首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visible reflectance spectroscopy (VRS) has been used to reconstruct lake sediment chlorophyll a concentrations. Despite good concordance between inferred and measured chlorophyll a values, questions remain as to whether this spectral technique is tracking past changes in aquatic primary production, or simply recording a diagenetic signal. In this study, we critically evaluate how well VRS chlorophyll a determinations track past trends in aquatic primary production using sediment cores from several lake systems with well-known trophic histories. Our study sites include Arctic, boreal and prairie lakes that encompass a gradient of trophic states. In general, our spectrally inferred chlorophyll a values tracked past trends in lake trophic status consistent with historical measurements of production, or as inferred by independent proxies of primary production. We conclude that VRS chlorophyll a inferences indeed track histories of lake production trends and that this method is widely applicable as a rapid, inexpensive and non-destructive alternative to wet-chemical analyses of sediment chlorophyll a concentrations.  相似文献   

2.
As part of a study using lake sediments to determine the extent and causes of human impacts to lakes along an east–west transect following the Yangtse River, sediment cores were taken from Taihu in eastern China. Previous studies have focussed on the impacts of direct inputs of pollutants from municipal and industrial wastewater but little work has been undertaken on trends in atmospheric deposition from the many industrial sources surrounding the lake. Analysis of the Taihu sediment cores for atmospheric pollutant indicators such as trace metals, magnetic parameters and spheroidal carbonaceous particles (SCPs) show the lake has become increasingly contaminated over the last 40–50 years. Sediment levels of atmospherically deposited pollutants are currently similar to some of the more contaminated lakes in Europe. Further, sediment nitrogen, phosphorus and geochemical analyses confirm the dramatic increase in eutrophication at the site and periods of recent soil erosion in the catchment.  相似文献   

3.
Environmental change in Lake Taihu and its catchment since the early to middle part of the twentieth century has left a clear geochemical record in the lake sediments. The human activities in the lake and its catchment responsible for the change include agriculture, fishery, urbanisation, sewage and industrial waster disposal. Sediment cores were collected from Meilian Bay of northern Lake Taihu to investigate the record of anthropogenic impacts on the lake’s ecosystem and to assess its natural, pre-eutrophication baseline state. Two marked stratigraphic sediment units were identified on the basis of total phosphorus concentration (TP), pigments, total organic carbon (TOC)/total nitrogen (TN), δ13C and δ15N corresponding to stages in the lake history dominated by phytoplankton, and by aquatic macrophytes. Results show that as TP loading increased from the early 1950s the lake produced sediments with increasing amounts of organic matter derived from phytoplankton. In the early 1950s, the first evidence for eutrophication at the Meilian Bay site is recorded by an increase in C/N values and in sediment accumulation rate, but there is little change in phosphorus concentrations, pigments, δ13C and δ15N at this time. After 1990 a more rapid increase in trophic status took place indicated by increased levels of phosphorus, pigments, δ15N and by decreased δ13C and TOC/TN values in the lake sediments. The first increase in trophic status of the early 1950s results mainly from agricultural development in the catchment. In contrast, the acceleration from ca. 1990 originates from the recent development of fisheries and the urbanisation and industrialisation of the catchment.  相似文献   

4.
We utilized paleoecological techniques to reconstruct long-term changes in lake-water chemistry, lake trophic state, and watershed vegetation and soils for three lakes located on an elevational gradient (661–1150 m) in the High Peaks region of the Adirondack Mountains of New York State (U.S.A.). Diatoms were used to reconstruct pH and trophic state. Sedimentary chrysophytes, chlorophylls and carotenoids supplied corroborating evidence. Pollen, plant macrofossils, and metals provided information on watershed vegetation, soils, and biogeochemical processes. All three lakes were slightly alkaline pH 7–8 and more productive in the late-glacial. They acidified and became less productive at the end of the late-glacial and in the early Holocene. pH stabilized 8000–9000 yr B.P. at the two higher sites and by 6000 yr B.P. at the lowest. An elevational gradient in pH existed throughout the Holocene. The highest site had a mean Holocene pH close to or below 5; the lowest site fluctuated around a mean of 6. The higher pH and trophic state of the late-glacial was controlled by leaching of base cations from fresh unweathered till, a process accelerated by the development of histosols in the watersheds as spruce-dominated woodlands replaced tundra. An apparent pulse of lake productivity at the late-glacial-Holocene boundary is correlated with a transient, but significant, expansion of alder (Alnus crispa) populations. The alder phase had a significant impact on watershed (and hence lake) biogeochemistry. The limnological changes of the Holocene and the differences between lakes were a function of an elevational gradient in temperature, hydrology (higher precipitation and lower evapotranspiration at higher elevation), soil thickness (thinner tills at higher elevation), soil type (histosols at higher elevation), vegetation (northern hardwoods at lower elevation, spruce-fir at higher), and different Holocene vegetational sequences in the three watersheds.This is the thirteenth of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Dr. Davis is serving as guest editor of this series.  相似文献   

