首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenite sorption on troilite (FeS) and pyrite (FeS2)   总被引:4,自引:0,他引:4  
Arsenic is a toxic metalloid whose mobility and availability are largely controlled by sorption on sulfide minerals in anoxic environments. Accordingly, we investigated reactions of As(III) with iron sulfide (FeS) and pyrite (FeS2) as a function of total arsenic concentration, suspension density, sulfide concentration, pH, and ionic strength. Arsenite partitioned strongly on both FeS and FeS2 under a range of conditions and conformed to a Langmuir isotherm at low surface coverages; a calculated site density of near 2.6 and 3.7 sites/nm2 for FeS and FeS2, respectively, was obtained. Arsenite sorbed most strongly at elevated pH (>5 to 6). Although solution data suggested the formation of surface precipitates only at elevated solution concentrations, surface precipitates were identified using X-ray absorption spectroscopy (XAS) at all coverages. Sorbed As was coordinated to both sulfur [d(As-S) = 2.35 Å] and iron [d(As-Fe) = 2.40 Å], characteristic of As coordination in arsenopyrite (FeAsS). The absorption edge of sorbed As was also shifted relative to arsenite and orpiment (As2S3), revealing As(III) reduction and a complete change in As local structure. Arsenic reduction was accompanied by oxidation of both surface S and Fe(II); the FeAsS-like surface precipitate was also susceptible to oxidation, possibly influencing the stability of As sorbed to sulfide minerals in the environment. Sulfide additions inhibit sorption despite the formation of a sulfide phase, suggesting that precipitation of arsenic sulfide is not occurring. Surface precipitation of As on FeS and FeS2 supports the observed correlation of arsenic and pyrite and other iron sulfides in anoxic sediments.  相似文献   

2.
In comparison to similar low-sulfate coastal environments with anoxic-sulfidic sediments, the Achterwasser lagoon, which is part of the Oder estuary in the SW Baltic Sea, reveals unexpectedly high pyrite concentrations of up to 7.5 wt%. Pyrite occurs mainly as framboidal grains variable in size with diameters between 1 and 20 μm. Pyritization is not uniform down to the investigated sediment depth of 50 cm. The consumption of reactive-Fe is most efficient in the upper 20 cm of the sediment column, leading to degrees of pyritization (DOP) as high as 80 to 95%.Sediment accumulation in the Achterwasser takes place in high productivity waters. The content of organic carbon reaches values of up to 10 wt%, indicating that pyrite formation is not limited by the availability of organic matter. Although dissolved sulfate concentration is relatively low (<2 mmol/L) in the Achterwasser, the presence of H2S in the pore water suggests that sulfate is unlikely to limit pyrite authigenesis. The lack of free Fe(II) in the pore waters combined with the possibility of a very efficient transformation of Fe-monosulfides to pyrite near the sediment/water interface suggests that pyrite formation is rather controlled by (i) the availability of reactive-Fe, which limits the FeS formation, and by (ii) the availability of an oxidant, which limits the transformation of FeS into pyrite. The ultimate source for reactive-Fe is the river Oder, which provides a high portion of reactive-Fe (∼65% of the total-Fe) in the form of suspended particulate matter. The surficial sediments of the Achterwasser are reduced, but are subject to oxidation from the overlying water by resuspension. Oxidation of the sediments produces sulfur species with oxidation states intermediate between sulfide and sulfate (e.g., thiosulfate and polysulfides), which transform FeS to FeS2 at a significant rate. This process of FeS-recycling is suggested to be responsible for the formation of pyrite in high concentrations near the sediment surface, with DOP values between 80 and 95% even under low sulfate conditions.A postdepositional sulfidization takes place in the deeper part of the sediment column, at ∼22 cm depth, where the downward diffusion of H2S is balanced by the upward migration of Fe(II). The vertical fluctuation of the diffusion front intensifies the pyritization of sediments. We suggest that the processes described may occur preferentially in shallow water lagoons with average net-sedimentation rates close to zero. Such environments are prone to surficial sediment resuspension, initiating oxidation of Fe-sulfides near the sediment/water interface. Subsequent FeS2 formation as well as postdepositional sulfidization leads to a major pyrite spike at depth within the sediment profile.  相似文献   

