首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Interaction between surface water represented by the Euphrates River, natural springs, and Sawa Lake with groundwater (11 wells) in southern Iraq was investigated in this study. Water samples were collected for hydrochemistry and stable isotope (2H and 18O) analysis. Sampling of water from determined stations (10 stations along the Euphrates, 3 springs, and Sawa Lake) were carried out during two stages; the first was in October 2013(dry season) and the second one was in March 2014 (wet season). The aim of the research is to assess the interaction of groundwater–surface water, which includes Al-Atshan River (branch of the Euphrates River), Sawa Lake, and the groundwater in the study area by using hydrochemistry and stable isotope techniques. The results indicate that surface waters have a different type of water from that of groundwater. In δ 2H and δ 18O diagrams, all groundwater, springs, and Sawa Lake waters are plotted below the Global Meteoric Water Line (GMWL) and the local meteoric water line (LMWL) indicating the influence of evaporation processes and seasonal variation. The LMWL deviates by a d-excess about +13.71 toward the East Mediterranean meteoric water line (EMWL) indicating that the origin of the vapor source is the Mediterranean Sea. The river water has different isotopic compositions from that of groundwater, springs, and Sawa Lake. The final conclusion is that there is no clear influence of the groundwater on the river water while there is an intermixing between the groundwater in the different locations in the study area.  相似文献   

2.
At sites of groundwater contamination, predictions of contaminant behavior and evaluation of remedial strategies depend on identification and characterization of the geochemical processes affecting contaminant migration. Heavy-metal loadings to waters and sediments by leachate from the Golbasi waste disposal site in Ankara, Turkey, have been evaluated quantitatively using hydrogeochemical modeling. The groundwater of the waste disposal area, characterized by high concentrations of Ca, K, Cl, Cd, Pb, Zn, Cu, B, Ni, SO4, and NO3, contaminates the waters and sediments in the down-gradient area, Eymir Lake and a swamp along the flow path. An advective mass transport duration is ~15 years for unretarded contaminants to move from the waste disposal well area to the southern shoreline of Eymir Lake. Mixing calculations suggest that the down-gradient groundwater is formed by mixing of 40 to 72% upgradient groundwater and 28 to 60% waste-disposal-area groundwater, as well as Eymir Lake surface-water ion concentrations formed by mixing of down-gradient groundwater (3%-25%) and swamp-water ion concentrations (75-97%) along the flow path. An evaluation of the changes in concentration of trace ion-related precipitation/dissolution and exchange reactions between water and sediments for the formation of both Eymir Lake surface-water composition and the down-gradient groundwater composition indicate considerable trace-ion content of the clays (exchangers) and related reactions in the system. These results suggest that the amounts of contaminants removed from or added both to the down-gradient groundwater and to surface waters through mixing, dilution, and evaporation processes are rather small. The amounts of ions in the waters at the present stage of the contamination process are predominantly governed by exchange and dissolution/precipitation reactions.  相似文献   

3.
Previous work has documented large fluxes of freshwater and nutrients from submarine groundwater discharge (SGD) into the coastal waters of a few volcanic oceanic islands. However, on the majority of such islands, including Moorea (French Polynesia), SGD has not been studied. In this study, we used radium (Ra) isotopes and salinity to investigate SGD and associated nutrient inputs at five coastal sites and Paopao Bay on the north shore of Moorea. Ra activities were highest in coastal groundwater, intermediate in coastal ocean surface water, and lowest in offshore surface water, indicating that high-Ra groundwater was discharging into the coastal ocean. On average, groundwater nitrate and nitrite (N + N), phosphate, ammonium, and silica concentrations were 12, 21, 29, and 33 times greater, respectively, than those in coastal ocean surface water, suggesting that groundwater discharge could be an important source of nutrients to the coastal ocean. Ra and salinity mass balances indicated that most or all SGD at these sites was saline and likely originated from a deeper, unsampled layer of Ra-enriched recirculated seawater. This high-salinity SGD may be less affected by terrestrial nutrient sources, such as fertilizer, sewage, and animal waste, compared to meteoric groundwater; however, nutrient-salinity trends indicate it may still have much higher concentrations of nitrate and phosphate than coastal receiving waters. Coastal ocean nutrient concentrations were virtually identical to those measured offshore, suggesting that nutrient subsidies from SGD are efficiently utilized.  相似文献   

