首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《地下水》2021,(3)
黄屯硫铁矿西部的金铜矿区属于新增资源,为查明西部金铜矿体的开采条件,在对矿区水文地质边界条件进行综合分析的基础上,建立矿区水文地质概念模型,运用比拟法与解析法两种计算方法分别对矿区矿坑涌水量进行了预测,结果表明:两种预测方法得出的结果基本相近。从安全因素考虑,建议将比拟法预测的-340 m中段正常涌水量1 001.5 m~3/h(24 036.4 m~3/d)和最大涌水量1 101.5 m~3/h(26 436.4 m~3/d)、-460 m中段正常涌水量1 354.9 m~3/h(32 517.6 m~3/d)和最大涌水量1 454.9 m~3/h(34 917.6 m~3/d)作为矿井防排水系统及相关设计的依据。最后根据预测结果,对矿井防排水系统及相关设计提出了合理建议。  相似文献   

2.
以发耳二矿为例,利用其勘探资料对矿区水文地质条件进行分析研究,通过确定区内水文地质参数、水文地质模型等因素,利用解析法对该井田(西井)先期开采地段矿井涌水量进行预测,矿井正常涌水量为12 250 m~3/d,最大涌水量15 900 m~3/d。可作为初步开采设计的参考。  相似文献   

3.
为提高彬长矿区各矿井预测涌水量的准确性,通过精细化勘探将洛河组划分为上、下两段;建立了巨厚复合含水层涌水量预测的水文地质概念模型,将受到煤层采后顶板导水裂缝带波及的含水层涌水概化为考虑垂向渗流的向河渠排泄模型,称之为"含水层水向工作面涌水模型";并给出了与矿井采掘计划相结合、考虑含水层静储量释放、动态补给和垂向渗流的水量预测方法,称之为"工作面时空动态涌水量预测方法"。以高家堡矿井为例,预测101工作面最大涌水量为1 222.11 m~3/h,采后初期稳定涌水量为950.07 m~3/h;预测201工作面最大涌水量为610.93 m~3/h,采后初期稳定涌水量为536.73 m~3/h。与实测涌水量对比分析,预测涌水量绝对误差为-130.49~20.64 m~3/h,误差率为-21.05%~8.39%,预测精度大大提升。  相似文献   

4.
孟加拉巴拉普库利亚煤矿位于孟加拉国西北部,为一独立的半断陷冈瓦纳群含煤盆地。该矿主采的Ⅵ煤层为特厚煤层,煤层均厚36m。受矿井水文地质条件等因素影响,目前仅在南翼采区进行开采。根据煤矿Ⅵ煤一分层开采2000-2012年的涌水量实测资料,建立灰色理论模型并进行模型精度检验。在此基础上,利用灰色理论的预测方法,基于Matlab软件编程计算,对2013-2018年的矿井涌水量动态变化进行预测,并将模型预测值与实测资料进行对比。结果表明,所建立的灰色系统模型具有可靠性和适用性,涌水量预测成果可为矿井排水系统的设计提供依据。  相似文献   

5.
随着我国矿业经济的发展,金属矿山浅部资源的开采日趋贫乏,部分金属矿产资源的供需矛盾突出,以河南唐河周庵铜镍矿区为研究对象,对矿区岩体埋藏特征和矿区水文地质条件进行分析,查明该矿区主要充水水源为地下水,通过对矿区矿坑涌水量进行预测结果发现:-310 m开采层段涌水量预测结果为正常涌水量为1 520.54 m~3/d,最大涌水量为74 667.95 m~3/d;-810 m段开采层段涌水量预测结果为正常涌水量为567.41 m~3/d,最大涌水量为75 235.36 m~3/d。为防止矿区在竖井施工中发生涌水现象,在日常施工中应对含水层进行预注浆处理后再行掘进。同时在地表建立多个地下水位长期观测孔。研究结果为同类地区井下开采中类似水文地质难题提供基础依据。  相似文献   

