首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
San Francisco Bay has been considered an HNLC or HNLG (high nutrient low chlorophyll or low growth) region with nonlimiting concentrations of inorganic nutrients yet low standing stocks of phytoplankton. Most of the studies leading to this conclusion come from the South Bay and little is known about nutrient processes and phytoplankton productivity in the northern and central parts of the estuary. Data collected over 3 yr (1999–2003) in Suisun, San Pablo, and Central Bays describe the availability of dissolved inorganic nitrogen (DIN), silicate, and phosphate and the seasonal variability in phytoplankton abundance. Rate measurements of fractionated nitrogen productivity provide the relative contributions of different forms of DIN (ammonium and nitrate) and different sized phytoplankton to the development of seasonal phytoplankton blooms. Regional differences in bloom dynamics are observed with Suisun Bay, the least saline, highest nutrient, most turbid region having less phytoplankton biomass and productivity than San Pablo and Central Bays, except in the abnormally wet spring of 2000. Spring blooms in San Francisco Bay are driven primarily by high rates of nitrate uptake by larger phytoplankton cells following a period of increased ammonium uptake that depletes the ambient ammonium. The smaller occasional fall blooms are apparently flueled mostly by ammonium uptake by small sized phytoplankton. The data suggest that the HNLC condition in the northern and central parts of San Francisco Bay is due primarily to light availability modulated by the interaction between ammonium and nitrate, and the relative amounts of the two forms of the DIN pool available to the phytoplankton.  相似文献   

2.
Two laboratory microcosm experiments were conducted to mimic an annual spring diatom bloom in South San Francisco Bay by isolating the phytoplankton community from the benthic grazing pressure to induce a phytoplankton bloom. The purpose of these experiments was to isolate the impact of a spring diatom bloom on the nutrient and trace metal geochemical cycling. Microcosms were created in 2.5 L incubation bottles and subjected to one of 4 treatments (control, copper [Cu] addition, manganese [Mn] addition, and both Cu and Mn addition) to investigate the toxicity of Cu on the resident plankton and the potential antagonistic effects of Mn on reducing Cu toxicity. Dissolved macronutrient (nitrate + nitrite, phosphate, and silicate), and dissolved and particulate trace metal (Cu, Ni, Mn) concentrations were monitored in the grow-out incubations on a daily basis. Chlorophylla concentrations were also monitored over the course of the experiment and used to calculate diatom-specific growth rates. In the experiments containing ambient South San Francisco Bay surface waters, average specific growth rates were on the order of 1.1 d?1. The induced diatom blooms resulted in significant removal of macronutrients from the microcosms over the course of the experiments. Our research supports previous suggestions that dissolved Ni and Cu concentrations in South San Francisco Bay have a very low biological availability as a result of organic chelation. Ni(EDTA)2? has been found to be the dominant dissolved Ni species by other researchers and Cu speciation analyses from this study and others indicate that > 99% of the dissolved Cu in South San Francisco Bay is strongly chelated as CuL1. The free cupric ion concentration was on the order of 10?12 M. Marked removal of dissolved Mn was observed in the control treatments, well exceeding expected dissolved Mn removal by diatom uptake. Additions of 375 nM Cu resulted in the complete titration of the chelating ligand (L1) concentrations. The elevated [Cu2+] (≈10?8MM) appeared to have a toxic effect on the diatom community observed in the significant decreases in their specific growth rates (μ=0.4 d?1). The suppression of dissolved Mn removal from solution was also observed in treatments spiked with high levels of dissolved Cu, providing support that Mn precipitation was due to biologically mediated oxidation not phytoplankton assimilation. The observed geochemical behavior in the concurrent Cu and Mn addition treatments provide evidence in support of Mn alleviation of Cu toxicity. The biological role in the ambient short-term biogeochemical cycling of Cu and Ni in South San Francisco Bay appears to be minimal due to the inert character of the organic ligand-metal complexes. A significant portion of the annual macronutrient and Mn cycling occurs as a result of spring diatom blooms in South San Francisco Bay.  相似文献   

