首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
西北地区降雪和融雪特征的长期变化对于融雪洪水过程的准确模拟具有重要意义。本研究基于1961—1979年站点观测的日降水和气温等数据,首先对比了湿球温度法、KS方法和双临界气温法计算的降雪量,确定了精度最高的双临界气温方案,进而计算了1980—2019年的日雪雨比,最后分析了雪雨比、降雪开始日期和融雪开始日期的变化规律。结果包括:①春季平均气温呈显著上升趋势,随海拔上升升温速率减小,青藏高原地区、东南部半干旱区、半湿润区春季气温上升速率略低于北疆、南疆、河西走廊及内蒙古西部,春季雪雨比在海拔1000 m以上呈显著下降趋势,在青藏高原地区、东南部半干旱区、半湿润区呈显著下降趋势;秋季平均气温显著上升,随海拔上升升温速率增大,空间上在青藏高原地区上升速率最快,秋季雪雨比在不同海拔和部分气候分区都呈不显著下降趋势;冬季平均气温在海拔2000 m以上呈现显著升温,且随着海拔的升高升温速率加快,空间上在青藏高原地区、东南部半干旱区、半湿润区呈现显著升温,降雪量在1000~2000 m呈现显著增加趋势,空间上在北疆地区呈现显著增加趋势。②降雪开始日期随着温度的升高在所有区域都没有显著的推迟,每一年的降雪开始日期在不同高程带和不同气候区之间的差别没有变化,仍为30~40d。③融雪开始日期在所有海拔区间和气候分区都呈现出显著的提前趋势,每一年的融雪开始的日期在不同高程带和不同气候区的差别仍为25~30d。降雪和融雪特征的变化说明气候变化可能已经对融雪洪水的特征产生了明显的影响。  相似文献   

2.
近50年青藏高原东部降雪的时空演变   总被引:1,自引:0,他引:1  
胡豪然  梁玲 《地理学报》2014,69(7):1002-1012
选用1967-2012年青藏高原东部60个站点的观测资料,分析了该地区降雪的时空演变特征,并结合降水和气温的变化,探讨了降雪与积雪的关系,结果表明:青藏高原东部年降雪量在1.3~152.5 mm范围内变化,空间分布差异显著;秋季降雪表现出中间多、周边少的特征,冬季降雪表现出由东南向西北递减的特征,春季降雪最多且空间分布与年降雪基本一致;降雪可划分为青南高原区、藏北高原区、柴达木盆地区、青藏高原东南缘区、川西高原西北部区、青藏高原南缘区、青海东北部区及藏南谷地区;就青藏高原整体而言,除秋季外,整年、冬季和春季降雪均表现出“少—多—少”的年代际变化特征,其中冬季降雪在1986年发生了由少到多的突变,整年、冬季和春季降雪均在1997年发生了由多到少的突变;不同区域降雪的时间变化规律各具特点;降雪与积雪的关系十分密切,春季降雪受气温的影响最为显著,秋季次之,冬季最弱;20世纪末,春季降雪受气温升高的影响表现出与降水变化相反的由多到少的气候突变特征。  相似文献   

3.
增温增湿环境下天山山区降雪量变化   总被引:2,自引:1,他引:1  
邓海军  陈亚宁  陈忠升 《地理科学》2018,38(11):1933-1942
基于APHRO’s气温和降水数据集,运用气温阈值模型,分析了1961~2015年间天山山区降雪量变化特征。研究表明,自1961年以来,天山山区升温趋势显著,速率为0.027℃/a,且冬半年的升温速度大于夏半年。同时,3 000 m海拔以上区域的平均气温上升到0℃左右。冬季降水的增加速率为0.42 mm/a(P<0.01),春季和夏季的降水量呈减少趋势。降雪量变化时空差异显著,3 000 m海拔以上区域降雪随气温的升高而增加,而3 000 m以下区域降雪随气温的升高而减少。最大降雪量气温是控制降雪变化的关键因子,当平均气温低于最大降雪量气温时,随气温升高降雪量呈增加趋势;当平均气温高于最大降雪量气温时,随气温升高降雪量呈减少趋势。  相似文献   

