首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The Narmada River flows through the Deccan volcanics and transports water and sediments to the adjacent Arabian Sea. In a first-ever attempt, spatial and temporal (annual, seasonal, monthly and daily) variations in water discharge and sediment loads of Narmada River and its tributaries and the probable causes for these variations are discussed. The study has been carried out with data from twenty-two years of daily water discharge at nineteen locations and sediment concentrations data at fourteen locations in the entire Narmada River Basin. Water flow in the river is a major factor influencing sediment loads in the river. The monsoon season, which accounts for 85 to 95% of total annual rainfall in the basin, is the main source of water flow in the river. Almost 85 to 98% of annual sediment loads in the river are transported during the monsoon season (June to November). The average annual sediment flux to the Arabian Sea at Garudeshwar (farthest downstream location) is 34.29×106 t year−1 with a water discharge of 23.57 km3 year−1. These numbers are the latest and revised estimates for Narmada River. Water flow in the river is influenced by rainfall, catchment area and groundwater inputs, whereas rainfall intensity, geology/soil characteristics of the catchment area and presence of reservoirs/dams play a major role in sediment discharge. The largest dam in the basin, namely Sardar Sarovar Dam, traps almost 60–80% of sediments carried by the river before it reaches the Arabian Sea.  相似文献   

2.
Homogeneous Indian Monsoon rainfall: Variability and prediction   总被引:1,自引:0,他引:1  
The Indian summer monsoon rainfall is known to have considerable spatial variability, which imposes some limitations on the all-India mean widely used at present. To prepare a spatially coherent monsoon rainfall series for the largest possible area, fourteen subdivisions covering the northwestern and central parts of India (about 55% of the total area of the country), having similar rainfall characteristics and associations with regional/global circulation parameters are merged and their area-weighted means computed, to form monthly and seasonal Homogeneous Indian Monsoon (HIM) rainfall series for the period 1871–1990. This paper includes a listing of monthly and seasonal rainfall of HIM region. HIM rainfall series has been statistically analysed to understand its characteristics, variability and teleconnections for long-range prediction. HIM rainfall series isfound to be homogeneous, Gaussian distributed and free from persistence. The mean (R) rainfall is 757 mm (87% of annual) and standard deviation (S) 119 mm, with a Coefficient of Variation (CV) of 16%. There were 21 dry (K, -<R S) and 19 wet (R i R + S) years during 1871–1990. There were clusters of frequent negative departures during 1899–1920 and 1965–1987 and positive departures during 1942–1961. The recent three decades show very high rainfall variability with 10 dry and 6 wet years. The decadal averages were alternatively positive and negative for three consecutive decades, viz., 1871–1900 (positive); 1901–1930 (negative); 1931–1960 (positive) and 1961–1990 (negative) respectively. Significant QBO and autocorrelation at 14th lag have been found in HIM rainfall series. To delineate the changes in the climatic regime of the Indian summer monsoon, sliding correlation coefficients (CCs) between HIM rainfall series and (i) Bombay msl pressure, (ii) Darwin msl pressure and (iii) Northern Hemisphere surface air temperature over the period 1871–1990 have been examined. The 31-year sliding CCs showed the systematic turning points of positive and negative CCs around the years, 1900 and 1940. In the light of other corroborative evidences, these turning points seem to delineate ‘meridional’ monsoon regime during 1871–1900 and 1940–1990 and ‘zonal’ monsoon regime during 1901–1940. The monsoon signal is particularly dominant in many regional and global circulation parameters, during 1951–1990. Using the teleconnections ofHIM series with 12 regional/global circulation parameters during the recent 36-year period 1951–86 regression models have been developed for long-range prediction. In the regression equations 3 to 4 parameters were entered, explaining upto 80% of the variance, depending upon the data period. The parameters that prominently enter the multiple regression equations are (i) Bombay msl pressure, (ii) April 500 mb Ridge at 75°E, (iii) NH temperature, (iv) Nouvelle minus Agalega msl pressure and (v) South American msl pressure. Eleven circulation parameters for the period 1951–80 were subjected to Principal Component Analysis (PCA) and the PC’s were used in the regression model to estimate HIM rainfall. The multiple regression with three PCs explain 72% of variance in HIM rainfall.  相似文献   