3.
In September 2011 and March 2012, benthic nutrient fluxes were measured in the San Francisco Bay Delta, across a gradient from above the confluence of the Sacramento and San Joaquin Rivers to Suisun Bay. Dark and illuminated core incubation techniques were used to measure rates of denitrification, nutrient fluxes (phosphate, ammonium, nitrate), and oxygen fluxes. While benthic nutrient fluxes have been assessed at several sites in northern San Francisco Bay, such data across a Delta–Bay transect have not previously been determined. Average September rates of DIN (nitrate, nitrite, ammonium) flux were net positive across all sites, while March DIN flux indicated net uptake of DIN at some sites. Denitrification rates based on the N2/Ar ratio approach were between 0.6 and 1.0 mmol m?2 day?1, similar to other mesotrophic estuarine sediments. Coupled nitrification–denitrification was the dominant denitrification pathway in September, with higher overlying water nitrate concentrations in March resulting in denitrification driven by nitrate flux into the sediments. Estimated benthic microalgal productivity was variable and surprisingly high in Delta sediments and may represent a major source of labile carbon to this ecosystem. Variable N/P stoichiometry was observed in these sediments, with deviations from Redfield driven by processes such as denitrification, variable light/dark uptake of nutrients by microalgae, and adsorption of soluble reactive phosphorus.  相似文献   

4.
The distributions of particulate elements (Al, P, Mn, Fe, Co, Cu, Zn, Cd, and Pb), dissolved trace metals (Mn, Fe, Co, Cu, Zn, and Cd), and dissolved nutrients (nitrate, phosphate, and silicic acid) were investigated in the Gulf of the Farallones, a region of high productivity that is driven by the dynamic mixing of the San Francisco Bay plume, upwelled waters, and California coastal surface waters. Particulate metals were separated into >10 and 0.4-10 μm size-fractions and further fractionated into leachable (operationally defined with a 25% acetic acid leach) and refractory particulate concentrations. Dissolved metals (< 0.4 μm pore-size filtrate) were separated into colloidal (0.03-0.4 μm) and soluble (<0.03 μm) fractions. The percent leachable particulate fractions ranged from 2% to 99% of the total particulate concentration for these metals with Mn and Cd being predominantly leachable and Fe and Al being predominantly refractory. The leachable particulate Pb concentration was associated primarily with suspended sediments from San Francisco Bay and was a tracer of the plume in coastal waters. The particulate trace metal data suggest that the leachable fraction was an available source of trace metal micronutrients to the primary productivity in coastal waters. The dissolved trace metals in the San Francisco Bay plume and freshly upwelled surface waters were similar in concentration, with the exception of Cu and Co, which exhibited relatively high concentrations in plume waters and served as tracers of this water mass. The dissolved data and estimates of the plume dynamics suggest that the impact of anthropogenic inputs of nutrients and trace metals in the San Francisco Bay plume contributes substantially to the concentrations found in the Gulf of the Farallones (10-50% of estimated upwelled flux values), but does not greatly disrupt the natural stoichiometric balance of trace metal and nutrient elements within coastal waters given the similarity in concentrations to sources in upwelled water. In all, the data from this study demonstrate that the flux of dissolved nutrients and bioactive trace metals from the San Francisco Bay plume contribute to the high and relatively constant phytoplankton biomass observed in the Gulf of the Farallones.  相似文献   

5.
We studied nutrient sources to the Sacramento River and Suisun Bay (northern San Francisco Bay) and the influence which these sources have on the distributions of dissolved inorganic nitrogen (DIN) and dissolved reactive phosphorus (DRP) in the river and bay. We found that agricultural return flow drains and a municipal wastewater treatment plant were the largest sources of nutrients to the river during low river flow. The Sutter and Colusa agricultural drains contributed about 70% of the transport of DIN and DRP by the river above Sacramento (about 20% of the total transport by the river) between August 8 and September 26, 1985. Further downstream, the Sacramento Regional Wastewater Treatment Plant discharged DIN and DRP at rates that were roughly 70% of total DIN and DRP transport by the river at that time. Concentrations at Rio Vista on the tidal river below the Sacramento plant and at the head of the estuary were related to the reciprocals of the river flows, indicating the importance of dilution of the Sacramento waste by river flows. During very dry years, elevated DIN and DRP concentrations were observed in Suisun Bay. We used a steady-state, one-dimensional, single-compartment box model of the bay, incorporating terms for advection, exchange, and waste input, to calculate a residual rate for all processes not included in the model. We found that the residual for DIN was related to concentrations of chlorophylla (Chla). The residual for DRP was also related to Chla at high concentrations of Chla, but showed significant losses of DRP at low Chla concentrations. These losses were typically equivalent to about 80% of the wastewater input rate.  相似文献   