4.
为提升对长江流域水文地质和地下水资源的认知程度,突破以往单独从地表水或地下水角度进行评价的局限性,长江流域水文地质调查工程以地球系统科学理论和水循环理论为指导,充分考虑地表水与地下水的转化关系,将水文地质单元和地表水流域有机结合,划分长江流域地下水评价单元,建立典型地下水资源评价模型,开展了新一轮长江流域地下水资源评价。评价结果表明:(1)长江流域水循环要素时空分布不均,降水以中游最多,并由东南向西北递减;地表径流主要集中在夏季,且长江北岸比南岸集中程度更高;蒸散发量总体上呈现东部高于西部的特征,最大值集中在长江中游一带;长江流域地下水位总体保持稳定,丰枯季水位变化总体不大,一般小于2 m;长三角超采区的地下水漏斗面积已明显减小,相关环境地质问题得到了有效控制。(2)2020年长江流域的地下水资源总量2421.70亿m~3/a,其中山丘区地下水资源量2092.79亿m~3/a,平原区地下水资源量331.35亿m~3/a;地下水储存量较2019年整体略有增加趋势,其中四川盆地最为明显,共增加23.72亿m~3。(3)长江流域的水质上游优于下游,优质地下水主要分布在赣南地区和大别山南麓一带,部分地区水质较差的主要原因是原生劣质水的广泛分布。长江流域地下水开发利用水平整体很低,局部地区由于过往不合理的开发所引发的环境地质问题已得到缓解,岩溶塌陷、地面沉降等问题得到了较好控制。建议适当开发利用赣南地区和大别山南麓一带优质的基岩裂隙水。  相似文献   

5.
《China Geology》2022,5(3):429-438
Microplastic pollution is widely distributed from surface water to sediments to groundwater vertically and from land to the ocean horizontally. This study collected samples from surface water, groundwater, and sediments from upper to lower reaches and then to the estuary in 16 typical areas in the Jinjiang River Basin, Fujian Province, China. Afterward, it determined the components and abundance of the microplastics and analyzed the possible microplastic sources through principal component analysis (PCA). As a result, seven main components of microplastics were detected, i.e., polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polyformaldehyde (POM), nylon 6 (PA6), and polystyrene (PS). Among them, PE and PP were found to have the highest proportion in the surface water and sediments and in the groundwater, respectively. The surface water, groundwater, and sediments had average microplastic abundance of 1.6 n/L, 2.7 n/L and 33.8 n/kg, respectively. The microplastics in the sediments had the largest particle size, while those in the groundwater had the smallest particle size. Compared with water bodies and sediments in other areas, those in the study area generally have medium-low-level microplastic abundance. Three pollution sources were determined according to PCA, i.e., the dominant agriculture-forestry-fishery source, domestic wastewater, and industrial production. This study can provide a scientific basis for the control of microplastics in rivers.©2022 China Geology Editorial Office.  相似文献   

6.
Exchange of water between groundwater and surface water could alter water quality of the surface waters and thereby impact its ecosystem. Discharges of anoxic groundwater, with high concentrations of sulfate and chloride and low concentrations of nitrate and oxygen, from three sinkhole vents (El Cajon, Middle Island and Isolated) in Lake Huron have been recently documented. In this investigation, we collected and analyzed a suite of water samples from these three sinkhole vents and lake water samples from Lake Huron for Ra, radon-222, stable isotopes of oxygen and hydrogen, and other ancillary parameters. These measurements are among the first of their kind in this unique environment. The activities of Ra are found to be one to two orders of magnitude higher than that of the lake water. Isotopic signatures of some of the bottom lake water samples indicate evidences for micro-seeps at distances farther from these three vents. A plot of δD versus δ18O indicates that there are deviations from the Global Meteoric Line that can be attributed to mixing of different water masses and/or due to some subsurface chemical reactions. Using the Ra isotopic ratios, we estimated the transit times of the vent waters from the bottom to the top of the vent (i.e., sediment–water interface) to be 4–37 days. More systematic studies on the distribution of the radioactive and stable isotope studies are needed to evaluate the prevalence of micro-seeps in Lake Huron and other Great Lakes system.  相似文献   