3.
Sulfate reduction and sulfur-iron geochemistry were studied in 5-6 m deep gravity cores of Holocene mud from Aarhus Bay (Denmark). A goal was to understand whether sulfate is generated by re-oxidation of sulfide throughout the sulfate and methane zones, which might explain the abundance of active sulfate reducers deep below the main sulfate zone. Sulfate penetrated down to 130 cm where methane started to build up and where the concentration of free sulfide peaked at 5.5 mM. Below this sulfate-methane transition, sulfide diffused downwards to a sulfidization front at 520 cm depth, below which dissolved iron, Fe2+, accumulated in the pore water. Sulfate reduction rates measured by 35S-tracer incubations in the sulfate zone were high due to high concentrations of reactive organic matter. Within the sulfate-methane transition, sulfate reduction was distinctly stimulated by the anaerobic oxidation of methane. In the methane zone below, sulfate remained at positive “background” concentrations of <0.5 mM down to the sulfidization front. Sulfate reduction decreased steeply to rates which at 300-500 cm depth were 0.2-1 pmol SO42− cm−3 d−1, i.e., 4-5 orders of magnitude lower than rates measured near the sediment surface. The turn-over time of sulfate increased from 3 years at 12 cm depth to 100-1000 years down in the methane zone. Sulfate reduction in the methane zone accounted for only 0.1% of sulfate reduction in the entire sediment column and was apparently limited by the low pore water concentration of sulfate and the low availability of organic substrates. Amendment of the sediment with both sulfate and organic substrates immediately caused a 10- to 40-fold higher, “potential sulfate reduction” which showed that a physiologically intact community of sulfate reducing bacteria was present. The “background” sulfate concentration appears to be generated from the reaction of downwards diffusing sulfide with deeply buried Fe(III) species, such as poorly-reactive iron oxides or iron bound in reactive silicates. The oxidation of sulfide to sulfate in the sulfidic sediment may involve the formation of elemental sulfur and thiosulfate and their further disproportionation to sulfide and sulfate. The net reaction of sulfide and Fe(III) to form pyrite requires an additional oxidant, irrespective of the formation of sulfate. This could be CO2 which is reduced with H2 to methane. The methane subsequently diffuses upwards to become re-oxidized at the sulfate-methane transition and thereby removes excess reducing power and enables the formation of excess sulfate. We show here how the combination of these well-established sulfur-iron-carbon reactions may lead to the deep formation of sulfate and drive a cryptic sulfur cycle. The iron-rich post-glacial sediments underlying Holocene marine mud stimulate the strong sub-surface sulfide reoxidation observed in Aarhus Bay and are a result of the glacial to interglacial history of the Baltic Sea area. Yet, processes similar to the ones described here probably occur widespread in marine sediments, in particular along the ocean margins.  相似文献   

4.
The biogeochemistry of iron sulfide minerals in the water column of the Cariaco Basin was investigated in November 2007 (non-upwelling season) and May 2008 (upwelling season) as part of the on-going CARIACO (CArbon Retention In A Colored Ocean) time series project. The concentrations of particulate sulfur species, specifically acid volatile sulfur (AVS), greigite, pyrite, and particulate elemental sulfur, were determined at high resolution near the O2/H2S interface. In November 2007, AVS was low throughout the water column, with the highest concentration at the depth where sulfide was first detected (260 m) and with a second peak at 500 m. Greigite, pyrite, and particulate elemental sulfur showed distinct concentration maxima near the interface. In May 2008, AVS was not detected in the water column. Maxima for greigite, pyrite, and particulate elemental sulfur were again observed near the interface. We also studied the iron sulfide flux using sediment trap materials collected at the Cariaco station. Pyrite comprised 0.2-0.4% of the total particulate flux in the anoxic water column, with a flux of 0.5-1.6 mg S m−2 d−1.Consistent with the water column concentration profiles for iron sulfide minerals, the sulfur isotope composition of particulate sulfur found in deep anoxic traps was similar to that of dissolved sulfide near the O2/H2S interface. We conclude that pyrite is formed mainly within the redoxcline where sulfur cycling imparts a distinct isotopic signature compared to dissolved sulfide in the deep anoxic water. This conclusion is consistent with our previous study of sulfur species and chemoautotrophic production, which suggests that reaction of sulfide with reactive iron is an important pathway for sulfide oxidation and sulfur intermediate formation near the interface. Pyrite and elemental sulfur distributions favor a pathway of pyrite formation via the reaction of FeS with polysulfides or particulate elemental sulfur near the interface. A comparison of thermodynamic predictions with actual concentration profiles for iron sulfides leads us to argue that microbes may mediate this precipitation.  相似文献   