5.
Three cores from two connected lakes in Central Ireland (Lough Kinale and Derragh Lough) were investigated using diatom analysis to establish the Holocene development of the lacustrine system, any local variations within the lakes and any anthropogenic influences. The study area was situated in a lowland location and the lakes were shallow, unstratified and interconnected. Litho-and bio-stratigraphical analyses of the lake cores and deposits beneath a mire separating the two lakes showed the changing spatial configuration of the lake system in the early Holocene and the separation of the initial lake into three basins (cf. lacustrine cells) and finally into two interlinked lakes. The evolution of the lake system is conceptualised as the development of distinct lacustrine cells, and its sediments have recorded changes in the physical (geography, depth and sedimentation) and chemical (water chemistry) properties of the lakes inferred through diatom analyses. The longest sequence, from the early Holocene, records fluctuating lake levels and these are correlated with geomorphological mapping and surveying of palaeoshorelines. The diatom assemblages of the upper 2 m of the three cores, covering approximately the last 2000–3000 radiocarbon years show considerable difference in trophic status and life-form categories. This is related to the location of the cores in the lake and also the distance from human settlement with particular reference to proximity to crannog (artificial island) construction and use. The most central core from the deepest part of Lough Kinale has the least representation of the human settlement and agricultural activity in the catchment and on the fringes of the lake, whereas the core taken from the edge of a crannog is able to identify when construction and use of the crannog occurred. The local nature of the palaeoecological response to human activity due to incomplete water mixing has the advantage of allowing the lake sediment cores to be used to determine spatially discrete settlement patterns.  相似文献   

6.
We retrieved four sediment cores from shallow, eutrophic, macrophyte-dominated Orange Lake (A = 51.4 km2, zmax <5 m, zmean < 2 m), north-central Florida, USA. The 210Pb-dated profiles were used to evaluate spatial and temporal patterns of bulk sediment and nutrient accumulation in the limnetic zone and to infer historical changes in lake trophic state. Bulk density, organic matter, total carbon, total nitrogen, total phosphorus and non-apatite inorganic phosphorus (NAIP) concentrations displayed stratigraphic similarities among three of four cores, as did accumulation rates of bulk sediment, organic matter and nutrients. Accumulation rates were slower at the fourth site. Nutrients showed generally increasing rates of accumulation since the turn of the century. Percentages of periphytic diatom taxa increased progressively in the cores after ~ 1930. Diatom-inferred limnetic total P trends were similar among profiles. Eutrophic conditions were inferred for the period prior to the turn of the century. The lake was hypereutrophic in the early decades of the 1900s, but inferred limnetic total P values declined after ~ 1930. Declining inferred limnetic total P trends for the last 60--70 years were accompanied by concomitant increases in accumulation rates of total P and NAIP on the lake bottom. Several lines of evidence suggest that after ~ 1930, phosphorus entering Orange Lake was increasingly utilized by submersed macrophytes. Paleolimnological records from Orange Lake highlight the importance of using multiple sediment variables to infer past trophic state and suggest that aquatic macrophytes can play a role in regulating water-column nutrient concentrations in shallow, warm-temperate lakes.  相似文献   