7.
With the progradation of Godavari delta in the east coast of India, increase in iron (Fe) concentrations in the groundwater was observed. High concentrations of Fe (>10 mg/l) were observed in khondalite and charnockite formations. A lower portion of the Godavari river basin, viz. East Godavari district was chosen for the study of the distribution of iron with special reference to the existing geological formations and the geomorphology of the area. The concentration of iron was observed to vary from below detection limit to 69 mg/l in the groundwater while it was less than 1 mg Fe/l in river and spring waters. The Fe of river water was reduced due to seawater mixing and the electrical conductivity (EC) was increased approximately to half of the seawater conductivity. Unlike the mixing of seawater at the surface, the same seawater mixing with groundwater yielded a water having similar order of EC with relatively high Fe. Fe was inversely related with nitrate in the groundwater. Fe was found to correlate considerably better with manganese in fluvial and coastal alluvium zones. The locations having higher Fe in delta are suspected to be related to palaeo channels. The association between Fe and Mn and their negative association with NO3 may be due to the possible autotrophic denitrification that might have taken place in the subsurface.  相似文献   

8.
Water quality monitoring in Hanalei Bay, Kaua`i (Hawai`i, USA) has documented intermittent high concentrations of nutrients (nitrate, phosphate, silica, and ammonium) and fecal indicator bacteria (FIB, i.e., enterococci and Escherichia coli) in nearshore waters and spurred concern that contaminated groundwater might be discharging into the bay. The present study sought to identify and track sources of nutrients and FIB to four beaches in Hanalei Bay and one beach outside the bay, together representing a wide range of land uses. 223Ra and 224Ra activity, salinity, nutrient and FIB concentrations were measured in samples from the coastal aquifer, the nearshore ocean, springs, the Hanalei River, and smaller streams. In addition, FIB concentrations in beach sands were measured at each site, and the enterococcal surface protein (esp) gene assay was used to investigate whether the observed FIB originated from a human source. Nutrient concentrations in groundwater were significantly higher than in nearshore water, inversely correlated to salinity, and highly site specific, indicating local controls on groundwater quality. Fluxes of groundwater into Hanalei Bay were calculated using a mass-balance approach and represented at least 2–10% of river discharges. However, submarine groundwater discharge (SGD) may provide 2.7 times as much nitrate + nitrite to Hanalei Bay as does the Hanalei River. It may also provide significant fluxes of phosphate and ammonium, comprising 15% and 20% of Hanalei River inputs, respectively. SGD-derived silica inputs to the bay comprised less than 3% of Hanalei River inputs. FIB concentrations in groundwater were typically lower than those in nearshore water, suggesting that significant FIB inputs from SGD are unlikely. Positive esp gene assays suggested that some enterococci in environmental samples were of human fecal origin. Identifying how nutrients and FIB enter nearshore waters will help environmental managers address pressing water quality issues, including exceedances of the state Enterococcus water quality standard and nutrient loading to coral reefs.  相似文献   