3.
Temporal distribution of southwest monsoon (June –September) rainfall is very useful for the country’s agriculture and food grain production. It contributes more than 75% of India’s annual rainfall. In view of this, an attempt has been made here to understand the performance of the monthly rainfall for June, July, August and September when the seasonal rainfall is reported as excess, deficient or normal. To know the dependence of seasonal rainfall on monthly rainfall, the probabilities of occurrence of excess, deficient and normal monsoon when June, July, August and also June + July and August + September rainfall is reported to be excess or deficient, are worked out using the long homogenous series of 124 years (1871-–1994) data of monthly and seasonal rainfall of 29 meteorological sub-divisions of the plain regions of India. In excess monsoon years, the average percentage contribution of each monsoon month to the long term mean (1871–1994) seasonal rainfall (June –September) is more than that of the normal while in the deficient years it is less than normal. This is noticed in all 29 meteorological sub-divisions. From the probability analysis, it is seen that there is a rare possibility of occurrence of seasonal rainfall to be excess/deficient when the monthly rainfall of any month is deficient/excess.  相似文献   

4.
The variability in seasonal mean and extreme precipitation is analyzed for several regions of Argentina to the north of 39º S, using long-term monthly time series data which expand from 1860 to 2006. The selected locations can be considered as representative of different climatic regions. This work focuses on the analysis of monthly rainfall distribution, significant seasonal trends, changes in variance and extreme monthly values, in order to establish the magnitude of the seasonal climatic rainfall variability through time for central Argentina. A 40-yr moving window was employed in order to analyze seasonal variability of rainfall extremes. Extremes were computed for different probability levels of a theoretical distribution function over/below the 80th/20th percentile. The gamma distribution was selected among five other theoretical distributions, and the scale and shape parameters were computed using the maximum likelihood estimation (MLE) and the bootstrap method for 1000 resample data sets, as well. Trend analysis was performed for each window on winter and summer means and tested for significance. The use of a moving window allowed detecting the window of maximum absolute values for the trends. Research results show significant temporal shifts in seasonal rainfall distribution and return values (RV) that were computed for different frequencies (once every five, 10 and 20 years). Generally, summer precipitation extremes have become wetter for the whole region. Rainfall amounts for summer wet/dry extremes (W/D) corresponding to the 90th (for W) and 10th (for D) percentiles were subjected to significant increase, but depending on the geographical area this effect spreads slightly differently over records of years. A common-for-all-stations period of such summer increase trend in extreme values spans from the window 1921-1960 to the last window analyzed: 1967-2006. This behavior was not observed for north and west Argentina during winter, except for the region represented by Bahía Blanca, where the 10% D extreme has increased throughout the study period.  相似文献   

5.
Quantitative precipitation forecasting (QPF) has been attempted over the Narmada Catchment following a statistical approach. The catchment has been divided into five sub-regions for the development of QPF models with a maximum lead-time of 24 hours. For this purpose the data of daily rainfall from 56 raingauge stations, twice daily observations on different surface meteorological parameters from 28 meteorological observatories and upper air data from 11 aerological stations for the nine monsoon seasons of 1972–1980 have been utilized. The horizontal divergence, relative vorticity, vertical velocity and moisture divergence are computed using the kinematic method at different pressure levels and used as independent variables along with the rainfall and surface meteorological parameters. Multiple linear regression equations have been developed using the stepwise procedure separately with actual and square root and log-transformed rainfall using 8-year data (1972–1979). When these equations were verified with an independent data for the monsoon season of 1980, it was found that the transformed rainfall equations fared much better compared to the actual rainfall equations. The performance of the forecasts of QPF model compared to the climatological and persistence forecasts has been assessed by computing the verification scores using the forecasts for the monsoon season of 1980.  相似文献   