6.
Nitrogen remineralization and extractable ammonium concentrations were measured in sediments from several locations in North and South San Francisco bays. In South Bay, remineralization rates decreased with depth in sediment and were highest in the spring following the seasonal phytoplankton bloom. At the channel stations, peak remineralization lagged peak water-column phytoplankton biomass (as measured by chlorophylla) by a month. Remineralization rates were generally higher in South Bay than North Bay. The lower remineralization rates in North Bay may be a result of anomalously low phytoplankton production and thus reduced deposition to the sediments, as well as low reiverine organic inputs to the upper estuary in recent years. Remineralization rates were positively correlated to carbon and nitrogen content of the sediments. In general, ammonium profiles in South Bay sediments showed no increase in deeper (4–8 cm) sediments. In North Bay, ammonium concentrations were greatest at stations with highest remineralization rates, and, in contrast to South Bay, extractable ammonium increased in deeper sediment. Differences in ammonium pools between North Bay and South Bay may be a result of increased irrigation by deep-dwelling macrofauna, which are more abundant in South Bay.  相似文献   

7.
During three weeks of September 1979, the breakdown of a waste treatment plant resulted in the discharge of a large volume (1.5×107m3) of primary-treated sewage into a tributary of South San Francisco Bay, California. Chemical and microbial changes occurred within the tributary as decomposition and nitrification depleted dissolved oxygen. Associated with anoxia were relatively high concentrations of particulate organic carbon, dissolved CO2, CH4, C2H4, NH 4 + , and fecal bacteria, and low phytoplankton biomass and photosynthetic oxygen production. South San Francisco Bay experienced only small changes in water quality, presumably because of its large volume and the assimilation of wastes that occurred within the tributary. Water quality improved rapidly in the tributary once normal tertiary treatment resumed.  相似文献   

8.
Changes in water temperatures caused by climate change in California’s Sacramento–San Joaquin Delta will affect the ecosystem through physiological rates of fishes and invertebrates. This study presents statistical models that can be used to forecast water temperature within the Delta as a response to atmospheric conditions. The daily average model performed well (R 2 values greater than 0.93 during verification periods) for all stations within the Delta and San Francisco Bay provided there was at least 1 year of calibration data. To provide long-term projections of Delta water temperature, we forced the model with downscaled data from climate scenarios. Based on these projections, the ecological implications for the delta smelt, a key species, were assessed based on temperature thresholds. The model forecasts increases in the number of days above temperatures causing high mortality (especially along the Sacramento River) and a shift in thermal conditions for spawning to earlier in the year.  相似文献   

9.
Nitrogen dynamics in large shallow eutrophic Lake Chaohu,China   总被引:4,自引:0,他引:4  
Temporal and spatial dynamics of nitrogen in lake and interstitial water were studied monthly in a large shallow, eutrophic lake in subtropical China from October 2002 to September 2003. The distribution of nitrogen was consistent with the idea that high nitrogen concentrations in the western part of the lake resulted from high levels of the nutrients from the surrounding cities through sewage–drainage systems. Nitrate was the predominant form of nitrogen in the overlying water, while ammonium was predominant in the interstitial water, indicating that strong oxidative nutrient regeneration occurred near the sediment–water interface. Nitrate could be an important dissolved inorganic matter source for phytoplankton, which in turn influenced the seasonal variations of nitrate concentrations in lake water. Significant positive correlation between ammonium fluxes and water temperature was observed and could probably be attributed to the intensified ammonification and nitrate reduction with increased temperature. Positive correlation between ammonium fluxes and algae biomass and Chl a concentrations may indicate that phytoplankton was an important factor driving ammonium fluxes in our study lake, and vice versa that higher fluxes of ammonium supported a higher biomass of the phytoplankton.  相似文献   

