首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary. Various factors can make it difficult to explain observations of Love- and Rayleigh-wave dispersion with the same relatively simple isotropic model. These factors include systematic errors which might occur in determinations of observed group and phase velocities, lateral variations in structure along the path of travel, and the attempt to explain observations with a model comprised of only a small number of thick layers. The last of these factors is illustrated by an inversion of dispersion data in the central United States where shear-wave anisotropy had previously been invoked as one way to explain incompatible Love- and Rayleigh-wave velocities. It is shown that the data can be satisfied equally well by an isotropic model consisting of several thin layers.
In cases where the incompatibility of Love- and Rayleigh-wave data might be produced by intrinsic anisotropy, it is necessary to invert those data using an anisotropic theory rather than by separate isotropic inversions of Love and Rayleigh waves. Inversions of fundamental-mode data for a region of the Pacific, assuming anisotropic media in which the layers are transversely isotropic with a vertical axis of symmetry, lead to models which are highly non-unique. Even if the inversions solve only for shear velocities in the litho-sphere and asthenosphere it is not possible, without supplementary information, to ascertain the depth interval over which anisotropy occurs or to determine the thickness of the lithosphere or asthenosphere with much precision.  相似文献   

2.
Summary. Surface wave behaviour in flat anisotropic structures is first illustrated by performing an exact computation on a simple two-layer model. The variational procedure of Smith & Dahlen is then used to compute the partial derivatives of surface wave phase velocities with respect to the elastic parameters in more realistic earth models. Linear relationships between the partial derivatives for a general anisotropic structure and those for a transversely isotropic structure are derived. When considering waves propagating in a fixed direction, there are only four independent derivatives for Rayleigh waves, and two for Love waves. To avoid the lack of resolution in an inverse method, we propose to use physically constrained models. These results are illustrated by using a model with hexagonal symmetry and a symmetry axis oriented either vertically or horizontally. Quasi-Love- and quasi-Rayleigh-wave partial derivatives are computed for both axis orientations. Modes up to the second overtone and periods ranging between 45 and 130 s have been considered. Finally, anomalies of phase velocity are computed in an oceanic model made of 1/6 oriented olivine crystals with horizontal or vertical preferred orientations of the a -axis.  相似文献   

3.
Anisotropy in multi-offset deep-crustal seismic experiments   总被引:1,自引:0,他引:1  
Modelling of deep-seismic wide-angle data commonly assumes that the Earth is heterogeneous and isotropic. It is important to know the magnitudes of errors that may be introduced by isotropic-based wide-angle models when the Earth is anisotropic. It is equally important to find ways of detecting anisotropy and determining its properties.
  This paper explores the errors introduced by interpreting anisotropic seismic data with isotropic models. Errors in P -wave reflector depths are dependent on the magnitude of the velocity anisotropy and the direction of the fast axis. The interpreted, isotropic, model velocity function is found to correspond closely to the horizontal velocity of the anisotropic medium. An additional observed parameter is the time mismatch , which we define to be the difference between the vertical two-way traveltime to a reflector and the time-converted wide-angle position of the reflector. The magnitude of the time mismatch is typically <1.0  s (when the whole crust is anisotropic) and is found to be closely related to the magnitude and sign of the anisotropic anellipticity. The relationships are extendible to more complicated models, including those with vertical velocity gradients, crustal zonation, and lower symmetry orders.
  A time mismatch may be symptomatic of the presence of anisotropy. We illustrate the observation of a time mismatch for a real multi-offset seismic data set collected north of Scotland and discuss the implications for crustal anisotropy in that region.  相似文献   

