首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Picea is an important taxon in late-glacial pollen records from eastern North America, but little is known about which species of Picea were present. We apply a recently developed palynological method for discriminating the three Picea species in eastern North America to three records from New England. Picea glauca was dominant at  14,500–14,000 cal yr BP, followed by a transition to Picea mariana between  14,000 and 13,500 cal yr BP. Comparison of the pollen data with hydrogen isotope data shows clearly that this transition began before the beginning of the Younger Dryas Chronozone. The ecological changes of the late-glacial interval were not a simple oscillation in the position of a single species' range, but rather major changes in vegetation structure and composition occurring during an interval of variations in several environmental factors, including climate, edaphic conditions, and atmospheric CO2 levels.  相似文献   

2.
To investigate possible indicators of critical point behavior prior to rock failure, the statistical properties of pre-failure damage were analyzed based on acoustic emission events (AE) recorded during the catastrophic fracture of typical rock samples under differential compression. AEs were monitored using a high-speed 32-channel waveform recording system. Time-dependent statistics, including the energy release rate, b-value of the magnitude–frequency distribution, fractal dimension and spatial correlation length (SCL) of the AE hypocenters were calculated for each data set. Each parameter is a function of the time-to-failure and thus can be treated as an indicator of the critical point. It is clear that the pre-failure damage evolution prior to catastrophic failures in several common rock-types is generally characterized by: 1) accelerated energy release, 2) a decrease in fractal dimension and SCL with a subsequent precursory increase, and 3) a decrease in b-value from  1.5 to  0.5 for hard rocks, and from  1.1 to  0.8 for soft rocks such S–C cataclasite. However, each parameter also reveals more complicated temporal evolution due to either the heterogeneity of the rock mass or the micro-mechanics of shear fracturing. This confirms the potential importance of integrated analysis of two or more parameters for successfully predicting the critical point. The decreasing b-value and increasing energy release may prove meaningful for intermediate-term prediction, while the precursory increase in fractal dimension and SCL may facilitate short-term prediction.  相似文献   

3.
Approximately 70 km of new decimeter-resolution seismic reflection profile data from Owasco Lake, New York define a middle Holocene (4600 14C yr B.P.) erosion surface in the north end of the lake at water depths as great as 26 m. Beneath the lake, post-glacial sediments are up to 9 m thick and represent about 10% of the total sediment fill. Early to middle Holocene sediments, 6 m thick, contain biogenic gas at the south end of the basin and a large (4 km×300 m×15 m) subaqueous slide deposit along the east-central portion of the lake. Late Holocene sediments are thinner or absent, particularly at the north end of the lake. The middle Holocene erosion surface may have been produced by a drop in lake level. Alternatively, it may represent a change in climate during the transition between the relatively warm Holocene hypsithermal and cool neoglacial. At this time (4600 14C yr B.P.) circulation in Owasco Lake appears to have evolved from sluggish to active. The increased circulation, which persists today, probably resulted from atmospheric cold fronts with strong southwesterly winds that piled up water at the north end of the lake. The increased water circulation may have been ultimately driven by decreasing insolation, which produced an increased pole-to-equator thermal gradient and, thus, stronger global winds that began at the transition between the hypsithermal and neoglacial.  相似文献   

4.
During the late Maastrichtian to early Danian the Neuquén Basin of Argentina was adjacent to an active volcanic arc to the west and an extensive land area to the northeast. Mineralogical and geochemical studies of the Bajada del Jagüel in the Neuquén Basin indicate a generally warm climate with seasonal changes in humidity and an open seaway to the South Atlantic that maintained marine conditions. Biostratigraphic and quantitative foraminiferal and nannofossil analyses indicate that sediment deposition during the late Maastrichtian (zones CF4-CF2, N. frequens) occurred in relatively shallow middle neritic (100 m) depths with largely dysaerobic bottom waters (abundant low O2 tolerant benthics) and fluctuating sea level. Calcareous nannofossils indicate a high stress marine environment dominated by Micula decussata. Planktic foraminifera mimic the post-K/T high stress environment with alternating blooms of the disaster opportunists Guembelitria and low oxygen tolerant Heterohelix groups, indicating nutrient-rich surface waters and an oxygen depleted water column. The high stress conditions were probably driven by high nutrient influx due to upwelling and terrestrial and volcanic influx. The K/T boundary is marked by an erosional surface that marks a hiatus at the base of a 15-25 cm thick volcaniclastic sandstone, which contains diverse planktic foraminiferal zone P1c assemblages and nannofossils of zone NP1b immediately above it. This indicates deposition of the sandstone occurred 500 ky after the K/T hiatus. No evidence of the Chicxulub impact or related tsunami deposition was detected.  相似文献   

