首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paleoproterozoic granulite facies rocks are widely distributed in the North China Craton (NCC). The Huai'an terrane, located within the northern segment of the Trans-North China Orogen (TNCO), a major Paleoproterozoic collisional belt in the central NCC expose mafic and pelitic granulites as well as TTG (tonalite-trondhjemite-granodiorite) gneisses. Here we investigate the pelitic granulites from this complex and identify four distinct mineral assemblages corresponding to different metamorphic stages. The prograde metamorphism (M1) is recorded by relict biotite and the compositional profile of Xca (grt) isopleths. The Pmax (M2) is distinguished by the Xca (grt) isopleths, which corresponds to the kyanite stable area with an inclusion mineral assemblage of Grt-c–(Ky)-Qz-Rt-Kfs-liq suggesting that the pressures were higher than 12 kbar with a temperature below 900 °C. However, kyanite is absent in thin sections suggesting its consumption during later stages. The Tmax metamorphism (M3) is characterized by the assemblage: Grt-m-Qz-Pl-Rt-Kfs-Sil-liq in the garnet mantle and also reflected in the compositional profile. Two-feldspar geothermometry yields a P-T range of 940 °C–950 °C and 9.5–10.5 kbar, indicating ultra-high temperature (UHT) metamorphic overprinting. The subsequent retrograde metamorphic stage (M4) is characterized by Grt-r-Bt-Sil-Kfs-Pl-Qz ± Rt ± Ilm with symplectites of Bt-Sil-Qz in the garnet rim suggesting garnet breakdown with P-T conditions estimated as 770 °C–840 °C and 6.5–8 kbar. The pelitic granulites show a clockwise path, with P-T estimates higher than those in estimated in previous studies using conventional techniques.LA-ICP-MS U–Pb analysis of metamorphic zircon grains yield two groups of ages at 1972.9 ± 8.1 Ma and 1873.3 ± 9.9 Ma. We suggest that the protoliths of the Manjinggou HP-UHT granulites were deep subducted where they experienced HP metamorphism associated with the collision of the Ordos and Yinshan blocks at ca. 1.97 Ga. Subsequently, the UHT metamorphic overprint occurred during the assembly of the unified Western and Eastern Blocks of the NCC along the TNCO at ca. 1.87 Ga.  相似文献   

2.
The Panrimalai area constitutes part of the granulite-facies rocks of the Madurai block in the Southern Granulite Terrain (SGT), India. Garnet-bearing mafic granulites in Panrimalai occur as small enclaves within charnockite. The common stable assemblage during peak metamorphism contains hornblende, garnet, orthopyroxene, clinopyroxene, quartz and plagioclase. The resorption of garnet in various reaction textures and the development of spectacular orthopyroxene–plagioclase and hornblende–plagioclase symplectites characterize the subsequent stages of metamorphism. Application of multi-equilibrium calculation procedures for mineral core compositions of the early assemblage yields near peak conditions at   900 °C at 9 kbar. These estimates are the highest yet reported in mafic granulites from the Madurai block. The post-peak PT path is constructed for the mafic granulites based on observed microstructural relations and thermobarometric results is characterized by a steep clockwise decompressional PT segment from   9 to  < 4.5 kbar. Constraints from model Nd ages provide evidence for Paleoproterozoic magmatism restricted to the Madurai block in the Southern Granulite Terrain. The early part of the crustal evolution of the Panrimalai granulites could be coeval with the Paleoproterozoic event. Subsequent development of symplectitic assemblages via near-isothermal decompression can be ascribed to a distinctly later tectonic event. Available U–Pb and Sm–Nd mineral dates suggest a widespread Pan-African tectonothermal event in the SGT. Given the general recognition of ultrahigh-temperature (UHT) and isothermal decompression (ITD) in Pan-African age metamorphism in the East-African–Antarctic Orogen (EAAO) , the Panrimalai UHT history is considered to be part of this record.  相似文献   

3.
Reports of shoshonitic rocks in Precambrian terrains are relatively rare. Pl-Grt amphibolites and Hbl-Bt mafic granulites occurring in the migmatitic gneisses of the Chhotanagpur Gneissic Complex(CGC) show calc-alkaline and shoshonitic characteristics. Relict porphyritic, sub-ophitic and poikilitic textures are noted in these rocks. Their parent magma was emplaced during the waning phase of the regional metamorphism. Geochemically, these metamafics are similar to the Group Ⅲ potassic and ultrapo...  相似文献   