4.
基于高分辨率格点数据的1961-2013年青藏高原雪雨比变化   总被引:1,自引:0,他引:1  
基于国家气象信息中心发布的1961-2013年全国0.5° × 0.5°逐日降水量和日平均气温格点数据集以及气象站点日降水量和日平均气温实测资料,采用森斜率,M-K突变分析,IDW空间插值以及小波分析等方法,对近53年来青藏高原的降水量,降雨量,降雪量以及雪雨比的时空变化,突变和周期等特征进行了分析.结果表明:① 从时间尺度上看,青藏高原的降水量和降雨量总体呈增加趋势,增加幅度分别为0.6 mm·a-1(p < 0.05)和1.3 mm·a-1(p < 0.001);而降雪量和雪雨比均呈下降趋势,下降幅度分别为0.6 mm·a-1(p < 0.01)和0.5% a-1(p < 0.001).② 从空间分布上看,青藏高原的大部分地区降水量和降雨量呈增加趋势,而降雪量却呈现减少趋势.因此,雪雨比在青藏高原相应呈现减少趋势.③ 突变和周期分析表明,青藏高原降水量,降雨量,降雪量和雪雨比的突变时间分别出现在2005,2004,1996和1998年左右,而周期变化集中为5年,10年,16年,20年左右.④ 青藏高原降水量倾向率和降雨量倾向率均随海拔的升高呈现出先降低后升高的变化趋势,降雪量倾向率随海拔的升高而降低,雪雨比倾向率随海拔的升高呈微弱的下降趋势.  相似文献   

5.
利用2000~2008年MODIS/NDVI数据,结合谐波分析、影像处理和基于像元的空间统计方法,分析了不同时间尺度下长白山地区的植被覆盖年内和年际变化与气温、降水的空间相关性。结果表明,近10 a来长白山地区气温和降水都均呈增加趋势;年内和年际变化过程中,长白山地区植被覆盖受气温影响的程度要高于降水;长白山地区春季和秋季植被覆盖与气温呈正相关,夏季主要呈负相关;不同月份的相关统计与年统计和分季节统计相比,更能细致地反映植被覆盖与气候的响应关系。  相似文献   

6.
1970—2018年秦岭南北冷季降雪量时空变化及其影响因素   总被引:1,自引:0,他引:1  
基于72个气象站点逐日观测数据,对1970/1971—2018/2019年秦岭南北冷季(11月~次年5月)降水类型(降雪、降雨和雨夹雪)进行识别;重点关注降雪时空变化特征,探讨降雪与气温、湿球温度的响应关系;依据“夏季-秋季-冬季”Niño 3.4区海温异常状态,细化4种不同发展过程的厄尔尼诺-南方涛动(ENSO)事件,分析降雪异常与不同ENSO事件的对应关系。结果表明:① 相比气候平均态(1970—2000年),1990—2018年,秦岭南坡(山地暖温带)降雪量下降了3.1 mm,基本与关中平原降雪量(17.1 mm)持平;② 空间趋势上,低海拔河谷地带降雪量以年代波动为主,山地高海拔地区为降雪下降区;③ 秦岭高山地区气温或湿球温度每升高1.0℃,降雪量分别下降23.1 mm和24.3 mm;从地带性角度分析,由北向南气温或湿球温度每升高1.0℃,秦岭南北降雪量分别下降3.0 mm和2.8 mm;④ 当厄尔尼诺/拉尼娜持续型发生时,关中平原降雪异常偏多;当拉尼娜发展型发生时,秦岭山地和大巴山区降雪异常偏少。当厄尔尼诺发展型发生时,秦岭南北降雪异常呈现“东西分异”,秦岭山地东部和关中平原为降雪异常偏少区。  相似文献   

7.
利用两种卫星影像合成并引入冰川积雪区的方法,对西昆仑山玉龙喀什河流域2000-2013 年MOD10A2积雪数据进行去云处理,分析不同海拔高度积雪的年内和年际变化特征及趋势,结合气象要素,分析其分布变化原因。结果表明:① 低山区(1650-4000 m)积雪年内变化为单峰型,补给期为冬季,而高山区(4000~6000 m)存在“平缓型”春季补给期和“尖峰型”秋季补给期两个峰值;② 就年际变化而言,低、高山区平均、最大积雪面积呈微弱增加趋势,高山区最小积雪面积显著增加,倾向率为65.877 km2/a;③ 就季节变化而言,春、夏、冬三季低、高山区积雪面积年际变化呈“增加—减少—增加”趋势,秋季高山区积雪面积则呈“增加—减少”趋势,而低山区积雪面积在2009 和2010 年异常偏大,其他年份面积变化不大;④ 在低山区,气温是影响春、夏两季积雪面积变化的主因,气温和降水对秋季积雪面积变化的影响相当,而冬季积雪面积变化对降水更敏感;在高山区,夏季积雪面积变化对气温更敏感,而冬、春季积雪面积变化主要受降水影响。  相似文献   