5.
A high-resolution pollen and Pediastrum record, spanning 12,500 yr, is presented for Lake Bayanchagan (115.21°E, 41.65°N, and 1355 m a.s.l.), southern Inner Mongolia. Individual pollen taxa (PT-MAT) and the PFT affinity scores (PFT-MAT) were used for quantitative climatic reconstruction from pollen and algal data. Both techniques indicate that a cold and dry climate, similar to that of today, prevailed before 10,500 cal yr B.P. The wettest climate occurred between 10,500 and 6500 cal yr B.P., at which time annual precipitation was up to 30–60% higher than today. The early Holocene increases in temperature and precipitation occurred simultaneously, but mid-Holocene cooling started at approximately 8000 cal yr B.P., 1500 yr earlier than the drying. Vegetation reconstruction was based on the objective assignment of pollen taxa to the plant functional type. The results suggest that this region was dominated by steppe vegetation throughout the Holocene, except for the period 9200 to 6700 cal yr B.P., when forest patches were relatively common. Inner Mongolia is situated at the limit of the present East Asian monsoon and patterns of vegetation and climate changes in that region during the Holocene probably reflect fluctuations in the monsoon's response to solar insolation variations. The early to middle Holocene monsoon undoubtedly extended to more northern latitudes than at present.  相似文献   

6.
A pollen record from Lake Xere Wapo, southeast New Caledonia, is the longest continuous terrestrial record to be recovered from the tropical southwest Pacific and reveals a series of millennial scale changes in vegetation over the last 130,000 yr. A comparison of the Lake Xere Wapo record with the key northeast Australian record of Lynch's Crater reveals regional patterns of change. From 120,000 to 50,000 yr ago the vegetation around Lake Xere Wapo alternated between rainforest and maquis with fire an important disturbance factor. In the last 50,000 yr fire is almost absent from the record and the vegetation assumes a character unprecedented in the preceding 100,000 yr, dominated by Dacrydium and Podocarpus pollen. The most compelling aspect of the comparison with Lynch's Crater is that the much-discussed Araucaria decline at around 45,000 yr ago in northern Queensland is matched by a similar decline in the Lake Xere Wapo record.  相似文献   

7.
Plant macrofossils from the “Mamontovy Khayata” permafrost sequence (71°60′N, 129°25′E) on the Bykovsky Peninsula reflect climate and plant biodiversity in west Beringia during the last cold stage. 70 AMS and 20 conventional 14C dates suggest sediment accumulation between about 60,000 and 7500 14C yr B.P. The plant remains prove that during the last cold-stage arctic species (Minuartia arctica, Draba spp., Kobresia myosuroides) coexisted with aquatic (Potamogeton vaginatus, Callitriche hermaphroditica), littoral (Ranunculus reptans, Rumex maritimus), meadow (Hordeum brevisubulatum, Puccinellia tenuiflora) and steppe taxa (Alyssum obovatum, Silene repens, Koeleria cristata, Linum perenne). The reconstructed vegetation composition is similar to modern vegetation mosaics in central and northeast Yakutian relict steppe areas. Thus, productive meadow and steppe communities played an important role in the Siberian Arctic vegetation during the late Pleistocene and could have served as food resource for large populations of herbivores. The floristic composition reflects an extremely continental, arid climate with winters colder and summers distinctly warmer than at present. Holocene macrofossil assemblages indicate a successive paludification possibly connected with marine transgression, increased oceanic influence and atmospheric humidity. Although some steppe taxa were still present in the early Holocene, they disappeared completely before 2900 14C yr B.P.  相似文献   