6.
In the Tampa Bay region of Florida, extreme levels of annual and seasonal rainfall are often associated with tropical cyclones and strong El Niño episodes. We used stepwise multiple regression models to describe associations between annual and seasonal rainfall levels and annual, bay-segment mean water clarity (as Secchi depth [m]), chlorophylla (μg I?1), color (pcu), and turbidity (ntu) over a 20-yr period (1985–2004) during which estimated nutrient loadings have been dominated by non-point sources. For most bay segments, variations in annual mean water clarity were associated with variations in chlorophylla concentrations, which were associated in turn with annual or seasonal rainfall. In two bay segments these associations with annual rainfall were superimposed on significant long-term declining trends in chlorophylla. Color was significantly associated with annual rainfall in all bay segments, and in one segment variations in color were the best predictors of variations in water clarity. Turbidity showed a declining trend over time in all bay segments and no association with annual rainfall, and was significantly associated with variations in water clarity in only one bay segment. While chlorophylla, color, and turbidity a affected water clarity to varying degrees, the effects of extreme rainfall events (El Niño events in 1998 and 2003, and multiple tropical cyclone events in 2004) on water clarity were relatively short-lived, persisting for periods of months rather than years. During the 20-yr period addressed in these analyses, declining temporal trends in chlorophylla and turbidity, produced in part by a long-term watershed management program that has focused on curtailing annual loadings of nitrogen and other pollutants, may have helped to prevent the bay as a whole from responding more adversely to the high rainfall periods that occurred in 1998 and 2003–2004.  相似文献   

7.
Flood hazard evaluation is an important input for Nuclear Power Plants external events safety studies. In the present study, flood hazard at various nuclear sites in India due to rainfall has been evaluated. Hazard estimation is a statistical procedure by which rainfall intensity versus occurrence frequency is estimated from historical records of rainfall data and extrapolated with asymptotic extreme value distribution. Rainfall data needed for flood hazard assessment are daily annual maximum rainfall (24?h data). The observed data points have been fitted using Gumbel, power law and exponential distribution, and return period has been estimated. To study the stationarity of rainfall data, a moving window estimate of the parameters has been performed. The rainfall pattern is stationary in both coastal and inland regions over the period of observation. The coastal regions show intense rainfall and higher variability than inland regions. Based on the plant layout, catchment area and drainage capacity, the prototype fast breeder reactor (PFBR) site is unlikely to be flooded.  相似文献   

8.
The potential of rain to generate soil erosion is known as the rainfall erosivity (R), and its estimation is fundamental for a better understanding of the erosive ability of certain rainfall events. In this paper, we investigated the temporal variations of rainfall erosivity using common daily rainfall data from four meteorological stations during 1956 to 1989 and 2008 to 2010 periods in the Yanhe River catchment of the Chinese Loess Plateau. The adaptability of several simplified calculation models for R was evaluated and compared with the results of previous studies. An exponential model based on the modified Fournier index (MFI) was considered as the optimum for our study area. By considering the monthly distribution and coefficient of variation of annual precipitation, equations based on two indices, the MFI and its modification F F , produced a higher calculation accuracy than mean annual precipitation. The rainfall erosivity in the Yanhe River catchment has a remarkable interannual difference, with a seasonality index ranging from 0.69 to 1.05 and a precipitation concentration index from 14.51 to 27.46. In addition to the annual rainfall amounts, the extreme wave of monthly rainfall distribution also has an effect on the magnitude and temporal variation of rainfall erosivity, especially interannual variation. For long time series of rainfall erosivity, a trend coefficient r of ?0.07 indicated a slight decline in erosivity in the Yanhe River catchment from 1956 to 2010.  相似文献   