4.
In the Western Gneiss Region in Norway, mafic eclogites form lenses within granitoid orthogneiss and contain the best record of the pressure and temperature evolution of this ultrahigh-pressure (UHP) terrane. Their exhumation from the UHP conditions has been extensively studied, but their prograde evolution has been rarely quantified although it represents a key constraint for the tectonic history of this area. This study focused on a well-preserved phengite-bearing eclogite sample from the Nordfjord region. The sample was investigated using phase-equilibrium modelling, trace-element analyses of garnet, trace- and major-element thermobarometry and quartz-in-garnet barometry by Raman spectroscopy. Inclusions in garnet core point to crystallization conditions in the amphibolite facies at 510–600°C and 11–16 kbar, whereas chemical zoning in garnet suggests growth during isothermal compression up to the peak pressure of 28 kbar at 600°C, followed by near-isobaric heating to 660–680°C. Near-isothermal decompression to 10–14 kbar is recorded in fine-grained clinopyroxene–amphibole–plagioclase symplectites. The absence of a temperature increase during compression seems incompatible with the classic view of crystallization along a geothermal gradient in a subduction zone and may question the tectonic significance of eclogite facies metamorphism. Two end-member tectonic scenarios are proposed to explain such an isothermal compression: Either (1) the mafic rocks were originally at depth within the lower crust and were consecutively buried along the isothermal portion of the subducting slab or (2) the mafic rocks recorded up to 14 kbar of tectonic overpressure at constant depth and temperature during the collisional stage of the orogeny.  相似文献   

5.
The Fuping Complex and the adjoining Wutai and Hengshan Complexes are located in the central zone of the North China craton. The dominant rock types in the Fuping Complex are high‐grade tonalitic–trondhjemitic–granodioritic (TTG) gneisses, with minor amounts of mafic granulites, syntectonic granitic rocks and supracrustal rocks. The petrological evidence from the mafic granulites indicates three stages of metamorphic evolution. The M1 stage is represented by garnet porphyroblasts and matrix plagioclase, quartz, orthopyroxene, clinopyroxene and hornblende. Orthopyroxene+plagioclase symplectites and clinopyroxene+plagioclase±orthopyroxene coronas formed in response to decompression during M2 following the peak metamorphism at M1. Hornblende+plagioclase symplectites formed as a result of further isobaric cooling and retrograde metamorphism during M3. The P–T estimates using TWQ thermobarometry are: 900–950 °C and 8.0–8.5 kbar for the peak assemblage (M1), based on the core compositions of garnet, matrix pyroxene and plagioclase; 700–800 °C and 6.0–7.0 kbar for the pyroxene+plagioclase symplectites or coronas (M2); and 550–650 °C and 5.3–6.3 kbar for the hornblende+plagioclase symplectites (M3), based on garnet rim and corresponding symplectic mineral compositions. These P–T estimates define a clockwise P–T path involving near‐isothermal decompression for the Fuping Complex, similar to the P–T path estimated for the metapelitic gneisses. The inferred P–T path suggests that the Fuping Complex underwent initial crustal thickening, subsequent exhumation, and finally cooling and retrogression. This tectonothermal path is similar to P–T paths inferred for the Wutai and Hengshan Complexes and other tectonic units in the central zone of the North China craton, but different from anti‐clockwise P–T paths estimated for the basement rocks in the eastern and western zones of the craton. Based on lithological, structural, metamorphic and geochronological data, the eastern and western zones of the craton are considered to represent two different Archean to Paleoproterozoic continental blocks that amalgamated along the central zone at the end of Paleoproterozoic. The P–T paths of the Fuping Complex and other tectonic units in the central zone record the collision between the eastern and western zones that led to the final assembly of the North China craton at c. 1800 Ma.  相似文献   