10.
Selenium behavior in North San Francisco Bay, the largest estuary on the US Pacific coast, is simulated using a numerical model. This work builds upon a previously published application for simulating selenium in the bay and considers point and non-point sources, transport and mixing of selenium, transformations between different species of selenium, and biological uptake by phytoplankton, bivalves, and higher organisms. An evaluation of the calibrated model suggests that it is able to represent salinity, suspended material, and chlorophyll a under different flow conditions beyond the calibration period, through comparison against long-term data, and the distribution of different species of dissolved and particulate selenium. Model-calculated selenium concentrations in bivalves compared well to a long-term dataset, capturing the annual and seasonal variations over a 15-year period. In particular, the observed lower bivalve concentrations in the wet flow periods, corresponding to lower average particulate selenium concentrations in the bay, are well represented by the model, demonstrating the role of loading and hydrology in affecting clam concentrations. Simulated selenium concentrations in higher organisms including white sturgeon and greater scaup also compared well to the observed data in the bay. Finally, a simulation of changing riverine inflows into the bay that might occur as a consequence of proposed hydrologic modifications indicated significant increases in dissolved and particulate selenium concentrations in the bay. The modeling framework allows an examination of the relationship between selenium loads, variations in inflow, in-bay concentrations, and biota concentrations to support management for limiting wildlife impacts.  相似文献   

11.
Two different approaches to measuring phytoplankton nitrogen (N) use were compared in late summer 2004 along the main axis of Chesapeake Bay. Uptake of 15N-labeled ammonium and nitrate and dual-labeled (15N and 13C) urea and dissolved free amino acids (DFAA) were measured in surface water samples from upper, mid, and lower bay stations. Two distinct methods were used to assess the relative uptake of N substrates by phytoplankton and correct for bacterial artifacts: (1) traditional filtration using Whatman glass fiber (GF/F) filters and (2) flow cytometric (FCM) sorting of chlorophyll-containing cells. The concentration of dissolved inorganic N (DIN) decreased with distance south along the bay, whereas dissolved organic N (DON) concentrations were relatively constant. Absolute N uptake rates measured using the traditional approach exceeded those of FCM-sorted phytoplankton, thereby suggesting the possibility of bacterial “contamination.” Ammonium was the dominant N form used throughout the transect, although FCM-sorted phytoplankton relied more on urea and DFAA as the ratio of DON/DIN increased toward the bay mouth. Overall, ammonium comprised 74 ± 17%, urea 10 ± 9%, DFAA 9 ± 7%, and nitrate 7 ± 12% of total measured N uptake by phytoplankton. Results suggest that bacteria relied primarily on DFAA and ammonium for N nutrition but also used N from urea at a rate similar to that of phytoplankton, whereas bacterial nitrate uptake was insignificant. On average, phytoplankton uptake of ammonium, urea, and DFAA was overestimated by 61%, 53%, and 135%, respectively, as a result of bacterial retention on GF/F filters.  相似文献   

12.
During Cruise 62nd of the R/V “Professor Gagarinsky” in September, 2014, the carbonate system of sediments and contents of nutrients and organic carbon in pore water were studied in two geochemical stations located in hypoxia areas in the Peter the Great Bay. It was established that the concentrations of silica, phosphorus, and ammonium increase by 5, 10, and 20 times, respectively, with sediment depth to 70–80 cm. The alkalinity, dissolved inorganic carbon, and the partial pressure of carbon dioxide significantly increase with depth, while рН value and organic matter (ОM) decrease. Changes in the chemical composition of pore water with sediment depth (0–80 cm) are caused by anaerobic microbial degradation of OM, concentration of which in the top sediment layer is 2–3%. The degradation products of OM in the bottom waters of bay and pore waters of bottom sediments indicate that its main sources are diatoms. During hypoxia, the oxygen demand rate by sediment surface near Furugelm Island is estimated to be 5 mmol/(m2 day). A combination of such factors as downwelling circulation, the absence of photosynthetically active radiation, and the high oxygen demand rate at the water/sediment interface provides hypoxia formation in the depressions of the Peter the Great Bay bottom topography.  相似文献   

13.
In this paper, we discuss observations of temperature variability in the tidal portion of the San Joaquin River in California. The San Joaquin River makes up the southern portion of the Sacramento San Joaquin Delta, the eastern end of San Francisco Bay. Observations made in August 2004 and August 2005 show significant diurnal variations in temperature in response to surface heat exchange. However, to account for observed changes in heat content a sizeable downstream heat flux (approximately 100 W m−2) must be added to the surface heat flux. To account for this flux via Fickian dispersion, a flow-dependent dispersion coefficient varying from 500 to 4,000 m2 s−1 is needed. These values are much larger than would be predicted for a river of this size, suggesting that the complex topology of the Delta greatly enhances longitudinal dispersion. Building on these observations, we present a simple theory that explores how the subtidal temperature field varies in response to changes in flow rate, dispersion, and heat exchange.  相似文献   