9.
研究目的】揭示武汉北部新城地表水、地下水的氢氧稳定同位素特征及其相互作用。【研究方法】2019年,采集、测定了降水样7件、河水样6件、水库样14件、民井样98件、泉水样3件和钻孔样11件,并收集到武汉站1986—1998年的监测数据50件,以空间分析和流域分析为基础,氢氧稳定同位素分析为手段。【研究结果】(1)武汉降水氢氧同位素随季节变化,并表现出“降雨效应”明显、“温度效应”不明显的特点;(2)地表水在枯水期受到强烈的蒸散发,表现出一定的“地貌效应”与“干支流效应”的特征;(3)民井、泉和钻孔等地下水均源于大气降水,表现出“含水层埋深效应”与“山区平原效应”的特点;(4)枯水期,界河流域中界河获得了上游水库和地下水的补给,夏家寺水库流域中夏家寺水库得到了地下水补给。【结论】氢氧同位素能显著提高武汉北部新城地表水-地下水相互转换规律的认识。创新点:利用各类水体氢氧同位素组成及空间分布特征,揭示了武汉北部新城降水、地表水和地下水相互转换的规律  相似文献   

10.
Lake water, river water, and groundwater from the Lake Qinghai catchment in the northeastern Tibetan Plateau, China have been analyzed and the results demonstrate that the chemical components and 87Sr/86Sr ratios of the waters are strictly constrained by the age and rock types of the tributaries, especially for groundwater. Dissolved ions in the Lake Qinghai catchment are derived from carbonate weathering and part from silicate sources. The chemistry of Buha River water, the largest tributary within the catchment, underlain by the late Paleozoic marine limestone and sandstones, constrains carbonate-dominated compositions of the lake water, being buffered by the waters from the other tributaries and probably by groundwater. The variation of 87Sr/86Sr ratios with cation concentrations places constraint on the Sr-isotopic compositions of the main subcatchments surrounding Lake Qinghai. The relative significance of river-water sources from different tributaries (possibly groundwater as well) in controlling the Sr distribution in Lake Qinghai provides the potential to link the influence of hydrological processes to past biological and physical parameters in the lake. The potential role of groundwater input in the water budget and chemistry of the lake emphasizes the need to further understand hydrogeological processes within the Lake Qinghai system.  相似文献   

11.
本文在梳理流域地下水资源评价现状及历史的基础上,讨论了水资源评价方法和分区原则,将珠江流域划分为129个四级地下水系统,以地下水系统为评价单元,在充分考虑不同水文地质参数的基础上,分析评价地下水资源量及存在的问题,讨论珠江流域三级阶地不同水流运动特征,阐述了评价的精度以及水利工程对地下水循环的影响。通过本次评价,珠江流域地下水天然资源量1374.16亿m~3,可开采量为578.7亿m~3,开发利用率仅10.01%。珠江流域跨度较大,水动力特征迥异:上游云贵高原深切峡谷区、中游桂中峰丛洼地区、下游冲洪积平原区,据不完全统计,珠江流域蓄水量大于100万m~3的水库32座,水利工程的修建以及水库对水资源调蓄和分配给地下水资源评价带来一定困难,不同部委对地表水和地下水概念上的分歧导致二者间流域边界不一致以及流域水资源评价结果的差异,为此提出了解决问题的建议,以期为地下水开发利用与治理保护服务。  相似文献   

12.
主要讨论宇宙射线成因核素10Be(T 1/2= 1.5Ma)在大洋边缘海洋学尤其是中国近海海洋研究中的应用。在过去的近20年中,在中国开展的10Be研究在黄土堆积年龄及地层对比方面获得了诸多成果,但在海洋方面的应用研究距国际水平仍有一定的差距,尚需进一步加强。综述了海洋环境中10Be作为一个地球化学示踪剂的研究现状,着重介绍10Be在中国东部海域的收支平衡模式以及讨论10Be在太平洋西部边缘海及岛弧地区的应用前景。  相似文献   