5.
Authigenesis of iron-rich phosphate nodules occurs in iron-rich cold-seep sediments (MD052911 core) at Yung-An Ridge offshore southwestern Taiwan. Raman, FTIR, and quantitative X-ray energy-dispersive spectroscopic analyses indicate that the phosphate mineral is vivianite (or barićite) and shows Fe/Mg molar ratios spanning from ca. 0.6 to 4.0 and a general down core trend of increasing Fe/Mg ratios. The formation of vivianite is limited to a depth interval of 13–17 mbsf (meters below seafloor) and is most prominent at ∼16 mbsf in association with high dissolved iron concentrations and depleted dissolved sulfide below a peak sulfidization zone (enriched in mackinawite and greigite). Alternate growths of vivianite and iron monosulfides and compositional zoning with Mg enriched towards the peripheries of individual nodules occur in the transition from the zone of vivianite mineralization to the sulfidization zone. The crystallization of vivianite below the sulfidization front could have been favored by scavenging of downward diffusive dissolved sulfide from pore waters in the sulfidization zone. Alternate growths and overlapping of the zones of iron monosulfides and vivianite can be attributed to fluctuations of the sulfidization front and methane flux. The discovery of vivianite in the Yung-An Ridge sediments implies that authigenic vivianite can be an important sink for phosphorus burial in cold-seep sediments that have high reactive-iron contents and high sedimentation rates.  相似文献   

6.
The biogeochemistry of sedimentary sulfur was investigated on the continental shelf off central Chile at water depths between 24 and 88 m under partial influence of an oxygen minimum zone. Dissolved and solid iron and sulfur species, including the sulfur intermediates sulfite, thiosulfate, and elemental sulfur, were analyzed at high resolution in the top 20 cm. All stations were characterized by high rates of sulfate reduction, but only the sediments within the Bay of Concepción contained dissolved sulfide. Due to advection and/or in-situ reoxidation of sulfide, dissolved sulfate was close to bottom water values. Whereas the concentrations of sulfite and thiosulfate were mostly in the submicromolar range, elemental sulfur was by far the dominant sulfur intermediate. Although the large nitrate- and sulfur-storing bacteria Thioploca were abundant, the major part of S0 was located extracellularly. The distribution of sulfur species and dissolved iron suggests the reaction of sulfide with FeOOH as an important pathway for sulfide oxidation and sulfur intermediate formation. This is in agreement with the sulfur isotope composition of co-existing elemental sulfur and iron monosulfides. In the Bay of Concepción, sulfur isotope data suggest that pyrite formation proceeds via the reaction of FeS with polysulfides or H2S. At the shelf stations, on the other hand, pyrite was significantly depleted in 34S relative to its potential precursors FeS and S0. Isotope mass balance considerations suggest further that pyritization at depth includes light sulfide, potentially originating from bacterial sulfur disproportionation. The δ34S-values of pyrite down to −38‰ vs. V-CDT are among the lightest found in organic-rich marine sediments. Seasonal variations in the sulfur isotope composition of dissolved sulfate indicated a dynamic non-steady-state sulfur cycle in the surface sediments. The 18O content of porewater sulfate increased with depth at all sites compared to the bottom water composition due to intracellular isotope exchange reactions during microbial sulfur transformations.  相似文献   

7.
Voltammetric methods using direct insertion of a gold-amalgam microelectrode with a sensitive, computercontrolled voltammeter detected soluble iron(II) sulfide, [FeS]aq, in the porewaters of anoxic, sulfidic, fine-grained sediments from the Loughor Estuary, Wales. The voltammetric results are reproducible. Studies of cores stored in sealed, refrigerated containers for up to 21 d reveal no measurable oxidation. [FeS]aq forms in this estuarine environment as a result of the dissolution of amorphous FeS, and appears to be involved in the formation of pyrite. [FeS]aq makes no significant contribution to the total sulfide and iron contents of the sediment but could constitute an important component of the dissolved Fe(II) and S(−II) contents of the porewater. Mass balance calculations show pyrite forms in this system by the addition of sulfur to FeS rather than by the loss of iron from FeS. The overall process appears to involve [FeS]aq as an intermediary. Although the porewaters of the Loughor Estuary sediments are iron-rich relative to seawater, the iron sulfide-forming process is iron-limited rather than sulfide-limited. Reactive iron is bound to sulfide rapidly in the sediment. After the reactive iron is bound to sulfide, additional sulfide produced is fixed as pyrite.  相似文献   