6.
Amphibolites in the Shuixiakou area of the southern Dunhuang Orogenic Belt, southernmost Central Asian Orogenic Belt (CAOB), occur as lenses within hornblende-biotite-plagioclase gneiss or pelitic schist, exhibiting block-in-matrix feature of tectonic mélange. Three generations of metamorphic mineral assemblages (M1, M2, and M3) have been recognized in the garnet-bearing amphibolite lenses. The metamorphic prograde assemblage (M1) is documented with inclusion trails (hornblende + plagioclase + quartz) within garnet porphyroblasts, and are estimated to be formed under 610–690 °C and 6.5–10.2 kbar. The metamorphic peak assemblage (M2) consists of garnet + hornblende + clinopyroxene + plagioclase + quartz in the matrix and records metamorphic peak P-T conditions of 720–750 °C and 13.4–14.7 kbar. The retrograde assemblage (M3) is represented by the symplectic assemblage (hornblende + plagioclase + quartz ± biotite ± magnetite) rimming the garnet porphyroblast, formed in the decompression stage under P-T conditions of 630–730 °C and 3.8–7.2 kbar. The derived metamorphic P-T paths show similar tight clockwise loops including nearly isothermal decompression processes, typical of orogenic metamorphism. SIMS dating of metamorphic zircons from the amphibolites confirm that the high-pressure metamorphism (M2) occurred at ca. 438–398 Ma.  相似文献   

7.
The Motuo area is located in the east of the Eastern Himalayan Syntaxis. There outcrops a sequence of high-grade metamorphic rocks, such as metapelites. Petrology and mineralogy data suggest that these rocks have experienced three stages of metamorphism. The prograde metamorphic mineral assemblages(M1) are mineral inclusions(biotite + plagioclase + quartz ± sillimanite ± Fe-Ti oxides) preserved in garnet porphyroblasts, and the peak metamorphic assemblages(M2) are represented by garnet with the lowest XSps values and the lowest XFe# ratios and the matrix minerals(plagioclase + quartz ± Kfeldspar + biotite + muscovite + kyanite ± sillimanite), whereas the retrograde assemblages(M3) are composed of biotite + plagioclase + quartz symplectites rimming the garnet porphyroblasts. Thermobarometric computation shows that the metamorphic conditions are 562–714°C at 7.3–7.4 kbar for the M1 stage, 661–800°C at 9.4–11.6 kbar for the M2 stage, and 579–713°C at 5.5–6.6 kbar for the M3 stage. These rocks are deciphered to have undergone metamorphism characterized by clockwise P-T paths involving nearly isothermal decompression(ITD) segments, which is inferred to be related to the collision of the India and Eurasia plates.  相似文献   

8.
Mafic granulites have been found as structural lenses within the huge thrust system outcropping about 10 km west of Nam Co of the northern Lhasa Terrane, Tibetan Plateau. Petrological evidence from these rocks indicates four distinct metamorphic assemblages. The early metamorphic assemblage (M1) is preserved only in the granulites and represented by plagioclase+hornblende inclusions within the cores of garnet porphyroblasts. The peak assemblage (M2) consists of garnet+clinopyroxene+hornblende+plagioclase in the mafic granulites. The peak metamorphism was followed by near-isothermal decompression (M3), which resulted in the development of hornblende+plagioclase symplectites surrounding embayed garnet porphyroblasts, and decompression-cooling (M4) is represented by minerals of hornblende+plagioclase recrystallized during mylonization. The peak (M2) P-T conditions of garnet+ clinopyroxene+plagioclase+hornblende were estimated at 769-905℃ and 0.86-1.02 GPa based on the geothermometers and geobarometers. The  相似文献   

9.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

10.
A re‐evaluation of the PT history of eclogite within the East Athabasca granulite terrane of the Snowbird tectonic zone, northern Saskatchewan, Canada was undertaken. Using calculated pseudosections in combination with new garnet–clinopyroxene and zircon and rutile trace element thermometry, peak metamorphic conditions are constrained to ~16 kbar and 750 °C, followed by near‐isothermal decompression to ~10 kbar. Associated with the eclogite are two types of occurrences of sapphirine‐bearing rocks preserving a rich variety of reaction textures that allow examination of the retrograde history below 10 kbar. The first occurs as a 1–2 m zone adjacent to the eclogite body with a peak assemblage of garnet–kyanite–quartz interpreted to have formed during the eclogite facies metamorphism. Rims of orthopyroxene and plagioclase developed around garnet, and sapphirine–plagioclase and spinel–plagioclase symplectites developed around kyanite. The second variety of sapphirine‐bearing rocks occurs in kyanite veins within the eclogite. The veins involve orthopyroxene, garnet and plagioclase layers spatially organized around a central kyanite layer that are interpreted to have formed following the eclogite facies metamorphism. The layering has itself been modified, with, in particular, kyanite being replaced by sapphirine–plagioclase, spinel–plagioclase and corundum–plagioclase symplectites, as well as the kyanite being replaced by sillimanite. Petrological modelling in the CFMAS system examining chemical potential gradients between kyanite and surrounding quartz indicates that these vein textures probably formed during further essentially isothermal decompression, ultimately reaching ~7 kbar and 750 °C. These results indicate that the final reaction in these rocks occurred at mid‐crustal levels at upper amphibolite facies conditions. Previous geochronological and thermochronological constraints bracket the time interval of decompression to <5–10 Myr, indicating that ~25 km of exhumation took place during this interval. This corresponds to minimum unroofing rates of ~2–5 mm year?1 following eclogite facies metamorphism, after which the rocks resided at mid‐crustal levels for 80–100 Myr.  相似文献   