13.
李长安  张玉芬  李国庆  郭汝军  陈雨 《地球科学》2021,46(12):4562-4572
东湖位于湖北省武汉市中心城区,是中国乃至亚洲最大的城中湖之一.她是首批国家重点风景名胜区和国家5A级旅游景区.武汉市正在打造东湖城市生态绿心.东湖对于武汉在资源、环境、生态、人文各方面均具有重要意义.关于东湖的成因长期众说纷纭.研究首次从地质、地貌、沉积等方面对东湖的成因进行了分析,并对东湖与长江的关系进行了讨论.(1)东湖位于中-晚更新世形成的岗地区.湖汊发育,岸线蜿蜒,岬湾交错,是东湖最大的特点.(2)东湖的湖相沉积厚度各处不一,总体呈现南薄北厚、边缘薄中间厚的特点.下伏主要地层为晚更新世下蜀黄土,在靠近基岩残丘的南部边缘局部为晚更新世坡积层,两者之间为明显的侵蚀接触关系.(3)东湖的湖盆形成于距今2万年左右的末次冰期盛期.东海海平面的大幅度下降,长江河床深切.发育于长江南岸珞珈山、南望山、喻家山一带的地表径流,在汇入长江时因江水水位较低而发生侵蚀,形成多条冲沟组合而成的侵蚀洼地.之后,随着冰后期的全球变暖,长江水位快速上升,两岸天然堤发育、壮大,使侵蚀洼地的出口被淤塞,逐渐积水成湖,即东湖为沟谷壅塞湖.(4)根据湖泊地质地貌特征,东湖与沙湖是两个不同成因且相对独立的湖泊;长江并未经东湖流过.但东湖的形成与长江有关,乃是全球气候变化驱动下海、江、湖相互作用的产物.(5)东湖之美,美于自然.保护其自然特质,顺应其自然规律,是东湖保护与利用必须坚持的原则.将湖域、湖岸、岸上作为一个整体,将水域和流域作为一个系统,按照山水林田湖草生命共同体的科学理念,对东湖进行整体性和系统性的保护与治理是十分必要的.   相似文献   

14.
《Applied Geochemistry》2000,15(6):695-723
Ground and surface waters collected from two undisturbed Zn–Pb massive sulphide deposits (the Halfmile Lake and Restigouche deposits) and active mines in the Bathurst Mining Camp (BMC), NB, Canada were analysed for the rare earth elements (REE). REE contents are highly variable in waters of the BMC, with higher contents typical of waters with higher Fe and lower pH. There are significant differences between ground- and surface waters and between groundwaters from different deposits. The REE contents of surface waters are broadly similar within and between deposit areas, although there are spatial variations reflecting differences in pH and redox conditions. Surface waters are characterised by strong negative Ce anomalies ([Ce/Ce*]NASC as low as 0.08), produced by oxidation of Ce3+ to Ce4+ and preferential removal of Ce4+ from solution upon leaving the shallow groundwater environment. Groundwaters and seeps typically lack significant Ce anomalies reflecting generally more reducing conditions in the subsurface environment and indicating that Ce oxidation is a rapid process in the surface waters. Deeper groundwaters at the Halfmile Lake deposit are characterised by REE patterns that are similar to the host lithologies, whereas most groundwaters at the Restigouche deposit have LREE-depleted patterns compared to NASC. Halfmile Lake deposit groundwaters have generally lower pH values, whereas Restigouche deposit groundwaters show greater heavy REE-complexation by carbonate ions. Shallow waters at the Halfmile Lake and Stratmat Main Zone deposits have unusual patterns which reflect either the adsorption of light REE onto colloids and fracture-zone minerals and/or precipitation of REE–phosphate minerals. Middle REE-enrichment is typical for ground- and surface waters and is highest for neutral pH waters. The labile portion of stream sediments are generally more middle REE-enriched than total sediment and surface waters indicating that the REE are removed from solution by adsorption to Fe- and Mn-oxyhydroxides in the order middle REE≥light REE>heavy REE.  相似文献   