8.
《Chemical Geology》2004,203(1-2):153-168
The importance of the magnetic iron sulfide minerals, greigite (Fe3S4) and pyrrhotite (Fe7S8), is often underappreciated in geochemical studies because they are metastable with respect to pyrite (FeS2). Based on magnetic properties and X-ray diffraction analysis, previous studies have reported widespread occurrences of these magnetic minerals along with magnetite (Fe3O4) in two thick Plio-Pleistocene marine sedimentary sequences from southwestern Taiwan. Different stratigraphic zones were classified according to the dominant magnetic mineral assemblages (greigite-, pyrrhotite-, and magnetite-dominated zones). Greigite and pyrrhotite are intimately associated with fine-grained sediments, whereas magnetite is more abundant in coarse-grained sediments. We measured total organic carbon (TOC), total sulfur (TS), total iron (FeT), 1N HCl extractable iron (FeA), and bulk sediment grain size for different stratigraphic zones in order to understand the factors governing the formation and preservation of the two magnetic iron sulfide minerals. The studied sediments have low TS/FeA weight ratios (0.03–0.2), far below that of pyrite (1.15), which indicates that an excess of reactive iron was available for pyritization. Observed low TS (0.05–0.27%) is attributed to the low organic carbon contents (TOC=0.25–0.55%), which resulted from dilution by rapid terrigenous sedimentation. The fine-grained sediments also have the highest FeT and FeA values. We suggest that under conditions of low organic carbon provision, the high iron activity in the fine-grained sediments may have removed reduced sulfur so effectively that pyritization was arrested or retarded, which, in turn, favored preservation of the intermediate magnetic iron sulfides. The relative abundances of reactive iron and labile organic carbon appear to have controlled the transformation pathway of amorphous FeS into greigite or into pyrrhotite. Compared to pyrrhotite-dominated sediments, greigite-dominated sediments are finer-grained and have higher FeA but lower TS. We suggest that diagenetic environments with higher supply of reactive iron, lower supply of labile organic matter, and, consequently, lower sulfide concentration result in relatively high Eh conditions, which favor formation of greigite relative to pyrrhotite.  相似文献   

9.
The formation of sedimentary iron sulfides was studied in sandy sediments of the Laguna Madre, TX, in order to better understand how this process operates in sediments where reactive iron is likely to be limiting for sulfide mineral formation. These sediments usually had reactive iron and total reduced sulfide concentrations one to two orders of magnitude less than in typical shallow water terrigenous muds, but organic-C concentrations typical of fine-grained sediments due to the extensive presence of seagrass beds. This resulted in moderate (0–150 m) dissolved H2S concentrations with maximum concentrations in the upper (3–:5 cm) root zone. Based on citrate dithionite extractable-Fe the degree of sulfidization was usually 100% or greater. Acid volatile sulfides (AVS) typically comprised roughly 60% of total reduced sulfur and the proportion of AVS generally increased instead of decreasing with depth. The unusual proportion of TRS as AVS and persistence of AVS are attributed to exceptionally slow pyrite formation kinetics. The probable reasons for these slow reaction kinetics are the high (>7.8) pH of the sediments, which favors the slow polysulfide pathway for pyrite formation, high (typically about 2–4 mm) dissolved organic carbon concentrations that inhibit growth of pyrite and the low concentration of reactants which greatly increases the average transport distances necessary for diffusion controlled reactions.  相似文献   