9.
An annual series of maximum dailyrainfall extending through 1860–1995, i.e., 136 years,was extracted from the archives of a meteorologicalstation in Athens. This is the longest rainfall recordavailable in Greece and its analysis is required forthe prediction of intense rainfall in Athens, wherecurrently major flood protection works are under way.Moreover, the statistical analysis of this long recordcan be useful for investigating more generalisedissues regarding the adequacy of extreme valuedistributions for extreme rainfall analysis and theeffect of sample size on design rainfall inferences.Statistical exploration and tests based on this longrecord indicate no statistically significant climaticchanges in extreme rainfall during the last 136 years.Furthermore, statistical analysis shows that theconventionally employed Extreme Value Type I (EV1 orGumbel) distribution is inappropriate for the examinedrecord (especially in its upper tail), whereas thisdistribution would seem as an appropriate model iffewer years of measurements were available (i.e., partof this sample were used). On the contrary, theGeneral Extreme Value (GEV) distribution appears to besuitable for the examined series and its predictionsfor large return periods agree with the probablemaximum precipitation estimated by the statistical(Hershfield's) method, when the latter is consideredfrom a probabilistic point of view. Thus, the resultsof the analysis of this record agree with a recently(and internationally) expressed scepticism about theEV1 distribution which tends to underestimate thelargest extreme rainfall amounts. It is demonstratedthat the underestimation is quite substantial (e.g.,1 : 2) for large return periods and this fact must beconsidered as a warning against the widespread use ofthe EV1 distribution for rainfall extremes.  相似文献   

10.
Rainfall variability over a river basin has greater impact on the water resource in that basin. With this in view, the variability of the monsoon rainfall over the Godavari river basin has been studied on different time scales. As expected, the monsoon rainfall in Godavari basin is more variable (17%) than the all-India monsoon rainfall (11%) during the period of study (1951–90). Similarly, inter-annual variability of the monsoon rainfall on smaller time scales is found to be still higher and increases while going on from seasonal to daily scales. An interesting observation is that the intra-seasonal variability of the monsoon rainfall has a significant negative relationship (CC= −0.53) with the total seasonal rainfall in the basin.  相似文献   

11.
Fauchereau  N.  Trzaska  S.  Rouault  M.  Richard  Y. 《Natural Hazards》2003,29(2):139-154
Rainfall variability and changes in Southern Africa over the 20th century areexamined and their potential links to the global warming discussed. After a shortreview of the main conclusions of various experiments with Global AtmosphericModels (GCM) forced by increased concentrations of greenhouse gases for SouthernAfrica, a study of various datasets documents the observed changes in rainfall featuresat both daily and seasonal time steps through the last century. Investigations of dailyrainfall parameters are so far limited to South Africa. They show that some regionshave experienced a shift toward more extreme rainfall events in recent decades.Investigations of cumulative rainfall anomalies over the summer season do notshow any trend to drier or moister conditions during the century. However, closeexamination reveals that rainfall variability in Southern Africa has experiencedsignificant modifications, especially in the recent decades. Interannual variabilityhas increased since the late 1960s. In particular, droughts became more intense andwidespread. More significantly, teleconnection patterns associated with SouthernAfrican rainfall variability changed from regional before the 70s to near global after,and an increased statistical association to the El Niño – Southern Oscillation (ENSO) phenomenon is observed. Numerical experiments with a French GCM indicate that these changes in teleconnections could be related to long-term variations in the Sea-Surface-Temperature background, which are part of the observed global warming signal.  相似文献   

12.
13.
The analysis of rainfall pattern and indices of extreme rainfall events is performed for two meteorological stations located in the Central Himalayan Region which is highly vulnerable to rain-induced hazards. The records of these rain-induced disasters suggest that such events are generally observed in later part of monsoon season, when soil is saturated after monsoon rains. An attempt is made here to test trends of 19 different extreme rainfall indices that have been widely used in the literature, using daily rainfall data for two urban centres (Nainital and Almora) over the period 1992–2005. We have used statistical tools such as Sen’s method and Mann–Kendall test for detection of trend in annual rainfall, monsoon rainfall, number of rainy days and 1-day extreme rainfall. Principal component analysis gives the correlation between different extreme rainfall indices. Time series of principal components are representing the trends of extreme indices, their variation and interrelation between different indices. The perception study conducted in the same sites indicates that extreme rainfall events and change in rainfall amount and timing are well perceived by the local people.  相似文献   