8.
青藏高原近40年来的降水变化特征   总被引:21,自引:7,他引:21  
张磊  缪启龙 《干旱区地理》2007,30(2):240-246
利用我国青藏高原地区的1961-2000年56个气象站的逐月降水资料,通过计算降水量的距平百分率,分析了青藏高原自1961至2000年以来降水量变化的趋势和1961-2000年以来各季降水量变化趋势,发现:青藏高原近40年来降水量呈增加趋势,降水量的线性增长率约为1.12mm/a。再将高原划分为四个季节,分析了各季40年来的降水量的变化情况得出:春季降水量年际变化较大,秋季降水量变化不明显。夏季降水量值较大而降水变化幅度较小,冬季降水量变化则与夏季相反。通过将青藏高原分为南北两个地区,分析了两个区的年降水量和四个季节的降水量的变化得出:高原南区1961-2000年降水量呈增加的趋势,降水量的线增长率为1.97 mm/a,春季和冬季降水量年际变化较大,夏季降水量变化不明显,秋季降水量略有增加;北区年降水量和夏季的降水量变化较小,秋季降水量的年际变化较大,冬季降水量变化最大。对青藏高原的南北两区用Mann-Kendall方法进行突变分析,显示高原南区分别在1978年和1994年发生突变,北区没有发现突变。  相似文献   

9.
2000-2012年祁连山植被覆盖变化及其与气候因子的相关性   总被引:5,自引:1,他引:4  
研究祁连山地区植被覆盖变化及其与气候因子的响应关系对这一地区土地利用总体特征以及对区域及全球气候和环境变化都将产生深远的意义。利用2000-2012年美国国家航空航天局提供的MODIS NDVI数据并结合相应的气候资料,通过对逐像元信息的提取和分析,运用均值法、斜率分析法、相关分析法,研究了2000-2012年不同季节祁连山植被覆盖的时空变化及其与气候因子的相关性。结果表明:13 a来祁连山植被覆盖整体上呈增加趋势,其中春季植被改善最为明显,秋季次之;植被覆盖变化在不同季节都存在明显的空间差异;不同季节植被与气温、降水的时滞效应不尽相同;祁连山春季大部分地区NDVI与气温呈显著正相关,夏季NDVI与降水呈显著正相关,秋、冬季NDVI与降水、气温的相关性不明显。  相似文献   

10.
山西降水与ENSO的相关性研究   总被引:5,自引:0,他引:5  
基于山西38个测站1958-2013年的逐月降水资料、CPC南方涛动指数、NOAA逐月太平洋海温等资料,应用趋势分析和相关分析等统计方法分析了近56年山西年及四季降水对ENSO事件的响应。结果表明:1 La Nina年,山西年降水、秋、冬季降水易偏多,春、夏季易偏少;El Nino年,春季降水易偏多,年降水、夏、秋和冬季易减少。La Nina次年,冬季降水易偏多,年降水、春、夏和秋季易偏少;El Nino次年,年降水、春、夏季降水易偏多,秋、冬季易偏少。2山西年降水与上年太平洋海温在Nino 3,4区存在小区域的正相关,上年对应海域海温偏高(低),年降水易偏多(少),与同期太平洋海温在Nino 3区存在负相关,对应海域海温偏高(低),年降水易偏少(多);春季降水与前期冬季(同期)太平洋海温在Nino 3,4(Nino C)区存在正相关;夏季降水与前期春季(同期)太平洋海温在Nino 3区存在负相关;秋季降水与前期夏季(同期)太平洋海温在Nino C(Nino 3和Nino C)区存在负相关区;冬季降水与前期秋季(同期)太平洋海温在Nino 3,4(Nino C)区存在大面积负相关。3 SOI与山西大部分地区的降水趋势指数为显著负相关,中西部、东北部局部地区相关系数达-0.5以上,SOI为正(负)值时,上述地区月降水易偏少(多);SOI与东北部滞后1个月的降水趋势指数有相关系数达-0.45以上的负相关区域;SOI与滞后2(3)个月的降水趋势指数的相关分析表明,不同区域对SOI变化的响应不同,相关系数分别为-0.38~0.29和-0.43~0.22。  相似文献   