10.
We report solid phase sulfur speciation of six cores from sediments underlying oxic, suboxic and anoxic-sulfidic waters of the Black Sea. Our dataset includes the five sulfur species [pyrite-sulfur, acid volatile sulfides (AVS), zerovalent sulfur (S(0)), organic polysulfides (RSx), humic sulfur] together with reactive iron and manganese, as quantified by dithionite extraction, and total organic carbon. Pyrite – sulfur was the major phase in all cores [200-400 µmol (g dry wt)- 1] except for the suboxic core. However, zerovalent sulfur and humic sulfur also reached very significant levels: up to about 109 and 80 µmol (g dry wt)- 1, respectively. Humic sulfur enrichment was observed in the surface fluff layers of the eastern central basin sediments where Unit-1 type depositional conditions prevail. Elemental sulfur accumulated as a result of porewater sulfide oxidation by reactive iron oxides in turbidities from the anoxic basin margin and western central basin sediments. The accumulation of elemental sulfur to a level close to that of pyrite-S in any part of central Black Sea sediments has never been reported before and our finding indicates deep basin turbidites prevent the build-up of dissolved sulfide in the sediment. This process also contributes to diagenetic pyrite formation whereas in the non-turbiditic parts of the deep basin water column formed (syngenetic) pyrite dominates the sulfur inventory. In slope sediments under suboxic waters, organic sulfur (humic sulfur + organic polysulfides) account for 33-42% of total solid phase S, indicating that the suboxic conditions favor organosulfur formation. Our study shows that the interactions between depositional patterns (Unit 1 vs. turbidite), redox state of overlying waters (oxic-suboxic-sulfidic) and organic matter content determine sulfur speciation and enable the accumulation of elemental sulfur and organic sulfur species close to a level of pyrite-S.  相似文献   

11.
The main terminal processes of organic matter mineralization in anoxic Black Sea sediments underlying the sulfidic water column are sulfate reduction in the upper 2-4 m and methanogenesis below the sulfate zone. The modern marine deposits comprise a ca. 1-m-deep layer of coccolith ooze and underlying sapropel, below which sea water ions penetrate deep down into the limnic Pleistocene deposits from >9000 years BP. Sulfate reduction rates have a subsurface maximum at the SO42−-CH4 transition where H2S reaches maximum concentration. Because of an excess of reactive iron in the deep limnic deposits, most of the methane-derived H2S is drawn downward to a sulfidization front where it reacts with Fe(III) and with Fe2+ diffusing up from below. The H2S-Fe2+ transition is marked by a black band of amorphous iron sulfide above which distinct horizons of greigite and pyrite formation occur. The pore water gradients respond dynamically to environmental changes in the Black Sea with relatively short time constants of ca. 500 yr for SO42− and 10 yr for H2S, whereas the FeS in the black band has taken ca. 3000 yr to accumulate. The dual diffusion interfaces of SO42−-CH4 and H2S-Fe2+ cause the trapping of isotopically heavy iron sulfide with δ34S = +15 to +33‰ at the sulfidization front. A diffusion model for sulfur isotopes shows that the SO42− diffusing downward into the SO42−-CH4 transition has an isotopic composition of +19‰, close to the +23‰ of H2S diffusing upward. These isotopic compositions are, however, very different from the porewater SO42− (+43‰) and H2S (−15‰) at the same depth. The model explains how methane-driven sulfate reduction combined with a deep H2S sink leads to isotopically heavy pyrite in a sediment open to diffusion. These results have general implications for the marine sulfur cycle and for the interpretation of sulfur isotopic data in modern sediments and in sedimentary rocks throughout earth’s history.  相似文献   

12.
甲烷厌氧氧化作用(AOM)在调控全球甲烷收支平衡以及缓解因甲烷引起的温室效应等方面扮演着十分重要的角色,成为近些年来海洋生物地球化学领域的研究热点之一.一般而言,海洋沉积物孔隙水硫酸盐还原主要是通过2种反应途径来完成,即氧化有机质途径和AOM途径.长期以来,与有机质氧化途径相关的硫酸盐还原作用研究已有充分展示,而由AOM驱动的硫酸盐还原及其对自生硫化铁形成与埋藏的重要贡献却被严重低估.侧重从生物地球化学、同位素地球化学等角度,综述近些年来不同环境条件下海洋沉积物AOM作用发生的地球化学证据和AOM对沉积物孔隙水硫酸盐消耗比例的贡献大小及其调控因素.AOM过程产生的H2S会与沉积物中活性铁结合形成自生铁硫化物.与沉积物浅表层条件相比,AOM过程固定的自生铁硫化物不容易发生再氧化,更利于在沉积物中埋藏保存起来.AOM与海洋沉积物硫酸盐还原作用相偶联,由AOM驱动的硫酸盐还原过程对海底自生铁硫化物形成与埋藏的重要贡献不容忽视.该综述有助加深对海洋沉积物AOM作用的认识及其对硫循环的全面理解.  相似文献   