4.
Summary Isotropic earth models are unable to provide uniform fits to the gross Earth normal mode data set or, in many cases, to regional Love-and Rayleigh-wave data. Anisotropic inversion provides a good fit to the data and indicates that the upper 200km of the mantle is anisotropic. The nature and magnitude of the required anisotropy, moreover, is similar to that found in body wave studies and in studies of ultramafic samples from the upper mantle. Pronounced upper mantle low-velocity zones are characteristic of models resulting from isotropic inversion of global or regional data sets. Anisotropic models have more nearly constant velocities in the upper mantle.
Normal mode partial (Frediét) derivatives are calculated for a transversely isotropic earth model with a radial axis of symmetry. For this type of anisotropy there are five elastic constant. The two shear-type moduli can be determined from the toroidal modes. Spheroidal and Rayleigh modes are sensitive to all five elastic constants but are mainly controlled by the two compressional-type moduli, one of the shear-type moduli and the remaining, mixed-mode, modulus. The lack of sensitivity of Rayleigh waves to compressional wave velocities is a characteristic only of the isotropic case. The partial derivatives of the horizontal and vertical components of the compressional velocity are nearly equal and opposite in the region of the mantle where the shear velocity sensitivity is the greatest. The net compressional wave partial derivative, at depth, is therefore very small for isotropic perturbations. Compressional wave anisotropy, however, has a significant effect on Rayleigh-wave dispersion. Once it has been established that transverse anisotropy is important it is necessary to invert for all five elastic constants. If the azimuthal effect has not been averaged out a more general anisotropy may have to be allowed for.  相似文献   

5.
P-SH conversion is commonly observed in teleseismic P waves, and is often attributed to dipping interfaces beneath the receiver. Our modelling suggests an alternative explanation in terms of flat-layered anisotropy. We use reflectivity techniques to compute three-component synthetic seismograms in a 1-D anisotropic layered medium. For each layer of the medium, we prescribe values of seismic velocities and hexagonally symmetric anisotropy about a common symmetry axis of arbitrary orientation. A compressional wave in an anisotropic velocity structure suffers conversion to both SV -and SH -polarized shear waves, unless the axis of symmetry is everywhere vertical or the wave travels parallel to all symmetry axes. The P-SV conversion forms the basis of the widely used 'receiver function' technique. The P-SH conversion occurs at interfaces where one or both layers are anisotropic. A tilted axis of symmetry and a dipping interface in isotropic media produce similar amplitudes of both direct ( P ) and converted ( Ps ) phases, leaving the backazimuth variation of the P-Ps delay as the main discriminant. Seismic anisotropy with a tilted symmetry axis leads to complex synthetic seismograms in velocity models composed of just a few flat homogeneous layers. It is possible therefore to model observations of P coda with prominent transverse components with relatively simple 1-D velocity structures. Successful retrieval of salient model characteristics appears possible using multiple realizations of a genetic-algorithm (GA) inversion of P coda from several backazimuths. Using GA inversion, we determine that six P coda recorded at station ARU in central Russia are consistent with models that possess strong (> 10 per cent) anisotropy in the top 5 km and between 30 and 43 km depth. The symmetry axes are tilted, and appear aligned with the seismic anisotropy orientation in the mantle under ARU suggested by SKS splitting.  相似文献   

6.
Summary. Seismic investigations using shear-wave and converted wave techniques show that very often reflected PS - and SS -waves have anomalous polarizations ( accessory components ). This phenomenon cannot be explained in terms of isotropic models with dipping boundaries. Computations of synthetic seismograms of reflected PS - and SS -waves were made for different models of transversely isotropic media with dipping anisotropic symmetry axes not normal to the boundaries. Synthetic seismograms were computed by ray techniques using an optimization algorithm to construct all rays arriving at a given receiver. These computations indicate that accessory components arise when the medium above the boundary is anisotropic, where they are caused by the constructive interference of qSV - and qSH -waves. If a low-velocity layer is present, displacement vectors of both waves have horizontal projections which are approximately orthogonal. The algorithm for wave separation is presented and some results of its use are given.  相似文献   

7.
Large scale seismic anisotropy in the Earth's mantle is likely dynamically supported by the mantle's deformation; therefore, tomographic imaging of 3-D anisotropic mantle seismic velocity structure is an important tool to understand the dynamics of the mantle. While many previous studies have focused on special cases of symmetry of the elastic properties, it would be desirable for evaluation of dynamic models to allow more general axis orientation. In this study, we derive 3-D finite-frequency surface wave sensitivity kernels based on the Born approximation using a general expression for a hexagonal medium with an arbitrarily oriented symmetry axis. This results in kernels for two isotropic elastic coefficients, three coefficients that define the strength of anisotropy, and two angles that define the symmetry axis. The particular parametrization is chosen to allow for a physically meaningful method for reducing the number of parameters considered in an inversion, while allowing for straightforward integration with existing approaches for modelling body wave splitting intensity measurements. Example kernels calculated with this method reveal physical interpretations of how surface waveforms are affected by 3-D velocity perturbations, while also demonstrating the non-linearity of the problem as a function of symmetry axis orientation. The expressions are numerically validated using the spectral element method. While challenges remain in determining the best inversion scheme to appropriately handle the non-linearity, the approach derived here has great promise in allowing large scale models with resolution of both the strength and orientation of anisotropy.  相似文献   