11.
The Palghat Gap region is located near the centre of the large southern Indian granulite terrane. at the northern edge of the Kodaikanal charnockite massif. The dominant rock types in the region are hornblende-biotite ± orthopyroxene gneisses and charnockites along with minor amounts of intercalated mafic granulite, metapelite and calc-silicate. The P-T estimates from garnetiferous mafic granulites and metapelite samples are generally in the range 9-10 kbar and 800-900 C using both conventional thermobarometric methods and the TWEEQU thermobarometry program. These P-T estimates, which should be taken as minimum values, are among the highest yet reported for South Indian and Sri Lankan granulites. The occurrence of orthopyroxene + plagioclase symplectites around embayed garnet grains in the mafic granulites and cordierite rims around garnet grains in metapelite suggest an isothermal decompression-type path. Similarly, a core-rim P-T trajectory indicates c. 3 and 7 kbar decompression at high temperature in the mafic granulites and metapelite, respectively. In both rock types, the key to the determination of the retrograde P-T path was the recognition of small amounts of second generation plagioclase with a more anorthitic composition than the matrix plagioclase. The preservation of high garnet-pyroxene temperatures in the mafic granulites (despite small garnet grain size) suggests rapid cooling of the terrane. Calculated minimum cooling rates range from 8 to 80 C Ma-1. Such cooling rates are more rapid than those associated with normal isostatic processes and suggest that the terrane was tectonically exhumed at high temperature.  相似文献   

12.
We present results of study of mineral assemblages and PT-conditions of metamorphism of mafic garnet–two-pyroxene and two-pyroxene granulites in the Early Precambrian metamorphic complex of the Angara–Kan terrane as well as the U–Pb age and trace-element and Lu–Hf isotope compositions of zircon from these rocks and the zircon/garnet REE distribution coefficients. The temperatures of metamorphism of two-pyroxene granulites are estimated as 800–870 to ~ 900 °C. Mafic garnet–two-pyroxene granulites contain garnet coronas formed at 750–860 °C and 8–9.5 kbar. The formation of the garnet coronas proceeded probably at the retrograde stage during cooling and was controlled by the rock composition. The age (1.92–1.94 Ga) of zircon cores, which retain the REE pattern typical of magmatic zircon, can be taken as the minimum age of protolith for the mafic granulites. The metamorphic zircon generation in the mafic granulites is represented by multifaceted or soccerball crystals and rims depleted in Y, MREE, and HREE compared to the cores. The age of metamorphic zircon in the garnet–two-pyroxene (~ 1.77 Ga) and two-pyroxene granulites (~ 1.85 and 1.78 Ga) indicates two episodes of high-temperature metamorphism. The presence of one generation (1.77 Ga) of metamorphic zircon in the garnet–two-pyroxene granulites and, on the contrary, the predominance of 1.85 Ga zircon in the two-pyroxene granulites with single garnet grains suggest that the formation of the garnet coronas proceeded at the second stage of metamorphism. The agreement between the zircon/garnet HREE distribution coefficients and the experimentally determined values at 800 °C suggests the simultaneous formation of ~ 1.77 Ga metamorphic zircon and garnet. Zircon formation by dissolution/reprecipitation or recrystallization in a closed system without exchange with the rock matrix is confirmed by the close ranges of 176Hf/177Hf values for the core and rims. The positive εHf values (up to + 6.2) for the zircon cores suggest that the protolith of mafic granulites are derived from depleted-mantle source. The first stage of metamorphism of the mafic granulites and paragneisses of the Kan complex (1.85–1.89 Ga) ended with the formation of collisional granitoids (1.84 Ga). The second stage (~ 1.77 Ga) corresponds to the intrusion of the second phase of subalkalic leucogranites of the Taraka pluton and charnockites (1.73–1.75 Ga).  相似文献   