13.
The nature of the surface oxidation phase on pyrite, FeS2, reacted in aqueous electrolytes at pH = 2 to 10 and with air under ambient atmospheric conditions was studied using synchrotron-based oxygen K edge, sulfur LIII edge, and iron LII,III edge X-ray absorption spectroscopy. We demonstrate that O K edge X-ray absorption spectra provide a sensitive probe of sulfide surface oxidation that is complementary to X-ray photoelectron spectroscopy. Using total electron yield detection, the top 20 to 50 Å of the pyrite surface is characterized. In air, pyrite oxidizes to form predominantly ferric sulfate. In aqueous air-saturated solutions, the surface oxidation products of pyrite vary with pH, with a marked transition occurring around pH 4. Below pH = 4, a ferric (hydroxy)sulfate is the main oxidation product on the pyrite surface. At higher pH, we find iron(III) oxyhydroxide in addition to ferric (hydroxy)sulfate on the surface. Under the most alkaline conditions, the O K edge spectrum closely resembles that of goethite, FeOOH, and the surface is oxidized to the extent that no FeS2 can be detected in the X-ray absorption spectra. In a 1.667 × 10−3 mol/L Fe3+ solution with ferric iron present as FeCl3 in NaCl, the oxidation of pyrite is autocatalyzed, and formation of the surface iron(III) oxyhydroxide phase is promoted at low pH.  相似文献   

14.
The primary factors that control the concentration of total reduced (inorganic) sulfide in coastal sediments are believed to be the availability of reactive iron, dissolved sulfate and metabolizable organic carbon. We selected nine sites in shallow (<3 m), close to sub-tropical, estuaries and bays along the central Texas coast that represented a range in sediment grain size (a proxy for reactive iron), salinity (a proxy for dissolved sulfate), and total organic carbon (a proxy for metabolizable organic carbon). Based on these parameters a prediction was made of which factor was likely to control total reduced sulfide at each site and what the relative total reduced sulfide concentration was likely to be. To test the prediction, the sediments were analyzed for total reduced sulfide, acid volatile sulfide, and citrate dithionate-extractable, HCl-extractable and total Fe in the solid phase. Using solid-state gold–mercury amalgam microelectrodes and voltammetry, we determined pore water depth profiles of Fe(II) and ΣH2S and presence or absence of FeS(aq). At five of the nine sites the calculated degree of sufildization of citrate dithionite-reactive-iron was close to or greater than 1 indicating that rapidly reactive iron was probably the limiting factor for iron sulfide mineral formation. At one site (salinity = 0.9) dissolved Fe(II) was high, ΣH2S was undetectable and the total reduced sulfide concentration was low indicating sulfate limitation. At the last three sites a low degree of sulfidization and modest total reduced (inorganic) sulfide concentrations appeared to be the result of a limited supply of metabolizable organic carbon. Fe(II)–S(-II) clusters (FeS(aq)) were undetectable in 10 out of 12 bay sediment profiles where ΣH2S was close to or below detection limits, but was observed in all other porewater profiles. Acid volatile sulfide, but not total reduced sulfide, was well correlated with total organic carbon and ranged from being undetectable in some cores to representing a major portion of total reduced sulfide in other cores. Although predicted controls on total reduced sulfide were good for very low salinity water or sandy sediments, they were only right about half the time for the other sediments. The likely reasons for the wrong predictions are the poor correlation of total organic carbon with grain size and differing fractions of metabolizable organic carbon in different sedimentary environments. Differences in sediment accumulation rates may also play a role, but these are difficult to determine in this region where hurricanes often resuspend and move sediments. This study demonstrates the need to examine more complex and often difficult to determine parameters in anoxic “normal marine” sediments if we are to understand what controls the concentration and distribution of sulfides.  相似文献   

15.
胶东地区-1000 m以下深部找矿的重大突破,使得探明储量已达5000多t,成为探讨深部金的赋存状态及成矿作用的天然实验室。招贤金矿为焦家成矿带近年深部找矿重大突破之一,矿体主要产于-1260 m以深的晚侏罗世二长花岗岩中,受控于焦家断裂。金属矿物主要为黄铁矿、黄铜矿和银金矿等,脉石矿物包括石英、绢云母、方解石、钾长石等。围岩蚀变以钾长石化、硅化、黄铁绢英岩化、碳酸盐化为主。金矿物以自然金和银金矿为主,呈裂隙金或包体金分布于黄铁矿中,少数不可见金呈晶隙金分布于黄铁矿等矿物中。其中,黄铁矿w(S)=52.227%~54.915%、w(Fe)=44.749%~47.134%,原子个数比S/Fe=1.99~2.11,化学式FeS1.99~FeS2.11;黄铜矿w(S)=34.282%~35.140%、w(Fe)=29.263%~30.268%,w(Cu)=33.130%~34.114%,化学式Cu0.96FeS2.01~Cu1.01FeS2.10,平均化学式为C...  相似文献   