8.
This paper documents a continuous  44,000-yr pollen record derived from the Mfabeni Peatland on the Maputaland Coastal Plain. A detailed fossil pollen analysis indicates the existence of extensive Podocarpus-abundant coastal forests before  33,000 cal yr BP. The onset of wetter local conditions after this time is inferred from forest retreat and the development of swampy conditions. Conditions during the last glacial maximum ( 21,000 cal yr BP) are inferred to have been colder and drier than the present, as evidenced by forest retreat and replacement of swampy reed/sedge communities by dry grassland. Forest growth and expansion during the Holocene Altithermal ( 8000–6000 cal yr BP) indicates warm, relatively moist conditions. Previous records from Maputaland have suggested a northward migration of Podocarpus forest during the late Holocene. However, we interpret a mid-Holocene decline in Podocarpus at Mfabeni as evidence of deforestation. Forest clearance during the mid-Holocene is supported by the appearance of Morella serrata, suggesting a shift towards more open grassland/savanna, possibly due to burning. These signals of human impact are coupled with an increase in Acacia, indicative of the development of secondary forest and hence disturbance.  相似文献   

9.
Luminescence geochronology, especially infrared stimulated luminescence analyses on marsh mud, shows that a relatively deep lake reached its peak (1340 m above sea level) in the Bonneville basin 59,000±5000 yr ago. The age is consistent with nonfinite 14C ages and with amino acid geochronology on ostracodes. The Cutler Dam Alloformation was deposited during this lake cycle, which, like the subsequent Bonneville lake cycle, appears to have reached its maximum highstand following the peak of a global glacial stage (marine oxygen-isotope stage 4) but at a time when other records from North America show evidence for cold climate and expanded glacier ice.  相似文献   

10.
The Illinois basin is one of several well-studied intracratonic sedimentary basins within the North American craton whose formational mechanisms and subcrustal structure are not well understood. We study the S-velocity structure of the upper mantle beneath the Illinois basin and its surrounding area through seismic tomography. We utilize continental scale waveform data of seismic S and surface waves, enhanced by regional earthquakes located near the Illinois basin. Our 3D tomographic model, IL05, confirms the existence of a slow S-velocity structure in the uppermost mantle beneath the Illinois basin region. This anomalously slow region exists from the base of the crust to depths of  90 km, and is slower than the North American cratonic average by about 200 m/s. This anomalous uppermost mantle beneath the Illinois basin is underlain by a faster lithosphere, typical of the surrounding craton, to depths of  200 km. Excluding the formation of the Reelfoot Rift, this area of North American has been stable for over 1.0 Gy. Thus, we do not expect thermal anomalies from before that time to persist into present day S-velocity anomalies and we consider a delamination origin as an explanation of Illinois basin subsidence unlikely. We cannot rule out that the slow mid-lithosphere beneath the Illinois basin is caused by an uppermost mantle enriched by a deep, but weak plume. We attribute the slow mid-lithosphere to the presence of either oceanic, hydrous crust, or, a relatively cool mantle wedge with preserved hydrous minerals in the Illinois basin's uppermost mantle, related to a fossilized flat subduction zone.  相似文献   

11.
A 467-cm-long core from the inner shelf of the eastern Laptev Sea provides a depositional history since 9400 cal yr. B.P. The history involves temporal changes in the fluvial runoff as well as postglacial sea-level rise and southward retreat of the coastline. Although the core contains marine fossils back to 8900 cal yr B.P., abundant plant debris in a sandy facies low in the core shows that a river influenced the study site until 8100 cal yr B.P. As sea level rose and the distance to the coast increased, this riverine influence diminished gradually and the sediment type changed, by 7400 cal yr B.P., from sandy silt to clayey silt. Although total sediment input decreased in a step-like fashion from 7600 to 4000 cal yr B.P., this interval had the highest average sedimentation rates and the greatest fluxes in most sedimentary components. While this maximum probably resulted from middle Holocene climate warming, the low input of sand to the site after 7400 cal yr B.P. probably resulted from further southward retreat of the coastline and river mouth. Since about 4000 cal yr B.P., total sediment flux has remained rather constant in this part of the Laptev Sea shelf due to a gradual stabilization of the depositional regime after completion of the Holocene sea-level rise.  相似文献   