14.
为研究中国不同区域的降雨特征对径流总量控制效果的影响,利用186个气象站近30年的日降雨量资料,通过空间分析与统计计算,得到不同年径流总量控制率所对应的设计降雨量以及年均控制降雨量;结合年径流总量控制率与年均控制降雨量的关系将中国区域分为9种类型。结果表明:中国设计降雨量地域变化明显,广东、四川、广西、河北和河南等省的标准差为全国平均水平的1.5~3倍,且随年径流总量控制率的提升而增加,源头径流控制效果差异明显;南部地区径流控制效果多为"高量低率";"低量低率"区位于甘肃、宁夏等地,面积占比为9.44%,其降雨特征不适合发挥源头控制设施的效果;而最适宜发挥源头控制作用的"高量高率"区位于西南部分地区,面积占比为3.80%。  相似文献   

15.
The aim of this study was to investigate temporal variation in seasonal and annual rainfall trend over Ranchi district of Jharkhand, India for the period (1901–2014: 113 years). Mean monthly rainfall data series were used to determine the significance and magnitude of the trend using non-parametric Mann–Kendall and Sen’s slope estimator. The analysis showed a significant decreased in rainfall during annual, winter and southwest monsoon rainfall while increased in pre-monsoon and post-monsoon rainfall over the Ranchi district. A positive trend is detected in pre-monsoon and post-monsoon rainfall data series while annual, winter and southwest monsoon rainfall showed a negative trend. The maximum decrease in rainfall was found for monsoon (? 1.348 mm year?1) and minimum (? 0.098 mm year?1) during winter rainfall. The trend of post-monsoon rainfall was found upward (0.068 mm year?1). The positive and negative trends of annual and seasonal rainfall were found statistically non-significant except monsoon rainfall at 5% level of significance. Rainfall variability pattern was calculated using coefficient of variation CV, %. Post-monsoon rainfall showed the maximum value of CV (70.80%), whereas annual rainfall exhibited the minimum value of CV (17.09%), respectively. In general, high variation of CV was found which showed that the entire region is very vulnerable to droughts and floods.  相似文献   

16.
Rainfall is one of the pivotal climatic variables, which influence spatio-temporal patterns of water availability. In this study, we have attempted to understand the interannual long-term trend analysis of the daily rainfall events of ≥?2.5 mm and rainfall events of extreme threshold, over the Western Ghats and coastal region of Karnataka. High spatial resolution (0.25°?×?0.25°) daily gridded rainfall data set of Indian Meteorological Department was used for this study. Thirty-eight grid points in the study area was selected to analyze the daily precipitation for 113 years (1901–2013). Grid points were divided into two zones: low land (exposed to the sea and low elevated area/coastal region) and high land (interior from the sea and high elevated area/Western Ghats). The indices were selected from the list of climate change indices recommended by ETCCDI and are based on annual rainfall total (RR), yearly 1-day maximum rainfall, consecutive wet days (≥?2.5 mm), Simple Daily Intensity Index (SDII), annual frequency of very heavy rainfall (≥?100 mm), frequency of very heavy rainfall (≥?65–100 mm), moderate rainfall (≥?2.5–65 mm), frequency of medium rainfall (≥?40–65 mm), and frequency of low rainfall (≥?20–40 mm). Mann-Kendall test was applied to the nine rainfall indices, and Theil-Sen estimator perceived the nature and the magnitude of slope in rainfall indices. The results show contrasting trends in the extreme rainfall indices in low land and high land regions. The changes in daily rainfall events in the low land region primarily indicate statistically significant positive trends in the annual total rainfall, yearly 1-day maximum rainfall, SDII, frequency of very heavy rainfall, and heavy rainfall as well as medium rainfall events. Furthermore, the overall annual rainfall strongly correlated with all the rainfall indices in both regions, especially with indices that represent heavy rainfall events which is responsible for the total increase of rainfall.  相似文献   