16.
Greigite: a true intermediate on the polysulfide pathway to pyrite   总被引:1,自引:0,他引:1  
The formation of pyrite (FeS2) from iron monosulfide precursors in anoxic sediments has been suggested to proceed via mackinawite (FeS) and greigite (Fe3S4). Despite decades of research, the mechanisms of pyrite formation are not sufficiently understood because solid and dissolved intermediates are oxygen-sensitive and poorly crystalline and therefore notoriously difficult to characterize and quantify.  相似文献   

17.
Data on abundance and isotopic composition of porewater and sedimentary sulfur species are reported for relatively uncontaminated and highly contaminated fine-grained anoxic sediments of St. Andrew Bay, Florida. A strong contrast in amount and composition of sedimentary organic matter at the two sites allows a comparative study of the historical effects of increased organic loading on sulfur cycling and sulfur isotopic fractionation. In the contaminated sediments, an increase in organic loading caused increased sedimentary carbon/sulfur ratios and resulted in higher rates of bacterial sulfate reduction, but a lower efficiency of sulfide oxidation. These differences are well reflected in the isotopic composition of dissolved sulfate, sulfide, and sedimentary pyrite. Concentration and isotopic profiles of dissolved sulfate, organic carbon, and total sulfur suggest that the anaerobic decomposition of organic matter is most active in the upper 8cm but proceeds at very slow rates below this depth. The rapid formation of more than 90% of pyrite in the uppermost 2 cm which corresponds to about 3 years of sediment deposition allows the use of pyrite isotopic composition for tracing changing diagenetic conditions. Sediment profiles of the sulfur isotopic composition of pyrite reflect present-day higher rates of bacterial sulfate reduction and lower rates of sulfide oxidation, and record a profound change in the diagenetic cycling of sulfur in the contaminated sediments coincident with urban and industrial development of the St. Andrew Bay area.  相似文献   

18.
Microbial SO42− reduction limits accumulation of aqueous As in reducing aquifers where the sulfide that is produced forms minerals that sequester As. We examined the potential for As partitioning into As- and Fe-sulfide minerals in anaerobic, semi-continuous flow bioreactors inoculated with 0.5% (g mL−1) fine-grained alluvial aquifer sediment. A fluid residence time of three weeks was maintained over a ca. 300-d incubation period by replacing one-third of the aqueous phase volume of the reactors with fresh medium every seven days. The medium had a composition comparable to natural As-contaminated groundwater with slightly basic pH (7.3) and 7.5 μM aqueous As(V) and also contained 0.8 mM acetate to stimulate microbial activity. Medium was delivered to a reactor system with and without 10 mmol L−1 synthetic goethite (α-FeOOH). In both reactors, influent As(V) was almost completely reduced to As(III). Pure As-sulfide minerals did not form in the Fe-limited reactor. Realgar (As4S4) and As2S3(am) were undersaturated throughout the experiment. Orpiment (As2S3) was saturated while sulfide content was low (∼50 to 150 μM), but precipitation was likely limited by slow kinetics. Reaction-path modeling suggests that, even if these minerals had formed, the dissolved As content of the reactor would have remained at hazardous levels. Mackinawite (Fe1 + xS; x ? 0.07) formed readily in the Fe-bearing reactor and held dissolved sulfide at levels below saturation for orpiment and realgar. The mackinawite sequestered little As (<0.1 wt.%), however, and aqueous As accumulated to levels above the influent concentration as microbial Fe(III) reduction consumed goethite and mobilized adsorbed As. A relatively small amount of pyrite (FeS2) and greigite (Fe3S4) formed in the Fe-bearing reactor when we injected a polysulfide solution (Na2S4) to a final concentration of 0.5 mM after 216, 230, 279, and 286 days. The pyrite, and to a lesser extent the greigite, that formed did sequester As from solution, containing 0.84 and 0.23 wt.% As on average, respectively. Our results suggest that As precipitation during Fe-sulfide formation in nature occurs mainly in conjunction with pyrite formation. Our findings imply that the effectiveness of stimulating microbial SO42− reduction to remediate As contamination may be limited by the rate and extent of pyrite formation and the solubility of As-sulfides.  相似文献   