8.
Summary. Seismic anisotropy has been previously studied at depths usually not exceeding 100 or 150 km. In this paper we present a method of analysis of seismic records which is very sensitive to azimuthal anisotropy and is applicable at almost any depth range. The idea of the method is to detect and analyse the SH -component of the waves, converted from P to S in the mantle. The procedure of record processing includes frequency filtering, axis rotation, transformation of the record to a standard form, stacking the standardized SH -component records of many seismic events, and the harmonic analysis of amplitude as a function of the direction of wave propagation. When applied to the long-period records of NORSAR the procedure detected a converted wave with the properties implying the possibility of its propagation in a transversely isotropic medium with a horizontal axis of symmetry . Our preferred model postulates anisotropy of ∼ 1 per cent in a layer 50 km thick at the base of the upper mantle.  相似文献   

9.
Summary. A formulation is derived for calculating the energy division among waves generated by plane waves incident on a boundary between generally anisotropic media. A comprehensive account is presented for P, SV and SH waves incident from an isotropic half-space on an orthorhombic olivine half-space, where the interface is parallel to a plane of elastic symmetry. For comparison, a less anisotropic medium having transverse isotropy with a horizontal axis of symmetry is also considered. The particle motion polarizations of waves in anisotropic medium differ greatly from the polarizations in isotropic media, and are an important diagnostic of the presence of anisotropy. Incident P and SV waves generate quasi- SH waves, and incident SH waves generate quasi- P and quasi- SV waves, often of considerable relative magnitude. The direction of energy transport diverges from the propagation direction.  相似文献   

10.
Split S waves observed at Hockley, Texas from events in the Tonga–Fiji region of the southwest Pacific show predominantly vertically polarized shear-wave ( SV  ) energy arriving earlier than horizontally polarized ( SH ) energy for rays propagating horizontally through D" . After corrections are made for the effects of upper-mantle anisotropy beneath Hockley, a time lag of 1.5 to 2.0  s remains for the furthest events (93.9°–100.6° ), while the time lags of the nearer observations (90.5°–92.9° ) nearly disappear. At closer distances, the S waves from these same events do not penetrate as deeply into the lower mantle, and are not split. These observations suggest that a patch of D" beneath the central Pacific is anisotropic, while the mantle immediately above the patch is isotropic. The thickness of the anisotropic zone appears to be of the order of 100–200  km.
  Observations of shear-wave splitting have previously been made for paths that traverse D" under the Caribbean and under Alaska. SH leads SV , the reverse of the Hockley observations, but in these areas the fact that SV  leads SH in the HKT data shown here suggests a different sort of anisotropy under the central Pacific from that under Alaska and the Caribbean. The case of SH travelling faster than SV  is consistent with transverse isotropy with a vertical axis of symmetry (VTI) and does not require variations with azimuth. The case of SV  leading SH is consistent with transverse isotropy with a horizontal axis of symmetry (HTI), an azimuthally anisotropic medium, and with a VTI medium formed by a hexagonal crystal. Given that (Mg,Fe)SiO3 perovskite appears unlikely to form anisotropic fabrics on a large scale, the presence of anisotropy may point to chemical heterogeneity in the lowermost mantle, possibly due to mantle–core interactions.  相似文献   

11.
We present a complete ray theory for the calculation of surface-wave observables from anisotropic phase-velocity maps. Starting with the surface-wave dispersion relation in an anisotropic earth model, we derive practical dynamical ray-tracing equations. These equations allow calculation of the observables phase, arrival-angle and amplitude in a ray theoretical framework. Using perturbation theory, we also obtain approximate expressions for these observables. We assess the accuracy of the first-order approximations by using both theories to make predictions on a sample anisotropic phase-velocity map. A comparison of the two methods illustrates the size and type of errors which are introduced by perturbation theory. Perturbation theory phase and arrival-angle predictions agree well with the exact calculation, but amplitude predictions are poor. Many previous studies have modelled surface-wave propagation using only isotropic structure, not allowing for anisotropy. We present hypothetical examples to simulate isotropic modelling of surface waves which pass through anisotropic material. Synthetic data sets of phase and arrival angle are produced by ray tracing with exact ray theory on anisotropic phase-velocity maps. The isotropic models obtained by inverting synthetic anisotropic phase data sets produce deceptively high variance reductions because the effects of anisotropy are mapped into short-wavelength isotropic structure. Inversion of synthetic arrival-angle data sets for isotropic models results in poor variance reductions and poor recovery of the isotropic part of the anisotropic input map. Therefore, successful anisotropic phase-velocity inversions of real data require the inclusion of both phase and arrival-angle measurements.  相似文献   