6.
基于我国东部许多大水矿区煤炭资源日渐枯竭,衰老矿井涌水量变化巨大的现状,以灰色系统理论为基础,提出了一种新的矿井涌水量预测组合模型——GM (1,1)–Markov–新陈代谢组合模型以及用于预测结果综合评价的指数Z。模型验证结果表明,该组合模型的预测结果优于其他模型,减小了序列数据波动性大、新旧信息更替差异所造成的误差,能够较好地解决时间跨度下采空区残留涌水、意外突水等不确定因素对衰老矿井涌水量预测精度和可靠性的影响。将该组合模型及其他模型应用于开滦集团荆各庄衰老矿井涌水量的预测,结果显示:GM (1,1)–Markov–新陈代谢组合模型的综合评价指数最高,达到0.475;荆各庄矿2011—2015年的矿井涌水量将分别为13.055 m3/min、12.730 m3/min、12.579 m3/min、12.493 m3/min和12.503 m3/min。   相似文献   

7.
峰峰五矿底板突水数值模拟及涌水量预测   总被引:4,自引:2,他引:2  
利用峰峰五矿的突水资料进行了矿区地下水数值模拟和矿井涌水量预测。首先,根据水文地质条件,建立矿区地下水渗流的数学模型。然后,运用突水资料对模型进行检验,模型检验中各观测孔的实测水位与模拟水位拟合较好。最后,利用所建模型进行矿坑涌水量预测,结果表明,-100m水平以下煤层的开采,矿坑涌水量大,开采成本较高。  相似文献   

8.
针对矿井涌水量研究中存在的问题,提出并论述了灰色预测理论应用于矿井涌水量预测的可行性和必要性,通过对井陉矿区的预测实践,建立了相应的 GM(1,1)模型,给出了提高灰色模型预测精度的方法。   相似文献   

9.
运用灰色理论建立煤矿涌水量预测的GM (1,1)模型,在某矿井太原组工作面涌水量资料的基础上,通过增加观测频率和数据密度的方法对模型进行修正,使精度提高到96.26%。将模型预测值与实际数据比较,证明所建立模型较为可靠。结合其实际的水文地质条件及排水能力,设定该工作面的上灾变阈值为15 m3/min,得出工作面的涌水量大小、灾变时间和数值的预测值,为工作面安全开采和监管提供了数据支持。   相似文献   

10.
矿井涌水对井下安全生产存在潜在威胁,同时可能引发因矿区地下水位下降造成的地表植被难以逆转的演替退化。针对涌水量数值模型构建时边界条件概化不准确和水文地质参数选用不可靠等关键问题,以准确预测矿井涌水量保障煤层安全开采为目标,并为研究区沙漠植被的保护提供理论和数据支撑,选择以天然边界作为研究区周界,在充分收集与分析钻探、物探、抽水试验、地下水长观和矿井采空区范围及其涌水量等资料的基础上反复修正模型,构建了较为逼真的地下水三维非稳定流数值模型。此外依据矿井采空区拓展进程及其涌水量和地下水监测数据等进行模型模拟识别,论证了该模型的合理性和可靠性。利用所建立的数值模型预测了煤层开采条件下的矿井涌水量和潜水位降深场,进而基于潜水位埋深与沙漠植被关系分析了潜水位下降对沙漠植被的影响。结果表明:根据矿区先期煤层开采预测矿井涌水量为3.08×104 m3/d,引起矿区内潜水位下降2.08~2.35 m,将导致矿区内代表性植被沙柳和小叶杨的长势变差、甚至部分枯萎,呈现由中生植被类型向旱生植被方向的演替趋势。研究结果为研究区提供了较准确的涌水量预测值,可以为制定科...  相似文献   