19.
《地学前缘(英文版)》2019,10(6):2177-2188
Colloform pyrite with core-rim texture is commonly deposited in carbonate platforms associated with the sulfide ores such as the Caixiashan Pb-Zn deposit.However,the genesis of colloform pyrite in Pb-Zn deposits,its growth controls and their geological implication are insufficiently understood.Integration of in-situ trace element and SIMS sulfur isotopes has revealed geochemical variations among these pyrite layers.These colloform pyrite occur as residual phases of core-rim aggregates,the cores are made up of very fine-grained anhedral pyrite particles,with some rims being made up of fine-grained and poorlycrystallized pyrite,while the other rims were featured with euhedral cubic pyrite.which are cemented by fine-grained calcite and/or dolomite with minor quartz.Sulfur isotope analysis shows that some wellpreserved rims have negative δ~(34)S values(-28.12‰to-0.49‰),whereas most of the cores and rims have positive δ~(34)S values(0 to+44.28‰;peak at+14.91‰).Integrating with the methane and sulfate were observed in previous fluid inclusion study,we suggest that the ~(34)S depleted rims were initially formed by bacteria sulfate reduction(BSR),whereas the positive δ~(34)S values were resulted from the sulfate reduction driven by anaerobic methane oxidation(AOM).The well-developed authigenic pyrite and calcite may also support the reaction of AOM.Combined with petrographic observations,trace element composition of the colloform pyrite reveals the incorporation and precipitation behavior of those high abundance elements in the pyrite:Pb and Zn were present as mineral inclusion and likely precipitated before Fe,as supported by the time-resolved Pb-Zn signal spikes in most of the analyzed pyrite grains.Other metals,such as Hg,Co and Ni,may have migrated as chloride complexes and entered the pyrite lattice.Arsenic and Sb,generally influenced by complex-forming reactions rather than substitution ones,could also enter the pyrite lattice,or slightly predate the precipitation of colloform pyrite as mineral inclusions,which are controlled by their hydrolysis constant in the ore fluids.The colloform pyrite may have grown inward from the rims.The successive BSR reaction process would enrich H_2~(32)S in the overlying water column but reduce the metal content,the nucleation of these pyrite rims was featured by strongly negative sulfur isotopes.The following AOM process should be activated by deformation like the turbidity sediment of the mudstone as the sulfide deposition are associated with fault activities that caused the emission of methane migration upward and simultaneously replenishing the metal in the column.The higher AOM reaction rate and the higher metal supply(not only Fe.but with minor other metals such as Pb and Zn) caused by sediment movement enhanced the metal concentration within the pyrite lattice.  相似文献   

20.
沉积过程对自生黄铁矿硫同位素的约束   总被引:6,自引:3,他引:3  
自生黄铁矿是海洋沉积物中还原态硫的主要赋存形式,其形成过程与有机质矿化相关,影响全球的C-S-Fe生物地球化学循环。自生黄铁矿硫同位素分馏主要受微生物硫酸盐还原的控制,但近期的研究成果表明局部沉积环境的改变也可以影响黄铁矿硫同位素的组成,特别是在浅海环境。在浅海非稳态沉积环境内,物理再改造和生物扰动作用,导致硫酸盐还原带内生成的硫化物被再氧化,进而影响黄铁矿的硫同位素值。浅海沉积过程容易受到古气候和海平面变化的影响,引起沉积速率的剧烈波动,导致有机质和活性铁输入的不稳定,进而影响成岩系统的开放性和硫酸盐还原速率,最终影响黄铁矿的硫同位素值。另外,沉积速率的改变还影响硫酸盐—甲烷转换带的迁移,造成有机质和甲烷厌氧氧化硫酸盐还原的相互转化,产生不同的硫同位素信号。东海内陆架泥质区为研究沉积过程对自生黄铁矿的形成及其硫同位素组成的约束机制提供了很好的研究材料。该区域有很好的沉积学研究基础,自生黄铁矿丰富、并且个别层位有生物气(甲烷为主)存在,是研究边缘海C-S-Fe循环的理想场所。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号