15.
白洋淀渗漏对周边地下水的影响   总被引:3,自引:0,他引:3  
为查明受污染的白洋淀地表水渗漏范围,对周边地下水主要离子水化学的影响,并评价地下水是否适用于灌溉,在该区域现场测定了地表水及地下水pH、EC(Electric Conductivity)和ORP(Oxidation-Reduction Potential)等参数,采样分析各水体D、18O和主要离子组成,结合判别分析和钠吸附比RSA(Sodium Adsorption Ratio)讨论。结果表明,淀水渗漏使浅层地下水电导率升高,氧化还原电位值降低,且更加富集重同位素;唐河污水库周边浅层地下水SO42-和Na+含量明显增大。浅层地下水的δ18O值结合水位埋深有效地标记了淀水渗漏影响地下水的范围。浅层地下水主要受到白洋淀渗漏的影响,唐河污水库附近的浅层地下水受污水库渗漏影响。污染地表水渗漏使得浅层地下水水质普遍下降,白洋淀西部和唐河污水库周边浅层地下水不适宜用于灌溉。  相似文献   

16.
Twenty-two bottled mineral and spring waters from Norway, Sweden, Finland and Iceland have been analysed for 71 inorganic chemical parameters with low detection limits as a subset of a large European survey of bottled groundwater chemistry (N = 884). The Nordic bottled groundwaters comprise mainly Ca–Na–HCO3–Cl water types, but more distinct Ca–HCO3, Na HCO3 and Na–Cl water types are also offered. The distributions for most elements fall between groundwater from Fennoscandian Quaternary unconsolidated aquifers and groundwater from Norwegian crystalline bedrock boreholes. Treated tap waters have slightly lower median values for many parameters, but elements associated with plumbing have significantly higher concentrations in tap waters than in bottled waters. The small dataset is able to show that excessive fluoride and uranium contents are potential drinking water problems in Fennoscandia. Nitrate and arsenic displayed low to moderate concentrations, but the number of samples from Finland and Northern Sweden was too low to detect that elevated concentrations of arsenic occur in bedrock boreholes in some regions. The data shows clearly that water sold in plastic bottles is contaminated with antimony. Antimony is toxic and suspected to be carcinogenic, but the levels are well below the EU drinking water limit. The study does not provide any health-based arguments for buying bottled mineral and spring waters for those who are served with drinking water from public waterworks. Drinking water from crystalline bedrock aquifers should be analysed. In case of elevated concentrations of fluoride, uranium or arsenic, most bottled waters, but not all, will be better alternatives when treatment of the well water is not practicable.  相似文献   

17.
雄安新区地下水资源概况、特征及可开采潜力   总被引:1,自引:0,他引:1       下载免费PDF全文
地下水资源在中国社会经济发展中发挥重要作用,特别是在地表水资源相对匮乏的北方地区。掌握一个地区地下水资源状况、动态变化特征及可开采潜力,对该地区的供水安全保障至关重要。本文选择雄安新区,在近年来开展的区域水文地质调查、监测及综合研究等成果基础上,结合前人研究,对雄安新区区域水文地质条件、地下水动态变化特征等进行分析总结;以恢复地下水降落漏斗为地下水可持续开采利用方案的目标,从白洋淀流域平原区尺度,设置现状开采条件、河流补水、工农业节水及地下水禁(限)采等不同情景方案,采用地下水数值模拟技术,综合分析不同情景30年后的预测结果,提出白洋淀流域平原区地下水可持续开采利用方案;在流域地下水可持续开采利用方案基础上,分析雄安新区地下水可开采的最大资源量,进而评价雄安新区地下水可开采潜力。结果显示,雄安新区区域水文地质条件相对简单,浅层富水性中等,深层富水性较强;地下水位为多年下降状态,近年来,浅、深层地下水整体呈企稳或回升状态,局部地区仍有所下降;地下水质量总体良好,且较为稳定。根据评价结果,雄安新区地下水可开采潜力约为1.80×10~8m~3/a,其中,浅层地下水可开采潜力约为1.50×10~8m~3/a,深层地下水可开采潜力约为0.30×10~8m~3/a。  相似文献   