11.
由于推覆体内构造作用强烈,含水介质具有极强的空间不连续性及各向异性,对位于推覆体内的矿区来说,含水系统结构的刻画是模型概化的一大难点,也是影响矿坑涌水量预测精度的主要因素。为了提高推覆体内矿区含水系统结构刻画及涌水量预测结果的精度,以刚果(金)Sicomines铜钴矿为例,对复式推覆体内矿区水文地质概念模型的建立方法进行了研究,将模型垂向上精细加密剖分,严格按照实绘水文地质剖面逐一对模型中横向、纵向剖分图进行水文地质参数赋值来区分含水层结构,构建了地下水流数值模拟模型,并利用地下水位动态及矿坑排水量资料对模型进行了识别,然后分别对矿区1 230,1 110,990 m开采标高的矿坑涌水量进行了预测,结果表明:1 230,1 110,990 m开采标高的矿坑平水年涌水量分别为130 400,103 200,97 000 m~3/d,可作为矿山防治水的依据。  相似文献   

12.
根据六盘水矿区马临煤矿地质条件背景以及矿井地质资料的分析,论述了矿井水文地质特征、充水因素,并在此基础上采用比拟法及解析法对研究区矿井涌水量进行了预算。结果显示:开采C8煤层以上煤层以裂隙含水层为主,属于水文地质条件简单的矿床类型;开采C12煤层时,煤层间接底板茅口组灰岩岩溶含水层对矿床充水将占主导地位,水文地质条件转变为复杂的岩溶充水矿床类型,存在较大的突水危险;根据含水层水文地质条件的不同,研究区含煤地层涌水量采用比拟法预算,结果为2402.43 m~3/d;茅口组岩溶含水层采用解析法预算,结果为7570.68m~3/d;研究区最大涌水量为平均涌水量的2.4倍,建议采用23935.45m~3/d作为今后矿井选择排水设备的依据。  相似文献   

13.
核桃峪煤矿是目前甘肃陇东煤田在建的规模最大矿井,设计单位要求地质勘查部门提交采用不同计算方法对井田先期开采地段正常涌水量和最大涌水量进行预测。通过分析矿井水文地质条件,分别采用了大井法、水平廊道法和比拟法对矿井涌水量做出了预测,并对预测结果进行了对比分析。结果表明:(1)解析法采用实测影响半径计算的涌水量与比拟法的结果相对接近,选用较大值,即为比拟法的结果,先期开采地段最大涌水量为28 800m3/d,正常涌水量为20 160m3/d;(2)在矿井涌水量预测中,用经验公式计算的承压水影响半径偏小,导致预算的涌水量结果偏大。在对各种预测方法应用条件分析比较的前提下,建议若有条件采用比拟法,应首选比拟法预算矿井涌水量。  相似文献   

14.
王河煤矿矿井涌水量数值模拟及预测   总被引:1,自引:0,他引:1  
针对岩溶充水矿井涌水量数值模拟中边界条件概化和非均质性刻画难题,采用分别建立区域模型和局部模型的方法解决边界概化问题,运用信息复合技术刻画岩溶介质的非均质性.以具有完整水文地质边界的荥巩矿区为计算区建立区域模型,以区域模型计算出的流量作为边界条件建立王河煤矿矿井涌水量模拟模型(局部模型).在充分分析钻孔、构造、突水、物探等资料的基础上,运用信息复合技术对煤矿充水含水层进行垂向和平面参数分区.在此基础上,利用GMS建立了精细的王河煤矿涌水量模拟模型.利用该模型预测了不同开采工作面的矿井正常涌水量和最大涌水量.结果表明,开采111070、113090、113110、113120工作面时,正常涌水量分别为490、350、560、590 m3/h,最大涌水量分别为690、490、790、830 m3/h.预测结果可为矿山设计部门确定开采方案、布置排水设备和制定防治水措施提供科学依据.   相似文献   