12.
Summary. A set of stable algorithms for computing synthetic seismograms in attenuating transversely isotropic media is presented. The structures of these algorithms for anisotropic media are formally equivalent to their counterparts for isotropic media. The seismic responses of a periodically layered isotropic medium are compared with those of its long-wave equivalent transversely isotropic medium. The synthetics for the two media show observable differences in the range of frequencies considered. The differences are small in the P -waves, but partly large in later arrivals.  相似文献   

13.
We have studied the properties of S waves generated by a point source in a homogeneous, transversely isotropic, elastic medium, propagating in directions close to that of a kiss singularity, which coincides with the symmetry axis of the medium. We have proved analytically as well as numerically that the ray solution can describe the S waves correctly far from the source in all directions, including that of the kiss singularity. We have found that, in contrast to the far-field P wave, which can be reproduced satisfactorily by the zeroth-order ray approximation in all directions from the source, the far-field S waves can be reproduced satisfactorily by the zeroth-order ray approximation only in directions far from the kiss singularity. In directions near the kiss singularity, the first-order ray approximation must also be considered, because the zeroth- order ray approximation yields distorted results. The first-order ray approximation can be of high frequency and can be detected in the far field.  相似文献   

14.
The change in the inertia tensor of the Earth, due to the mass shift following a seismic event, has been computed by several authors for non-rotating earth models. Rotation is taken into account in the present paper, and the additional change in the inertia tensor is computed for an equivalent earth model, in which the axis of geometrical symmetry becomes tilted instead of the axis of greatest inertia. Rotation is thus seen to produce an increase by a factor 1.4 in the amplitude variation of the Chandler wobble, with respect to the non-rotating case, which, when added to the 1.4 amplitude increase due to the precessional re-adjustment of the equatorial bulge, gives a factor of 2 increase of the Chandler wobble amplitude with respect to the case of a rigid earth model.  相似文献   

15.
Amplitude measurements of the transverse component of SKS waves, the so-called splitting intensity, can be used to formulate a non-linear inverse problem to image the 3-D variations of upper mantle anisotropy. Assuming transverse isotropy (or hexagonal symmetry), one can parametrize anisotropy by two anisotropic parameters and two angles describing the orientation of the symmetry axis. These can also be written as two collinear pseudo-vectors. The tomographic process consists of retrieving the spatial distribution of these pseudo-vectors, and thus resembles surface wave vectorial tomography. Spatial resolution results from the sensitivity of low-frequency SKS waves to seismic anisotropy off the ray path. The expressions for the 3-D sensitivity kernels for splitting intensity are derived, including the near-field contributions, and validated by comparison with a full wave equation solution based upon the finite element method. These sensitivity kernels are valid for any orientation of the symmetry axis, and thus generalize previous results that were only valid for a horizontal symmetry axis. It is shown that both lateral and vertical subwavelength variations of anisotropy can be retrieved with a dense array of broad-band stations, even in the case of vertically propagating SKS waves.  相似文献   

16.
We consider the two coupled differential equations of the two radial functions appearing in the displacement components of spheroidal oscillations for a transversely isotropic (TI) medium in spherical coordinates. Elements of the layer matrix have been explicitly written—perhaps for the first time—to extend the use of the Thomson-Haskell matrix method to the derivation of the dispersion function of Rayleigh waves in a transversely isotropic spherical layered earth. Furthermore, an earth-flattening transformation (EFT) is found and effectively used for spheroidal oscillations. The exponential function solutions obtained for each layer give the dispersion function for TI spherical media the same form as that on a flat earth. This has been achieved by assuming that the five elastic parameters involved vary as r p and that the density varies as r p-2, where p is an arbitrary constant and r is the radial distance. A numerical illustration with p = - 2 shows that, in spite of the inhomogeneity assumed within layers, the results for spherical harmonic degree n , versus time period T , obtained here for the Primary Reference Earth Model (PREM), agree well with those obtained earlier by other authors using numerical integration or variational methods. The results for isotropic media derived here are also in agreement with previous results. The effect of transverse isotropy on phase velocity for the first two modes of Rayleigh waves in the period range 20 to 240 s is calculated and discussed for continental and oceanic models.  相似文献   