12.
Pollen analysis of sediments from a high-altitude (4215 m), Neotropical (9°N) Andean lake was conducted in order to reconstruct local and regional vegetation dynamics since deglaciation. Although deglaciation commenced 15,500 cal yr B.P., the area around the Laguna Verde Alta (LVA) remained a periglacial desert, practically unvegetated, until about 11,000 cal yr B.P. At this time, a lycopod assemblage bearing no modern analog colonized the superpáramo. Although this community persisted until 6000 cal yr B.P., it began to decline somewhat earlier, in synchrony with cooling following the Holocene thermal maximum of the Northern Hemisphere. At this time, the pioneer assemblage was replaced by a low-diversity superpáramo community that became established 9000 cal yr B.P. This replacement coincides with regional declines in temperature and/or available moisture. Modern, more diverse superpáramo assemblages were not established until 4600 cal yr B.P., and were accompanied by a dramatic decline in Alnus, probably the result of factors associated with climate, humans, or both. Pollen influx from upper Andean forests is remarkably higher than expected during the Late Glacial and early to middle Holocene, especially between 14,000 and 12,600 cal yr B.P., when unparalleled high values are recorded. We propose that intensification of upslope orographic winds transported lower elevation forest pollen to the superpáramo, causing the apparent increase in tree pollen at high altitude. The association between increased forest pollen and summer insolation at this time suggests a causal link; however, further work is needed to clarify this relationship.  相似文献   

13.
Paleoclimatic records from the climatically sensitive Canadian prairies are relatively rare due to the scarcity of study sites with continuous Holocene stratigraphic sequences. Oro Lake, a meromictic lake in the dry grasslands of Saskatchewan (Canada), contains a continuous Holocene diatom record spanning the last 10,000 years. Here we present analyses at three different time scales and resolution: (1) 1–3 yr resolution of the past 80 years, (2) century-scale analysis of the Holocene, and (3) decadal-scale analysis of the past 7000 years. Recent changes in the diatom assemblages and their respective salinity inferences were significantly related to measured effective moisture (precipitation minus evaporation, P−ET). The droughts of the 1930s, and a wet period during the 1950s are clearly evident in the diatom record, suggesting the Oro Lake record contains a sensitive archive of past climatic conditions. Century-scale analysis of the diatom record during the Holocene is consistent with a cool and moist climate in the early Holocene (prior to ca 9700 cal yr BP, 8600 14C yr BP). An abrupt increase in diatom-inferred salinity at 9600 cal yr BP (8500 14C yr BP) indicates the onset of an arid climate, with continuing arid conditions throughout the mid-Holocene. Decadal-scale analysis of the past 7000 years suggests that the mid-Holocene was more complex, with extended periods of increased variability in precipitation, particularly between ca 5800–3600 cal yr BP (5000–3200 14C yr BP) which is characterized by intervals of increased effective moisture. The past 2000 years is characterized by reduced salinities and generally wetter conditions in comparison to the mid-Holocene. The combination of the different scales of analyses in this study provides a detailed account of the dynamic nature of climate from sub-decadal to millennial scale in the Oro Lake region within the Palliser Triangle. Climate model predictions suggest that the Canadian prairie region may see a higher frequency of extreme droughts under projected global warming, potentially similar to the most arid periods seen during the mid-Holocene when many lake basins completely dried out.  相似文献   

14.
The Magnitude and Proximate Cause of Ice-Sheet Growth Since 35,000 yr B.P.   总被引:1,自引:0,他引:1  
The magnitude of late Wisconsinan (post-35,000 yr B.P.) ice-sheet growth in the Northern Hemisphere is not well known. Ice volume at 35,000 yr B.P. may have been as little as 20% or as much as 70% of the volume present at the last glacial maximum (LGM). A conservative evaluation of glacial–geologic, sea level, and benthic δ18O data indicates that ice volume at 35,000 yr B.P. was approximately 50% of that extant at the LGM (20,000 yr B.P.); that is, it doubled in about 15,000 yr. On the basis of literature for the North Atlantic and a sea-surface temperature (SST) data compilation, it appears that this rapid growth may have been forced by low-to-mid-latitude SST warming in both the Atlantic and Pacific Oceans, with attendant increased moisture transport to high latitudes. The SST ice-sheet growth notion also explains the apparent synchroneity of late Wisconsinan mountain glaciation in both hemispheres.  相似文献   