11.
黄土高原春季降水对青藏高原感热异常的响应   总被引:1,自引:0,他引:1  
利用1961—2000年黄土高原56站的春季降水和NCEP/NCAR再分析资料,采用SVD方法分析了黄土高原春季降水与青藏高原地面感热的关系。结果表明,黄土高原春季降水量与青藏高原地面感热的前两个模态代表了两场间的主要耦合特征,具有高度的时空相关。青藏高原感热对黄土高原降水影响最显著的区域在西部和南部、北部。前期高原感热场的第一、二模态对黄土高原春季干旱的预测具有指示意义。  相似文献   

12.
采用定性与定量相结合的方法,在遥感(RS)和地理信息系统(GIS)支持下,利用1982-2000年的空间分辩率为8 km×8 km的NDVI数据(由NOAA-AVHRR提供)和地面气象资料,联合分析西北不同生态类型区生态环境的变化过程,得出中国西北地区NDVI的年平均值及其历年变化曲线、NDVI年平均值分布图和每隔10 a的差值变化图。由此可以看出,生态环境变化时空特点明显:20世纪80年代生态环境的变化波动不大,90年代以来波动变化明显,而且从1998年以后生态环境总体呈下降趋势;不同生态类型区植被指数年际变化的驱动因子不同,黄土高原区植被指数年际变化与降水量的相关性显著,而青藏高原高寒区与气温的相关性显著,其他分区与降水量和气温的相关性都不显著;生态环境变化的地域差异性明显,西北不同生态类型区中生态环境由好到差依次是陕南-陇南湿润半湿润区、黄土高原区、青藏高原高寒区、干旱区。四个分区1990年比1982年生态环境有所提高,但干旱区退化面积较大,2000年与1990年相比,生态环境都出现不同程度的退化,其中,陕南-陇南湿润半湿润区退化面积最大,其次是黄土高原区。整体生态环境状况不佳,而且近年的退化应该引起重视。  相似文献   

13.
气候驱动格局下中国陆地植被指数变化   总被引:4,自引:3,他引:1  
将降水、气温和日照作为驱动中国陆地植被指数变化的典型气候因子,基于1982-1999年10天合成的NOAA/AVHRR NDVI与同期降水量、平均气温和日照时数数据,按所有年份求平均后,分析旬NDVI与旬降水量、旬平均气温和旬日照时数的年内相关关系,确定中国陆地植被指数变化的气候驱动格局,揭示不同气候因子驱动格局下植被指数的时空变化特征和规律.结果表明,绝大部分植被覆盖区NDVI受气候因子驱动作用明显.气候因子驱动陆地植被指数变化的空间分异格局较为明显,大致分为气温显著区,降水显著区,日照显著区,气温和降水显著区,气温和日照显著区,降水和日照显著区,气温、降水和日照显著区,气温、降水和日照弱显著区,气温、降水和日照不显著区等9大类型.受局部地形、大气环流、海拔高度等的影响,在大的基本气候驱动格局内,还会形成其他不同的小气候驱动格局.1982-1999年间,所有气候驱动区的植被活动均表现为增强趋势,其NDVI的增加主要发生在春季或夏季.其中,气温和日照显著区的春季NDVI增幅最大,降水和日照显著区的夏季NDVI增幅最大.从各月变化来看,气温显著区、气温和降水显著区5月份的NDVI增长最为迅速,降水显著区、降水和日照显著区6月份的NDVI增长最迅速,日照显著区、气温和日照显著区3月份的NDVI增长最迅速,气温、降水和日照弱显著区4月份的NDVI增长最迅速,这些月份对全年NDVI变化的贡献也最大.  相似文献   