13.
Some granulites from the Amessmessa area (south In Ouzzal unit, Hoggar) contain the peak assemblage gedrite+garnet+sillimanite+quartz that was used to estimate the P–T conditions of metamorphism. The rocks developed symplectites and corona textures by the breakdown of the primary paragenesis to orthopyroxene, cordierite and spinel. The successive parageneses formed in separate microdomains according to a clockwise P–T path. Geothermometry, geobarometry and phase diagram calculations indicate that the textures formed by decompression and cooling from 7–9 kbar and 850–900°C to 3.5–4.5 kbar and 700–800°C. This P–T evolution is consistent with low to medium aH2O, between 0.4 and 0.7, and is similar to the metamorphic conditions deduced in Al–Mg granulites from the north of In Ouzzal.  相似文献   

14.
High‐MgAl rocks occur as xenoliths (up to 2 m in diameter) in mafic granulites at a newly discovered locality near Anakapalle. Following an early phase of deformation, ultrahigh‐temperature (UHT) metamorphism and near‐isothermal decompression, the rocks were intruded in a lit‐par‐lit manner by felsic melts (charnockite), which caused local‐scale metasomatism. A subsequent deformation produced isoclinal folds and the distinct gneissic foliation of the charnockite still at granulite facies conditions. The sequence of multiphase reaction textures in the high‐MgAl xenoliths reflects the changes of physico‐chemical conditions during the polyphase evolution of the terrane; UHT metamorphism (stage 1, > 1000°C, c. 10 kbar) is documented by relics of extremely coarse grained domains with the assemblage orthopyroxene (opx)1 + garnet (grt)1 + sapphirine (spr)1 + spinel (spl)1 + rutile (rt). A subsequent phase of near‐isothermal decompression in the order of 1–2 kbar (stage 2) resulted in extensive replacement of grt1 and opx1 megacrysts by lamellar (opx2 + spr2) symplectites. The intrusion of felsic melt (stage 3) led to the development of a narrow metasomatic black wall reaction zone (bt + sil + plg3 + opx2,3 + rt) at the immediate contact of the xenoliths and in melt infiltration zones to the partial replacement of (opx2 + spr2) symplectites by biotite and sillimanite and/or plg3, mainly at the expense of orthopyroxene, with concomitant coarsening of the intergrowth texture. The subsequent deformation (stage 4) further modified the symplectite textures through polygonization, recrystallization and grain‐size coarsening. The deformation was followed by a period of cooling and decompression (stage 5, c. 800°C, 4–7 kbar) as indicated by local growth of late garnet (grt5) at the expense of (opx + spr + plg) domains at static conditions. Recently published isotope data suggest that the multistage evolution of the high‐MgAl granulites at Anakapalle followed a discontinuous P–T trajectory that may be related to heating of the crust through magmatic accretion culminating in deep‐crustal UHT metamorphism at 1.4 Ga (stage 1), fast uplift of the UHT granulites into mid‐crustal levels as a consequence of extensional tectonics (stage 2), emplacement of felsic magmas in the Grenvillian (at c. 1 Ga, stage 3) resulting in reheating of the crust to high–T conditions followed by a phase of compressional tectonics (stage 4) and a period of cooling to the stable geotherm (stage 5) still in the Grenvillian.  相似文献   