15.
The Gaoligong and Chongshan shear systems (GLSS and CSSS) in western Yunnan, China, have similar tectonic significance to the Ailaoshan–Red River shear system (ASRRSS) during the Cenozoic tectonic development of the southeastern Tibetan syntaxis. To better understand their kinematics and the Cenozoic tectonic evolution of SE Asia, this paper presents new kinematic and 40Ar/39Ar geochronological data for these shear systems. All the structural and microstructural evidence indicate that the GLSS is a dextral strike-slip shear system while the CSSS is a sinistral strike-slip shear system, and both were developed under amphibolite- to greenschist-grade conditions. The 40Ar/39Ar dating of synkinematic minerals revealed that the strike-slip shearing on the GLSS and CSSS at least began at  32 Ma, possibly coeval with the onset of other major shear systems in SE Asia. The late-stage shearing on the GLSS and CSSS is dated at  27–29 Ma by the biotite 40Ar/39Ar ages, consistent with that of the Wang Chao shear zone (WCSZ), but  10 Ma earlier than that of the ASRRSS. The dextral Gaoligong shear zone within the GLSS may have separated the India plate from the Indochina Block during early Oligocene. Combined with other data in western Yunnan, we propose that the Baoshan/Southern Indochina Block escaped faster southeastward along the CSSS to the east and the GLSS to the west than the Northern Indochina Block along the ASRRSS, accompanying with the obliquely northward motion of the India plate during early Oligocene (28–36 Ma). During 28–17 Ma, the Northern Indochina Block was rotationally extruded along the ASRRSS relative to the South China Block as a result of continuously impinging of the India plate.  相似文献   

16.
Joint pollen and oxygen isotope data from Ocean Drilling Program Site 1234 in the southeast Pacific provide the first, continuous record of temperate South American vegetation and climate from the last 140 ka. Located at 36°S, 65 km offshore of Concepcion, Chile, Site 1234 monitors the climatic transition zone between northern semi-arid, summer dry-winter wet climate and southern year-round, rainy, cool temperate climate. Dominance of onshore winds suggests that pollen preserved here reflects transport to the ocean via rivers that drain the region and integrate conditions from the coastal mountains to the Andean foothills. Down-hole changes in diagnostic pollen assemblages from xeric lowland deciduous forest (characterized by grasses, herbs, ferns, and trees such as deciduous beech, Nothofagus obliqua), mesic Valdivian Evergreen Forest (including conifers such as the endangered Prumnopitys andina), and Subantarctic Evergreen Rainforest (comprised primarily of southern beech, N. dombeyi) reveal large rapid shifts that likely reflect latitudinal movements in atmospheric circulation and storm tracks associated with the southern westerly winds. During glacial intervals (MIS 2-4, and 6), rainforests and parkland dominated by Nothofagus moved northward into the region. At the MIS 6/5e transition, coeval with the rapid shift to lower isotopic values, rainforest vegetation was rapidly replaced by xeric plant communities associated with Mediterranean-type climate. An increased prominence of halophytic vegetation suggests that MIS 5e was more arid and possibly warmer than MIS 1. Although rainforest pollen rises again at the end of MIS 5e, lowland deciduous forest pollen persists through MIS 5d and 5c, into MIS 5b. Substantial millennial-scale variations occur in both interglacial and glacial regimes, attesting to the sensitivity of the southern westerly belt to climate change. Comparison of the cool, mesic N. dombeyi rainforest assemblage from Site 1234 with δ18O in the Byrd Ice core shows that on time scales longer than 10 ka, cool-moist conditions in central Chile were coherent with and occurred in phase with Antarctic cooling. This is also likely at millennial scales, although rainforest pollen lags Antarctic cooling with exponential response times of about 1000 years, which plausibly reflects the ecological response time to regional climate change.  相似文献   