14.
Benthic nutrient recycling is a significant source of dissolved nitrogen for south Texas coastal waters in the region of the Corpus Christi Bay estuary. Studies indicate that 90% of the dissolved nitrogen supply for phytoplankton production is derived from sediments in the upper-estuary, whereas benthic regeneration supplies only 33% of the dissolved nitrogen required for primary production outside the barrier island in coastal waters (15 m depth). In the upper-estuary relationships were observed between fluvial flow, water-column dissolved nitrogen, and phytoplankton productivity. In the middle-estuary relationships were observed between sediment recycling rates and water-column dissolved nitrogen. Beyond the barrier island, relationships were observed between fluvial flow and water-column dissolved nitrogen during high flow periods, while benthic regeneration appeared to be the major nutrient source during low flow periods. We suggest that combined effects from new and recycled nutrient sources buffer south Texas coastal productivity against long periods of low nutrient input from fluvial flow. The comparison of biological responses at several trophic levels to temporal variability in nitrogen recycling and fluvial flow indicated the importance of freshwater nitrogen inputs in stimulating primary production. Freshwater nitrogen inputs also appeared to sustain long-term productivity by replacing nutrients lost from the system by extended reliance upon recycling.  相似文献   

15.
Effects of storms on the water quality of Hilo Bay, Hawaii, were examined by sampling surface waters at 6 stations 10 times during low-flow and 18 times during high-flow (storms) river conditions. The direction of a storm’s impact on water quality parameters was consistent among storms and most stations; however, direction of the impact varied with the parameter. High river flow conditions increased concentrations of nitrate and decreased those of dissolved organic nitrogen (N); effects on ammonium and particulate N were station specific. Storms also increased dissolved organic and particulate carbon (C) concentrations. Dissolved phosphorus (P) concentrations were not affected by high river flow events. Dissolved organic forms dominated the N, C, and P pools under both low- and high-flow river conditions. Soil-derived particles and fecal indicator bacteria increased during storms, while chlorophyll a concentrations and bacterial cell abundances decreased. Our results suggest that an increase in storms with global warming could impact water quality of tropical estuaries.  相似文献   

16.
Trace contaminants enter major estuaries such as San Francisco Bay from a variety of point and nonpoint sources and may then be repartitioned between solid and aqueous phases or altered in chemical speciation. Chemical speciation affects the bioavailability of metals as well as organic ligands to planktonic and benthic organisms, and the partitioning of these solutes between phases. Our previous, work in south San Francisco Bay indicated that sulfide complexation with metals may be of particular importance because of the thermodynamic stability of these complexes. Although the water column of the bay is consistently well-oxygenated and typically unstratified with respect to dissolved oxygen, the kinetics of sulfide oxidation could exert at least transient controls on metal speciation. Our initial data on dissolved sulfides in the main channel of both the northern and southern components of the bay consistently indicate submicromolar concenrations (from <1 nM to 162 nM), as one would expect in an oxidizing environment. However, chemical speciation calculations over the range of observed sulfide concentrations indicate that these trace concentrations in the bay water column can markedly affect chemical speciation of ecologically significant trace metals such as cadmium, copper, and zinc.  相似文献   

17.
Samples collected in December 1990 and July 1991 show that dissolved Cd, Cu, Ni, and Zn distributions in the Gulf of the Farallones are dominated by mixing of two end-members: (1) metal-enriched San Francisco Bay water and (2) offshore California Current water. The range of dissolved metal concentrations observed is 0.2–0.9 nmol kg?1 for Cd, 1–20 nmol kg?1 for Cu, 4–16 nmol kg?1 for Ni, and 0.2–20 nmol kg?1 for Zn. Effective concentrations in fresh water discharged into San Francisco Bay during 1990–1991 (estimated by extrapolation to zero salinity) are 740–860 μmol kg?1 for silicate, 21–44 μmol kg?1 for phosphate, 10–15 nmol kg?1 for Cd, 210–450 nmol kg?1 for Cu, 210–270 nmol kg?1 for Ni, and 190–390 nmol kg?1 for Zn. Comparison with effective trace metal and nutrient concentrations for freshwater discharge reported by Flegal et al. (1991) shows that input of these constituents to the northern reaches of San Francisco Bay accounts for only a fraction of the input to Gulf of the Farallones from the estuary system as a whole. The nutrient and trace metal composition of shelf water outside a 30-km radius from the mouth of the estuary closely resembles that of California Current water further offshore. In contrast to coastal waters elsewhere, there is little evidence of Cd, Cu, Ni, and Zn input by sediment diagenesis in continental shelf waters of California.  相似文献   