15.
煤矿开采不当会对水资源与水环境造成破坏,尤其在生态环境相对脆弱地区更是如此。针对目前矿井涌水量预测大多以单一工作面或煤矿为评价单元,对沟域内煤矿群同时长期开采的地下水环境影响重视不够。选择头道河则沟域为研究区,以地下水勘查、井田勘探资料为依据,构建了头道河则完整沟域的地下水三维非稳定流数值模型,根据地下水、地表水监测数据和煤矿群开采涌水量的长观资料进行模型的识别与验证,以9#煤矿为典型矿区,分析综采和条带充填2种不同开采方式下矿井涌水量及其对水环境的影响。研究结果表明:(1)综采状态下,矿井涌水量增加0.70×104 m3/d,导致地下水溢出量减少0.20×104 m3/d,引发矿区及区域地下水水位下降0.21~17.92 m;条带充填开采状态下,矿井涌水量增加0.11×104 m3/d,导致地下水溢出量减少0.04×104 m3/d,引发矿区及区域地下水水位下降0.01~0.44 m。(2)煤矿按综采方式开采,...  相似文献   

16.
利用刘家坪子煤矿区水文地质资料,对矿区水文地质条件进行分析研究,采用地下水动力学法,预测主采煤层(C5煤)开采过程中的矿井涌水量,同时采用水文地质比拟法,利用水文地质条件与该矿相似的小发路煤矿的资料,预测该矿井开采过程中的涌水量,采用地下水动力学和水文地质比拟法,分析两种计算方法的优缺点,选择比拟法作为开采初步设计的参考。  相似文献   

17.
通过对元山子矿区水文地质特征的分析,矿区有四个含水层,三个隔水层,按照水文地质单元构成要素,结合地表分水岭情况,可将矿区划分为三个水文地质单元,认为该矿区水文地质条件总体比较简单,地表水对矿床充水作用较小,并对矿坑涌水量进行了预测计算,地表水汇入量预测采用地表径流模数法计算,地下水涌入量采用狭长水平坑道法,综合矿坑地下水及地表水涌入量数据,求得矿坑(Ⅰ南/Ⅰ北、Ⅱ、Ⅲ)一般涌水量为846.2m~3/d和732.4m~3/d,最大涌水量为36 118m~3/d和27 080.1m~3/d,为以后矿山开采提出了建议。  相似文献   

18.
集贤矿区地质勘探报告中预测的矿井涌水量是250m^3/h,但目前矿井实际涌水量达1700~2000m^3/h,通过对开采前后水文地质资料的分析对比与研究认为,对矿井开采后地下水动力条件的变化缺乏足够认识,采用的矿井涌水量预测模型与实际情况不符是导致预测的矿井涌水带与实际涌水量相筹很大的主要原因。  相似文献   

19.
沙曲井田位于山西河东煤田离柳矿区的中部,处在柳林泉域岩溶水系统的径流区。矿区奥灰水水量大,水位标高为+797~+802m,其中的4#煤底板承受奥灰水压2~5MPa,10#煤底板承受奥灰水压3~6MPa,属带压开采矿井。利用井田以往的地质及水文地质勘探资料,应用GMS软件建立矿区三维立体模型和地下水渗流的数学模型,实现水文地质结构三维可视化,使数学模型能正确地反映预测区的水文地质条件,达到数值仿真效果;应用有限差分数值法,对开采上组煤(3#+4#)和下组煤(8#+9#、10#)时,石炭系太原组灰岩含水层和奥陶系峰峰组含水层的疏降进行矿井涌水量预测,为矿井的安全生产和防治水工作提供依据。  相似文献   

20.
为了准确预测盘县煤田内各矿井涌水量,以盘关向斜火烧铺煤矿为例,首先从区域水文地质分析入手,其次收集整理矿井40多年地质勘探、矿井涌水量、降雨量、采空区、开采标高、煤炭采出量等相关因素数据,然后分析与矿井涌水量的关系,建立矿井涌水量与相关因素的多元回归计算模型;之后应用该模型对矿井6个开采水平9个块段进行了矿井涌水量预测,最后对比与解析法、比拟法计算的结果。结果表明,矿井涌水量与上述各相关因素呈正相关性,解析法计算结果偏小;上述特征在整个盘县煤田内具有典型性,相关因素分析法可以作为井田内及相邻煤田矿井涌水量计算方法,可为其它矿井提供比拟对象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号