18.
《China Geology》2021,4(3):498-508
The surface watershed and groundwater basin have fixed recharge scale, which are not only the basic unit for hydrologic cycle research but also control the water resources formation and evolution and its corresponding eco-geological environment pattern. To accurately identify the boundary of the surface watershed and groundwater basin is the basis for properly understanding hydrologic cycle and conducting the water balance analysis at watershed scale in complicated geologic structure area, especially when the boundary are inconsistent. In this study, the Dalinuoer Lake located in the middle of the Inner Mongolian Plateau which has complicated geologic structure was selected as the representative case. Based on the multidisciplinary comprehensive analysis of topography, tectonics, hydrogeology, groundwater dynamics and stable isotopes, the results suggest the following: (1) The surface watershed ridge and groundwater basin divide of Dalinuoer Lake are inconsistent. The surface watershed was divided into two separate groundwater systems almost having no groundwater exchange by the SW-NE Haoluku Anticlinorium Fault which has obvious water-blocking effect. The surface drainage area of Dalinuoer Lake is 6139 km2. The northern regional A is the Dalinuoer Lake groundwater system with an area of 4838 km2, and the southern regional B is the Xilamulun Riverhead groundwater system with an area of 1301 km2. (2) The groundwater in the southern of regional A and the spring-feeding river are the important recharge sources for the Dalinuoer Lake, and it has greater recharge effects than the northern Gonggeer River system. (3) It is speculated that the trend of Haoluku Anticlinorium Fault is the boundary of the westerlies and the East Asian summer Monsoon (EASM) climate systems, which further pinpoints the predecessor’s understanding of this boundary line. At present, the Dalinuoer Lake watershed is proved to have gone through a prominent warming-drying trend periods, which leads to the precipitation reduction, temperature rise, human activities water usage increasement. So the hydrological cycle and lake eco-environment at watershed scale will still bound to be change, which may pose the potential deterioration risk on the suitability of fish habitat. The results can provide basic support for better understanding water balance evolution and lake area shrinkage cause as well as the ecological protection and restoration implementation of Dalinuoer Lake watershed.© 2021 China Geology Editorial Office.  相似文献   

19.
重庆金佛山泉水地球化学特征及其空间分布意义   总被引:2,自引:1,他引:1       下载免费PDF全文
2006年7月和9月在重庆金佛山地区选取22个地下水出露的泉点.对泉水的地球化学性质进行详细调查。利用野外和实验室测量手段得到了主要阴离子和阳离子浓度与物理化学参数。分析得知:研究区泉水的水化学类型为Ca-HCO_3和Ca、Mg-HCO_3;结合地质和地貌背景把它们分为6个泉群,分别讨论各泉群的空间分布意义;估算泉水方解石(SI_C)、白云石(SI_D)和石膏(SI_G)的饱和指数,即可反映地层岩性、地形和地下水的运移时间对水质的影响,该区地下水基本上是来自大气降水的下渗.没有深部含水层的上升混合.这些泉水的地球化学特征以及它们的空间分布规律能够很好地反映区内地质状况.该研究可以为金佛山地区地下水资源的调查和环境保护提供基础数据。  相似文献   

20.
The hydrochemistry of major ions and environmental isotope compositions (18O, 2H and tritium) of water samples have been used to investigate the characteristics of rainfalls, surface water and groundwater in the Damascus Ghotta basin. The groundwater salinity in the Damascus Ghotta basin gradually increases, as the groundwater moves from western to south-eastern and north-eastern parts of the basin. A strong relationship exists between the Barada river and the surrounded groundwaters, mainly in terms of recharge by infiltration of surface waters. The groundwater quality in the Adra region has clearly become less saline as a result of establishment of the sewage-water-treatment station in this area since 1997. The uncommon depleted stable isotope concentrations in the vicinity of Al-Ateibeh Lake and Adra valley could be interpreted as a result of sub-flow recharge from the Cenomanian–Turonian aquifer, mostly prolonged along the Damascus Fault, which forms direct contact between this complex and the Quaternary alluvium aquifers. The extensive exploitation of water from the Cenomanian–Turonian aquifer for drinking water supply would shortly be reflected by a gradual decline of the groundwater table in the Damascus Ghotta basin. Amelioration of water quality in the Damascus basin still requires further management strategies and efforts to be taken within the forthcoming years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号