18.
Macronutrients and micronutrients were measured during the phytoplankton bloom period and then seasonally monitored after the bloom in the polluted Izmir Bay. Iron and the macronutrients (phosphate, ammonium, nitrate, nitrite, and silicate) were abundant in the waters of the inner and middle sections of Izmir Bay. The iron concentration decreased exponentially from the eutrophic inner bay to the oligotrophic outer bay. Suboxic–anoxic processes and the resuspension dynamics in the sediment were the most important factor in the control of iron, ammonium, and phosphate enrichment in the bay beside the anthropogenic activities. The biological removal of Fe in the inner and middle bay and nonbiological removal in the outer bay were effective in controlling iron concentration in Izmir Bay. The nitrate, nitrite, and ammonium nitrogen (N) and Si decreased to critical levels in the middle and outer bay at the end of the summer as long as the concentration of phosphate was high. The N/P ratios in the bay suggested that N might be the controlling nutrient for phytoplankton growth particularly in the middle and outer bay throughout summer. Furthermore, Si was also able to have controlling impact probably on diatom growth during autumn and winter in the inner and middle bay and in the early spring in the outer bay. The N/Si/Chelex labile Fe ratios implied that the iron could be a critical controlling nutrient for phytoplankton growth during early April in the outer bay unless the other macronutrients were low.  相似文献   

19.
Differences in phytoplankton community composition along a riverine to, freshwater tidal continuum was an important factor affecting the primary productivity and quantity of phytoplankton biomass available to the San Francisco Estuary food web downstream. The relative contribution of riverine and freshwater tidal phytoplankton was determined using measurements of primary productivity, respiration, and phytoplankton species composition along a riverine to freshwater tidal gradient in the San Joaquin River, one of two major rivers that flow into, the San Francisco Estuary. Chla-specific net primary productivity was greater in the freshwater tidal habitat and was correlated with both a higher growth efficiency and maximum growth potential compared with the river upstream. Cluster analysis indicated these differences in growth parameters were associated with differences in species composition, with greater percent diatom and green algal species biomass upstream and flagellate biomass downstream. Correlation between the chla specific net productivity and phytoplankton species composition suggested the downstream shift from riverine diatom and green algal species to flagellate species contributed to the seaward increase in net primary productivity. Environmental conditions, such as specific conductance and water transparency, may have influenced primary productivity along the riverine to freshwater tidal continuum through their effect on both species composition and growth rate. Data suggest light was not the sole controlling factor for primary productivity in this highly turbid estuary; phytoplankton growth rate did not increase when riverine plankton communities from low light conditions upstream were exposed to higher light conditions downstream. This study suggests that the availability of phytoplankton biomass to the estuarine food web may be influenced by management of both phytoplankton growth and community composition along the riverine to freshwater tidal continuum.  相似文献   

20.
The effect of nutrient enrichments on natural phytoplankton assemblages was examined in six experiments conducted from June to October 1992. Short-term (4 d to 7 d) nutrient enrichment bioassays were incubated in situ in Padilla Bay, a slough-fed estuary in northern Puget Sound, Washington. Ammonium additions (15 μM) significantly (p<0.001) stimulated phytoplankton biomass accumulation during all six experiments. In two experiments, nitrate additions (15 μM) significantly stimulated accumulation of phytoplankton biomass during October, but not September. Addition of phosphate (1.0 μM) or silicate (15 μM) alone did not stimulate phytoplankton biomass accumulation during any of the experiments. In most experiments, phytoplankton response was greatest in combination treatments of ammonium and phosphate. Dissolved inorganic nutrient concentrations in the containers decreased during all incubations, but showed the greatest reduction in treatments receiving nitrogen. Dissolved inorganic nitrogen (DIN) to phosphate (PO4 3?) ratios were below 16∶1 during all experiments, suggesting the potential for nitrogen limitation. In three experiments, the response of photosynthetic nanoplankton (<20 μm) to ammonium additions was compared to that of the total phytoplankton assemblages. Accumulation of nanoplankton biomass exceeded that of the total phytoplankton during two experiments in August but showed no significant response to ammonium additions in October. Results from the bioassays, the low DIN∶PO4 3? ratios, and the reduction in nutrient concentrations in the containers provide evidence for potential nitrogen limitation of phytoplankton production during summer in Padilla Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号