15.
High‐pressure basic granulites are widely distributed as enclaves and sheet‐like blocks in the Huaian TTG gneiss terrane in the Sanggan area of the Central Zone of the North China craton. Four stages of the metamorphic history have been recognised in mineral assemblages based on inclusion, exsolution and reaction textures integrated with garnet zonation patterns as revealed by compositional maps and compositional profiles. The P–T conditions for each metamorphic stage were obtained using thermodynamically and experimentally calibrated geothermobarometers. The low‐Ca core of growth‐zoned garnet, along with inclusion minerals, defines a prograde assemblage (M1) of garnet + clinopyroxene + plagioclase + quartz, yielding 700 °C and 10 kbar. The peak of metamorphism at about 750–870 °C and 11–14.5 kbar (M2) is defined by high‐Ca domains in garnet interiors and inclusion minerals of clinopyroxene, plagioclase and quartz. Kelyphites or coronas of orthopyroxene + plagioclase ± magnetite around garnet porphyroblasts indicate garnet breakdown reactions (M3) at conditions around 770–830 °C and 8.5–10.5 kbar. Garnet exsolution lamellae in clinopyroxene and kelyphites of amphibole + plagioclase around garnet formed during the cooling process at about 500–650 °C and 5.5–8 kbar (M4). These results help define a sequential P–T path containing prograde, near‐isothermal decompression (ITD) and near‐isobaric cooling (IBC) stages. The clockwise hybrid ITD and IBC P–T paths of the HP granulites in the Sanggan area imply a model of thickening followed by extension in a collisional environment. Furthermore, the relatively high‐pressures (6–14.5 kbar) of the four metamorphic stages and the geometry of the P–T paths suggest that the HP granulites, together with their host Huaian TTG gneisses, represent the lower plate in a crust thickened during collision. The corresponding upper‐plate might be the tectonically overlying Khondalite series, which was subjected to medium‐ to low‐pressure (MP/LP: 7–4 kbar) granulite facies metamorphism with a clockwise P–T path including an ITD segment. Both the HP and the MP/LP granulite facies events occurred contemporaneously at c. 1.90–1.85 Ga in a collisional environment created by the assembly process of the North China craton.  相似文献   

16.
A suite of metapelites, charnockites, calc-silicate rocks, quartzo-feldspathic gneisses and mafic granulites is exposed at Garbham, a part of the Eastern Ghats granulite belt of India. Reaction textures and mineral compositional data have been used to determine the P–T–X evolutionary history of the granulites. In metapelites and charnockites, dehydration melting reactions involving biotite produced quartzofeldspathic segregations during peak metamorphism. However, migration of melt from the site of generation was limited. Subsequent to peak metamorphism at c . 860° C and 8 kbar, the complex evolved through nearly isothermal decompression to 530–650° C and 4–5 kbar. During this phase, coronal garnet grew in the calc-silicates, while garnet in the presence of quartz broke down in charnockite and mafic granulite. Fluid activities during metamorphism were internally buffered in different lithologies in the presence of a melt phase. The P–T path of the granulites at Garbham contrasts sharply with the other parts of the Eastern Ghats granulite belt where the rocks show dominantly near-isobaric cooling subsequent to peak metamorphism.  相似文献   

17.
A high-grade metamorphic complex is exposed in Filchnerfjella (6–8°E), central Dronning Maud Land. The metamorphic evolution of the complex has been recovered through a study of textural relationships, conventional geothermobarometry and pseudosection modelling. Relicts of an early, high-P assemblage are preserved within low-strain mafic pods. Subsequent granulite facies metamorphism resulted in formation of orthopyroxene in rocks of mafic, intermediate to felsic compositions, whereas spinel + quartz were part of the peak assemblage in pelitic gneisses. Peak conditions were attained at temperatures between 850–885 °C and 0.55–0.70 GPa. Reaction textures, including the replacement of amphibole and garnet by symplectites of orthopyroxene + plagioclase and partial replacement of garnet + sillimanite + spinel bearing assemblages by cordierite, indicate that the granulite facies metamorphism was accompanied and followed by decompression. The observed assemblages define a clock-wise P-T path including near-isothermal decompression. During decompression, localized melting led to formation of post-kinematic cordierite-melt assemblages, whereas mafic rocks contain melt patches with euhedral orthopyroxene. The granulite facies metamorphism, decompression and partial crustal melting occurred during the Cambrian Pan-African tectonothermal event.  相似文献   