17.
Transverse isotropy of thinly layered media   总被引:1,自引:0,他引:1  
Summary. Three problems of seismic anisotropy in thinly layered media (TPM) are discussed: (1) A dependence is established for the character of the ray velocity of longitudinal low-frequency waves on the ratio of P - and S -wave velocities in thin layers. (2) Conditions are specified for cusps on SV -wave surfaces. Nomograms are suggested for quick estimation of these conditions. (3) A comparison is made between TPM anisotropy and other types of transversely isotropic media.  相似文献   

18.
A general tomographic technique is designed in order (i) to operate in anisotropic media; (ii) to account for the uneven seismic sampling and (iii) to handle massive data sets in a reasonable computing time. One modus operandi to compute a 3-D body wave velocity model relies on surface wave phase velocity measurements. An intermediate step, shared by other approaches, consists in translating, for each period of a given mode branch, the phase velocities integrated along ray paths into local velocity perturbations. To this end, we develop a method, which accounts for the azimuthal anisotropy in its comprehensive form. The weakly non-linear forward problem allows to use a conjugate gradient optimization. The Earth's surface is regularly discretized and the partial derivatives are assigned to the individual grid points. Possible lack of lateral resolution, due to the inescapable uneven ray path coverage, is taken into account through the a priori covariances on parameters with laterally variable correlation lengths. This method allows to efficiently separate the 2ψ and the 4ψ anisotropic effects from the isotropic perturbations. Fundamental mode and overtone phase velocity maps, derived with real Rayleigh wave data sets, are presented and compared with previous maps. The isotropic models concur well with the results of Trampert & Woodhouse. Large 4ψ heterogeneities are located in the tectonically active regions and over the continental lithospheres such as North America, Antarctica or Australia. At various periods, a significant 4ψ signature is correlated with the Hawaii hotspot track. Finally, concurring with the conclusions of Trampert & Woodhouse, our phase velocity maps show that Rayleigh wave data sets do need both 2ψ and 4ψ anisotropic terms.  相似文献   

19.
The effects of geometric errors on crosshole resistivity data are investigated using analytical methods. Geometric errors are systematic and can occur due to uncertainties in the individual electrode positions, the vertical spacing between electrodes in the same borehole, or the vertical offset between electrodes in opposite boreholes. An estimate of the sensitivity to geometric error is calculated for each of two generic types of four-electrode crosshole configuration: current flow and potential difference crosshole (XH) and in-hole (IH). It is found that XH configurations are not particularly sensitive to geometric error unless the boreholes are closely spaced on the scale of the vertical separation of the current and potential electrodes. However, extremely sensitive IH configurations are shown to exist for any borehole separation. Therefore, it is recommended that XH configurations be used in preference to IH schemes. The effects of geometric error are demonstrated using real XH data from a closely spaced line of boreholes designed to monitor bioremediation of chlorinated solvents at an industrial site. A small fraction of the data had physically unrealistic apparent resistivities, which were either negative or unexpectedly large. However by filtering out configurations with high sensitivities to geometric error, all of the suspect data were removed. This filtering also significantly improved the convergence between the predicted and the measured resistivities when the data were inverted. In addition to systematic geometric errors, the measured data also exhibit a high level of random noise. Despite this, the resulting inverted images correspond reasonably closely with the known geology and nearby cone penetrometer resistivity profiles.  相似文献   

20.
Experimental study of shear-waves from shots in anisotropic media   总被引:1,自引:0,他引:1  
Summary. A complex array of vertical-seismic-profiles and reflection surveys in the Taman Peninsula, Krasnodar, using geophones with inclined axes, is used to investigate shear-wave splitting in thick Maikopian clays characterised by pronounced diapirism. The shear waves split into SH (faster) and SV (slower) components and display transverse isotropy with a vertical axis of symmetry with a maximum shear-wave delay of up to 0.5 s . Within the accuracy of the observations there is no azimuthal anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号