17.
The Palaeoproterozoic Svecofennian crust in southern and central Fennoscandia was established about 1.8 Ga ago after a prolonged history of accretion and intrusion. During late stages of the Svecofennian orogeny, deformation was partitioned into several crustal-scale shear zones in present-day Finland, Sweden and Estonia. One such major ductile deformation zone, ‘the South Finland shear zone’ (SFSZ) extends for almost 200 km through the Åland archipelago in southwestern Finland, and further along the southern and southwestern coast of Finland. This more than a kilometer wide transpressional zone appears to have been repeatedly reactivated. The deformation started with a period of regional, ductile dextral shearing of igneous rocks, producing striped granodioritic and tonalitic gneisses. The ductile phases are locally overprinted and followed by ductile to semi-ductile deformation evidenced by mylonite zones of variable width. The last stage of tectonic activity along the shear zone is recorded by pseudotachylites. Within this study, we dated zircons (SIMS U–Pb) and titanites (ID-TIMS U–Pb) from eight rock samples, and two pseudotachylite whole-rock samples (40Ar/39Ar) in order to reconstruct the deformation and (re)activation history of the shear zone.The results suggest that the medium-grained gneisses underwent three distinct deformation phases separated by time intervals without regional deformation. The ductile deformation within the study area initiated at 1.85 Ga. A second, more intensive deformation phase existed around 1.83 Ga, by which the shear zone was already well developed. Finally, the last ductile event is recorded by 1.79 Ga metamorphic titanites in relatively granoblastic granitoid gneisses that nevertheless already display protomylonitic textures, suggesting the initiation of large-scale mylonitisation around or soon after this time. The age of a pseudotachylite sample and, hence, the brittle deformation is bracketed between 1.78 and 1.58 Ga based on the age of pegmatites cut by pseudotachylites as well as 40Ar/39Ar minimum ages for the pseudotachylite, respectively. The data imply that the rocks within the study area entered the ductile–brittle transition zone due to rapid cooling and exhumation of the crust after 1.79 Ga.  相似文献   

18.
Previous studies suggest that the Homeb silts of the Kuiseb valley, Namibia (i) accumulated in a dune-dammed lake, (ii) are end-point deposits, (iii) represent an aggrading river bed, and (iv) are slackwater deposits. Thus, they have been used alternatively as evidence of past drier conditions or past wetter conditions. Lithostratigraphic analysis of two sediment sequences at Homeb indicates sedimentation by aggradation of the Kuiseb River triggered by a transition from an arid to humid climate. OSL ages for the sequences were obtained by the SAR protocol on aliquots of 9.6-mm and 4.0-mm diameter and on single grains. Four-millimeter aliquot minimum ages closely approximate the single-grain minimum ages and are younger than 9.6-mm aliquot minimum and central ages. Based on these results, the small-aliquot (4-mm) approach appears to provide ages comparable to those obtained by the more laborious and time-consuming single-grain method. Minimum ages indicate rapid deposition of the Homeb Silts in at least two episodes centered at 15 ka and 6 ka during climate transitions from arid to humid. Flash floods eroded the valley fills during slightly more arid conditions.  相似文献   

19.
Chemical weathering of basalts in the Putorana Plateau, Central Siberia, has been studied by combining chemical and mineralogical analysis of solids (rocks, soils, river sediments and suspended matter) and fluid solution chemistry in order to quantify CO2 consumption and to assess the major factors controlling basic rock weathering under permafrost-dominated taiga climate. The chemical status of  40 major and trace elements (TE) in pristine boreal rivers and interstitial solutions of permafrost soils has been investigated using in-field ultrafiltration procedure. This revealed strong relationships between concentration of TE and that of major inorganic components of colloids, i.e., Fe or Al. Decomposing plant litter and permafrost thawing are considered important sources of most major and trace elements in Arctic rivers during summertime.  相似文献   

20.
Amos Frumkin   《Quaternary Research》2009,71(3):319-328
Trees growing on the Mt. Sedom salt diapir, at the southern Dead Sea shore, were swept by runoff into salt caves and subsequently deposited therein, sheltered from surface weathering. A subfossil Tamarix tree trunk, found in a remote section of Sedom Cave is radiocarbon dated to between  2265 and 1930 BCE. It was sampled in 109 points across the tree rings for carbon and nitrogen isotopes. The Sedom Tamarix demonstrates a few hundred years of 13C and 15N isotopic enrichment, culminating in extremely high δ13C and δ15N values. Calibration using modern Tamarix stable isotopes in various climatic settings in Israel shows direct relationship between isotopic enrichment and climate deterioration, particularly rainfall decrease. The subfossil Tamarix probably reflects an environmental crisis during the Intermediate Bronze Age, which subsequently killed the tree  1930 BCE. This period coincides with the largest historic fall of the Dead Sea level, as well as the demise of the large regional urban center of the 3rd millennium BCE. The environmental crisis may thus explain the archaeological evidence of a shift from urban to pastoral culture during the Intermediate Bronze Age. This was apparently the most severe long-term historical drought that affected the region in the mid-late Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号