14.
伏牛山地森林植被物候及其对气候变化的响应   总被引:4,自引:1,他引:3  
研究植被物候是理解植被与气候关系的重要途径。在植被对气候变化响应的敏感地区,开展植被物候研究有助于揭示气候变化对植被的影响机制。基于2000-2015年MODIS EVI时间序列影像数据,利用Savitzky-Golay (S-G)滤波方法和动态阈值法提取伏牛山地2000-2015年森林植被物候参数,结合气温、降水数据,运用Man-Kendall趋势检验、Sen斜率、ANUSPLIN插值和相关性分析等方法,研究伏牛山地森林植被物候对气候要素(气温、降水)变化的响应。结果表明:① 伏牛山地森林植被生长季始期主要集中在第105~120 d,生长季末期主要集中在第285~315 d,生长季长度主要集中在165~195 d。从海拔梯度看,随海拔升高,生长季始期、末期和长度整体上分别呈显著推迟、提前及缩短趋势。② 生长季始期和生长季末期整体上呈推迟趋势,推迟的像元分别占森林植被的76.57%和83.81%。生长季长度整体呈延长趋势,延长的像元占比为61.21%。生长季始期变化特征主要是由该地区的春季气温降低所导致的。③ 研究区森林植被生长季始期与3月平均气温呈显著偏相关,且呈负相关的区域最多,即3月平均气温降低,导致生长季始期推迟;生长季末期与9月降水呈显著偏相关区域最多,且两者主要呈正相关,即9月降水增加,使生长季末期推迟。植被生长季长度由整个生长期的气温和降水来共同作用,对大多数的区域而言,8月的平均气温和降水与生长季长度的关系最为密切。  相似文献   

15.
近44 年来青藏高原夏季降水的时空分布特征   总被引:13,自引:3,他引:10  
利用1961-2004 年青藏高原97 个站点的夏季逐日降水数据,通过累积距平、相关分析、回归分析、经验正交函数分解、功率谱方法等,结合GIS 的空间分析功能,分析了夏季 降水的时空分布特征。结果表明:在青藏高原年降水量比较少的地区,夏季降水占全年降水的比例较高,夏季降水与全年降水的相关性也较强;夏季降水相对变率最大的地区位于青藏 高原西北的最干旱地区,最小的地区是三江源区;夏季降水趋势增加和减少的站点分别为54 个和43 个,通过较显著检验的站点占总数的18.6%;在2000m 以下的站点中,海拔和夏季降水气候倾向率存在较强的正相关,相关度达0. 604 (显著性0.01);1961-1983 年和1984-2004 年两个时间段相比,除了3000~3500m 海拔范围外,其余海拔范围夏季降水气候倾向率都表现为增加;夏季降水可大致分为三种类型场:高原东南部类型场、高原东北部类型场和三江 源类型场,高原东南部类型场和高原东北部类型场表现出南北变化相反的降水特点,分界线大致沿着35oN 线;在90%的置信概率下,三种类型场分别表现出5.33 年、21.33 年和2.17 年的潜在周期;4500 m 以上海拔范围的站点夏季降水周期通过很显著检验(α = 0.01),站点海拔和降水周期存在-0.626 的高相关度;在三江源地区,3500 m 以上的站点夏季降水周期随海拔升高而减小,3500 m 以下的夏季降水周期随海拔高度升高而增加。  相似文献   

16.
青藏高原是全球气候变化的敏感区,气温和降水量的空间分布及变化趋势是气候变化研究的核心和基础,为开展生态环境变化评估提供基础资料。基于2000—2018年青海湖流域及其周边气象站观测数据,以高程为协变量,结合专业气象插值软件ANUSPLIN对气温和降水量进行空间插值。利用线性回归法分析了青海湖流域2000—2018年气温和降水量的变化趋势;利用双变量空间自相关分析法分析了青海湖流域气温和降水量空间匹配关系。结果表明:(1) 2000—2018年青海湖流域年平均气温呈显著增加趋势,平均增速为0.30 ℃·(10a)-1,春季增温显著。(2) 降水量呈显著增加趋势,平均增速为73.20 mm·(10a)-1,春夏季增速显著、秋季变化不明显、冬季趋于变干。(3) 青海湖流域气温和降水量空间匹配差异显著。从年尺度来看,气温和降水量莫兰指数(Moran’s I)为-0.66,表现为显著的负相关,面积比为67.56%,水热组合空间匹配不佳。从季节尺度来看,青海湖流域春季、夏季、秋季和冬季的气温和降水量Moran’s I分别为-0.49、-0.80、-0.32和-0.14,均为空间负相关。春夏季,流域低海拔区域气温逐渐升高,高海拔区域降水量逐渐增多,气温和降水量空间负相关面积逐渐增大,水热组合空间匹配不佳。值得强调的是青海湖巨大水体对环湖区局地气温的调节作用明显,是青海湖流域的“气候调节器”。  相似文献   