18.
Numerous lenses of eclogite occur in a belt of augen orthogneisses in the Gubaoquan area in the southern Beishan orogen, an eastern extension of the Tianshan orogen. With detailed petrological data and phase relations, modelled in the system NCFMASHTO with thermocalc , a quantitative P–T path was estimated and defined a clockwise P–T path that showed a near isothermal decompression from eclogite facies (>15.5 kbar, 700–800 °C, omphacite + garnet) to high‐pressure granulite facies (12–14 kbar, 700–750 °C, clinopyroxene + sodic plagioclase symplectitic intergrowths around omphacite), low‐pressure granulite facies (8–9.5 kbar, ~700 °C, orthopyroxene + clinopyroxene + plagioclase symplectites and coronas surrounding garnet) and amphibolite facies (5–7 kbar, 600–700 °C, hornblende + plagioclase symplectites). The major and trace elements and Sm–Nd isotopic data suggest that most of the Beishan eclogite samples had a protolith of oceanic crust with geochemical characteristics of an enriched or normal mid‐ocean ridge basalt. The U–Pb dating of the Beishan eclogites indicates an Ordovician age of c. 467 Ma for the eclogite facies metamorphism. An 39Ar/40Ar age of c. 430 Ma for biotite from the augen gneiss corresponds to the time of retrograde metamorphism. The combined data from geological setting, bulk composition, clockwise P–T path and geochronology support a model in which the Beishan eclogites started as oceanic crust in the Palaeoasian Ocean, which was subducted to eclogite depths in the Ordovician and exhumed in the Silurian. The eclogite‐bearing gneiss belt marks the position of a high‐pressure Ordovician suture zone, and the calculated clockwise P–T path defines the progression from subduction to exhumation.  相似文献   

19.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

20.
The Wuhe Complex in the Bengbu area of the Jiao–Liao–Ji Belt, southeast North China Craton, contains garnet-bearing mafic granulites that have undergone high-pressure (HP) and ultrahigh-temperature (UHT) metamorphism. These granulites also experienced partial melting and occur as lenses within marbles. Petrographic observations and quantitative phase equilibria modeling reveal clockwise PT paths, involving an inferred HP stage followed by decompressional, medium-pressure, granulite-facies metamorphism and subsequent cooling. The HP assemblage of garnet + clinopyroxene + plagioclase + K-feldspar ± amphibole ± quartz ± rutile indicates PT conditions of 840–980 °C and 12–17 kbar. This was followed by post-peak, near-isothermal decompression with the development of orthopyroxene + clinopyroxene + plagioclase + K-feldspar + garnet + amphibole + ilmenite at 850–960 °C and 7–10 kbar, resulting in the development of orthopyroxene rims on resorbed garnet. Pyroxene and ternary feldspar thermometry yielded high temperatures of ~1150 °C and 1055–1087 °C at 10 kbar, respectively, which constrain the minimum crystallization temperatures of the igneous protoliths. The host and lamellae of the pyroxene and ternary feldspar are relict magmatic minerals/textures that survived metamorphism due to the silica-undersaturated bulk-rock conditions. Zr-in-rutile thermometry yielded temperatures of ~935 °C and 800 °C, with the former being consistent with the predicted peak metamorphic temperatures. Small amounts of melts (up to 5%) were generated during decompression of the Bengbu mafic granulites. The generated partial melts were mainly (quartz) monzonite at 900–920 °C, and the silica contents of the melts were controlled by the quartz stability field in PT pseudosections. The partial melts were enriched in Na and strongly depleted in Fe–Mg at the peak pressure of ~14 kbar and 920 °C, and later evolved to Fe–Mg-rich and high-K compositions during decompression. The melt compositions in the studied rocks are similar when the pressures reached ~9 kbar. The modal proportion of amphibole increased as the melt H2O content decreased at lower pressures, indicating that the limited H2O remaining in the host rocks was consumed to produce amphibole. U–Pb geochronology of zircon containing inclusions of clinopyroxene, plagioclase, and apatite constrains the timing of metamorphism to 1930–1840 Ma, as is the case for HP granulites from Shandong, Liaoning, and southern Jilin in the central and northeastern Jiao–Liao–Ji Belt. The Wuhe HP–UHT mafic granulites were ultimately sourced from upwelling asthenosphere-derived magma at ~2.1 Ga, which intruded and crystallized at shallower depths. The igneous protoliths were then buried to middle–lower crustal levels and experienced HP–UHT granulite-facies metamorphism and partial melting at 1.95–1.90 Ga related to continental subduction and overthickening. The HP–UHT mafic granulites were rapidly exhumed at ~1.85 Ga and generated small volumes of (quartz) monzonite during decompression. The newly discovered Paleoproterozoic HP–UHT mafic granulites associated with partial melting suggest that the continent materials were deeply subducted to the lower crustal levels and that additional heating was not involved. The finding of the HP–UHT granulites, together with the widespread distributions of the granulite-facies metamorphic rocks and the determination of the clockwise PTt paths, reveal that the Paleoproterozoic Jiao–Liao–Ji orogenic belt extends at least 1000 km, starting from southern Jilin, passing through the southeastern Liaoning and Jiaobei terranes, and elongating to the Bengbu area in Anhui.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号