodies developed during strong rifting. Vertically, the lithologic deposits are mainly distributed in the lowstand, lacustrine invasion and early highstand systems of third-order sequence corresponding to a secondary tectonic episode of strong rifting, and laterally they are closely related to various fans and turbidite sandbodies controlled by syn-sedimentary faults. A variety of lithologic traps have been developed in the rift lake basins, and they generally have favorable conditions of source-reservoir-seal assemblage and hydrocarbon accumulation dynamics, indicating that there is a great exploration potential of lithologic deposits in the rift lake basins. In order to obtain satisfactory effects of lithologic deposit exploration, it is required to combine new theories with advanced technical methods.  相似文献   

17.
The northeastern extremity of the East-Asian Rift Belt is designated as the Priokhotsky Rift, comprising the broadly north–south Torom (750 × 100 km) and Nizhneamursky (450 × 100 km) open faults formed by a system of northeast striking grabens associated with the closure of the Tan-Lu shear system and north–south striking grabens formed in a setting of oblique extension. Infilling of the grabens corresponding to the rift stage proper is the Eocene?Miocene coal-bearing molasse; the fields of the Miocene basalts are also related to it. The grabens of the rift belt are overlain by the Pliocene–Neopleistocene associations of rift basins in the forming plate cover of the Alpine platform.  相似文献   

18.
Petit 《地学学报》1998,10(3):160-169
To better understand how active deformation localizes within a continental plate in response to extensional and transtensional tectonics, a combined analysis of high-quality gravity (Bouguer anomaly) and seismicity data is presented consisting of about 35000 earthquakes recorded in the Baikal Rift Zone. This approach allows imaging of deformation patterns from the surface down to the Moho. A comparison is made with heat flow variations in order to assess the importance of lithospheric rheology in the style of extensional deformation. Three different rift sectors can be identified. The southwestern rift sector is characterized by strong gravity and topography contrasts marked by two major crustal faults and diffuse seismicity. Heat flow shows locally elevated values, correlated with recent volcanism and negative seismic P-velocity anomalies. Based on earthquake fault plane solutions and on previous stress field inversions, it is proposed that strain decoupling may occur in this area in response to wrench-compressional stress regime imposed by the India–Asia collision. The central sector is characterized by two major seismic belts; the southernmost one corresponds to a single, steeply dipping fault accommodating oblique extension; in the centre of lake Baikal, a second seismic belt is associated with several dip-slip faults and subcrustal thinning at the rift axis in response to orthogonal extension. The northern rift sector is characterized by a wide, low Bouguer anomaly which corresponds to a broad, high topographic dome and seismic belts and swarms. This topography can be explained by lithospheric buoyancy forces possibly linked to anomalous upper mantle. At a more detailed scale, no clear correlation appears between the surficial fault pattern and the gravity signal. As in other continental rifts, it appears that the lithospheric rheology influences extensional basins morphology. However, in the Baikal rift, the inherited structural fabric combined with stress field variations results in oblique rifting tectonics which seem to control the geometry of southern and northeastern rift basins.  相似文献   

19.
Reconstructions of the timing and frequency of past eruptions are important to assess the propensity for future volcanic activity, yet in volcanic areas such as the East African Rift only piecemeal eruption histories exist. Understanding the volcanic history of scoria-cone fields, where eruptions are often infrequent and deposits strongly weathered, is particularly challenging. Here we reconstruct a history of volcanism from scoria cones situated along the eastern shoulders of the Kenya–Tanzania Rift, using a sequence of tephra (volcanic ash) layers preserved in the ~250-ka sediment record of Lake Chala near Mount Kilimanjaro. Seven visible and two non-visible (crypto-) tephra layers in the Lake Chala sequence are attributed to activity from the Mt Kilimanjaro (northern Tanzania) and the Chyulu Hills (southern Kenya) volcanic fields, on the basis of their glass chemistry, textural characteristics and known eruption chronology. The Lake Chala record of eruptions from scoria cones in the Chyulu Hills volcanic field confirms geological and historical evidence of its recent activity, and provides first-order age estimates for seven previously unknown eruptions. Long and well-resolved sedimentary records such as that of Lake Chala have significant potential for resolving regional eruption chronologies spanning hundreds of thousands of years.  相似文献   

20.
A huge hydrothermal field, named the "Hakurei Sulfide Deposit" (HSD) was discovered in the North Myojin Rift (NMR), Izu–Bonin Back-Arc Rift (BAR) during the 2003 survey cruise of R/V Hakurei-maru No.2 . This paper investigates the geotectonic features and the tectonic setting of ore deposits between the NMR and the Hokuroku Basin, which is representative of kuroko fields in Japan. The topographic features of the NMR and the Hokuroku Basin are similar. Both have a clear ring structure surrounded by faults and the east–west width is almost the same. Many kuroko deposits were formed on the extrusion centers of the five pre-mineral acidic volcanic complexes, located in a loop inside the Hokuroku Basin. In the case of the NMR, seven submarine volcanoes are also located in a loop, and the HSD formed inside the summit caldera of Bayonnaise Knoll, which is one of the seven volcanoes. These topographic similarities highlight that the NMR is a modern analog of the Hokuroku Basin. Identifying such similarities is extremely useful when prospecting kuroko deposits on land equivalents as well as on the other segments of the Izu–Bonin BAR. The probability of finding kuroko deposits on land is expected to increase when the following are identified: (i) location of back-arc rift and the volcanic front; (ii) direction of the arc–trench system and intra-rift faults (and/or fracture zone); (iii) position of submarine volcanoes surrounding a back-arc rift; and (iv) intersections of a caldera fault and intra-rift fault (and/or fracture zone) inside the summit caldera of submarine volcanoes. Within these aforementioned points a ring structure, acidic volcanic complexes that circle the circuit and submarine calderas along the volcanic front, are an important indication of submarine hydrothermal deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号