17.
基于甘肃省河东地区61个气象站点1988—2017年逐日气温数据,利用Mann-Kendall检验,Sen’s斜率估计方法分析甘肃省河东地区极端气温指数的时空变化趋势,并探讨极端气温指数与其影响因素之间的关系,最后利用NAR神经网络结合Hurst指数对甘肃省河东地区极端气温指数变化进行预测分析。结果表明:(1)从时间上看,冷极值相对指数呈下降趋势,冷极值绝对指数、暖极值以及气温日较差、作物生长期呈上升趋势。(2)从空间上看,对冷极值变化反应最为敏感的是高寒湿润区,对暖极值变化反应最为敏感的是温带半湿润区和北亚热带湿润区,除北亚热带湿润区外各区域作物生长期的变化都达到了显著水平,而气温日较差仅在温带半湿润区达到了显著水平。(3)多数极端气温指数与经纬度、海拔之间有显著相关性,但受区域自然特点影响,经度与海拔对其影响实为一类。(4)亚洲区极涡强度、北半球极涡强度以及青藏高原指数B与极端气温指数变化有密切关系,而太阳黑子等只与个别指数之间存在显著的相关性。(5)预测出的极端气温指数冷极值相对指数仍呈现下降趋势,冷极值的绝对指数、暖极值以及气温日较差、作物生长期仍然呈现增加趋势,但大多数指数与1988—2017年相比变化幅度有所降低。(6)与其他区域相比甘肃省河东地区大多数气温指数变化幅度处于中间水平,表现出其为多种不同气候区、自然区交界地带的特色。  相似文献   

18.
2000—2019年秦岭南北实际蒸散发时空变化特征   总被引:1,自引:0,他引:1  
基于遥感数据全面认识复杂地形单元实际蒸散发时空规律,对区域可持续水资源管理具有重要的意义。论文基于MODIS实际蒸散发(ET)数据,对2000—2019年秦岭南北ET时空变化特征进行分析,探究不同分区ET对植被变化的响应关系,进而识别ET趋势和年代变化的高相关海气环流因素。结果表明:① 在变化趋势上,以1000 m等高线为界,即秦岭地区北亚热带和山地暖温带的分界线,低海拔河谷地带为ET显著增加区,山地高海拔地区为ET下降区;② 除城市、乡镇周边地区,研究期间秦岭南北下垫面相对稳定,转为生态用地的活跃区主要分布在山地1000 m过渡带,其是ET与NDVI变化显著相关区,而1000 m以上高海拔地区两者相关性较低;③ ENSO、青藏高原北部气压异常,与秦岭山地、汉江谷地ET的趋势变化和年代波动显著相关,而西太平洋副热带高压与ET的趋势显著相关,与年代波动特征相关较弱。即发生中部型厄尔尼诺事件时,西太平洋副热带高压偏强,对流层低层形成异常反气旋,导致中国东部雨带北移,秦岭山地和汉江谷地降水偏少,气温偏高,ET往往偏大。研究结果启示:秦岭南北科学适应气候变化时,应关注秦岭山地、汉江谷地ET变化显著相关的环流信号;应深刻理解秦岭高海拔地区蒸散发下降趋势对区域水资源管理的影响。  相似文献   

19.
樟子松(Pinus sylvestris var.mongolica)是科尔沁沙地广泛分布的一种具有显著经济和生态效益的树种。调查分析了降水和温度对樟子松人工林生长的影响。结果表明:25年龄樟子松人工林平均树高4.8m,平均胸径7.81cm,枯稍比可达16.87%。年生长高度对当年降水量的响应有1~2a的滞后效应,年径生长量随着降水变化出现一定程度的波动,年累积降水量与累积径生长量之间存在显著的线性关系。当年高生长与当年、生长季及春季降水量显著负相关,与生长季气温显著正相关。累积径生长量与当年任一时段降水量均显著相关,与除春季之外的任一时段气温显著相关。气温是该区域樟子松生长的主要影响因素,生长季较高的气温有利于樟子松的高生长。  相似文献   

20.
徐兴奎  王小桃  周广庆 《中国沙漠》2011,31(5):1293-1301
1970—2000年间气象台站降雪量和沙尘天气统计结果显示,在中国冬春季主要积雪覆盖区域,沙尘天气发生频次相对较低,各类沙尘天气基本发生在积雪覆盖率低、年降雪量少的区域。时间序列分析结果进一步显示,年降雪量和沙尘天气之间存在显著的负相关,降雪量的增多对沙尘天气的年发生次数具有明显的抑制作用。同时,年降雪频率也是影响沙尘天气爆发频次的重要因素之一。对于中国西北干旱少雪的地区,尤其体现在新疆北部地区,年降雪频率的增加能够显著地减少各类沙尘天气的发生次数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号