17.
In this research, k-means, agglomerative hierarchical clustering and regression analysis have been applied in hydrological real time series in the form of patterns and models, which gives the fruitful results of data analysis, pattern discovery and forecasting of hydrological runoff of the catchment. The present study compares with the actual field data, predicted value and validation of statistical yields obtained from cluster analysis, regression analysis with ARIMA model. The seasonal autoregressive integrated moving average (SARIMA) and autoregressive integrated moving average (ARIMA) models is investigated for monthly runoff forecasting. The different parameters have been analyzed for the validation of results with casual effects. The comparison of model results obtained by K-means & AHC have very close similarities. Result of models is compared with casual effects in the same scenario and it is found that the developed model is more suitable for the runoff forecasting. The average value of R2 determined is 0.92 for eight ARIMA models. This shows more accuracy of developed ARIMA model under these processes. The developed rainfall runoff models are highly useful for water resources planning and development.  相似文献   

18.
Homogeneous Indian Monsoon region rainfall for the epoch 1871–1990 has been analysed using Singular Spectral Analysis. It is shown that the HIM time series is simple in structure with only the annual oscillation and its first two harmonics accounting for almost the entire variability. Longer period oscillations related to lunar tidal forcing, solar activity and quasibiennial variation are conspicuously absent. It is also shown that the singular spectral decomposition is closely similar to complex demodulation and thus provides variations in the signals which evolve only slowly with time. As the rainfall series is marked by several jerky changes, predictability of HIM rainfall through the principal components derived from SSA appears impossible.  相似文献   

19.
为分析城镇化发展程度与极端降雨变化之间的关系,选取珠江三角洲地区22个雨量站1973—2012年的小时降雨资料,利用空间分析、线性回归、滑动平均和Mann-Kendall趋势检验等方法,分析高度城镇化背景下珠三角地区极端降雨时空分布规律和变化特性,并解析暴雨雨型变化特征。结果表明:①珠江三角洲高度城镇化地区极端降雨量上升了44.3 mm/(10 a),呈显著增加趋势,相邻其他地区则无明显变化,高度城镇化地区的前汛期极端降雨量显著增多是造成其年极端降雨量增加的主要原因。②珠三角地区暴雨雨型以单峰型为主,其中以雨峰在前的Ⅰ型暴雨占比最高,约为33.7%,高度城镇化地区Ⅰ型暴雨发生频率明显增加,易导致暴雨内涝事件增加,需加强高度城镇化地区防洪排涝工作。  相似文献   

20.
We present evidence from the analysis of gridded annual rainfall data that, increased variability and declining rainfall totals are the main cause of declining lake levels in the Volta basin above the Akosombo Dam. West Africa has undergone a period of diminished rainfall, punctuated by a series of severe droughts and marked by a shift in rainfall regime. As a result, lake levels behind the hydro-electric impoundment have fluctuated so widely at times that, power has had to be rationed. The trends in the spatial and temporal variability of annual rainfall in the riparian nations explain the low impoundment levels frequent in recent decades. The drying of Burkina Faso and Mali is particularly marked and synchronous to an apparent shift in the rainfall regime in Ghana towards a longer dry season and vanishing short dry spell, the effects which tend to negate each other. The various regional and temporal associations between El Niño-Southern Oscillation phenomenon (ENSO) are investigated as a possible cause of variation across the basin. The strengths of these associations and low frequency shifts suggest an unfortunate correspondence between national and climatological boundaries which may serve to heighten regional political tensions resulting from ENSO effects. Lack of re-investment in the Akosombo Dam as a result of management policies, political and pre-construction contractual agreements have all conspired in recent decades to make these hydro-climatological changes more devastating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号