7.
Sediment diatom and chemical analyses of cores from three poorly buffered extra-glacial lakes on the northeastern margin of the Canadian Shield (Cumberland Peninsula, Baffin Island) record interactions between aquatic and terrestrial spheres that were influenced by late Quaternary climatic conditions. Although differences exist between each of the lakes, notably with regards to the intensity of pre-Holocene catchment erosion and the timing of the onset of organic sedimentation, an underlying pattern of lake ontogeny, common to all three lakes, is identified. Although intensified watershed erosion characterized the Late Wisconsinan and Neoglacial cold periods, the lakes nonetheless remained viable ecosystems at these times. Sudden catchment stabilization during the late-glacial to earliest Holocene is associated with incipient organic sedimentation. Lake-water pH increased at this time, likely in response both longer base cation residence times as lake flushing rates decreased, and enhanced alkalinity production from sediment biogeochemical reactions. Subsequently, as the catchments remained stable during the productive early Holocene (c.9–7 ka BP), then gradually received a renewed increase of minerogenic sedimentation, the breakdown of sources of lake alkalinity resulted in natural acidification. Burial of cation-rich mineral sediments and the loss of permanent sedimentary sinks for the products of microbial reduction likely impeded within-lake alkalinity production, and catchment-derived base cations appeared ineffective in curtailing pH declines. The general nature of the Holocene development of these lakes is similar to that observed elsewhere on crystalline terrains, following deglaciation. Our data therefore suggest that catchment glaciation is not a necessary precursor for models of lake development characterized by initial base cation enrichment and subsequent gradual acidification.  相似文献   

8.
The Holocence paleolimnology of Lake Sämbosjön is described using geochemical and diatom analyses. The objective of this study is the reconstruction of major changes in trophic state and productivity, and to interpret the major causative processes. The accumulation of organic matter indicates a relatively high productivity in early Holocene, and the diatom analysis indicates a relatively high trophic state and pH. A succeeding decrease in productivity and trophic state and lowering in pH is recorded from about 8000 BP. If lake development had been primarily edaphically conditioned, viz. determined by nutrient supply from catchment soils, such a progressive oligotrophication would represent the common development of temperate lakes. Between about 6000 BP and 4000 BP Lake Sämbosjön was characterized by relatively stable productivity and pH. From about 4000 BP the analyses reveal an increase again in trophic state, productivity, and in pH. This eutrophication, which continued throughout the late Holocene, was caused by an exceptionally strong human influence on the catchment of Lake Sämbosjön. The increased supply of nutrients from cleared and deforested catchment soils changed the trophic state and provided the basis for increased lake productivity.  相似文献   

9.
Musky Bay in Lac Courte Oreilles, Wisconsin, USA, is currently eutrophic. This large, shallow bay of an oligotrophic lake possesses the densest aquatic plant growth and a floating algal mat. Paleoecological reconstructions encompassing the last 130 years, were based on multiproxy analyses of sediment cores from three coring sites, two within the bay and one in the lake itself. These data were compared to historical records of the construction and expansion of two commercial cranberry bogs and shoreline residential homes to identify temporal and causal relations of eutrophication. The proxies investigated included: minor and trace elements; biogenic silica; and the diatom community. Post-depositional diagenesis of organic carbon, nitrogen, and phosphorus in the upper 30 cm of the core obscured records of historical ambient nutrient concentrations in the bay obviating their usefulness for this purpose. In contrast, calcium, magnesium, and potassium concentration profiles appeared to reflect runoff of soil amendments applied to the cranberry bogs and aerial fertilizer spraying over the eastern bog adjacent to Musky Bay. The increase in aluminum content since about 1930 coincided with the historical trend in shoreland development and construction of the original commercial cranberry farm. The biogenic silica profile recorded a steady increase of nutrients to Musky Bay over the last several decades. Stratigraphic changes in the diatom community indicated that nutrient input began to increase in the 1940s and accelerated in the mid-1990s with the onset of a noxious floating algal mat. The diatom community indicates the bay has possessed a significant macrophyte community for at least the last 200 years, but increased nutrient input was manifested by a change in the composition, and an increase in the density of the epiphytic diatom community. Cranberry farming appeared to be the major source of nutrients because the diatom community changes occurred prior to the significant increase in residential housing.  相似文献   

10.
A study of acid-labile (A-L) aluminium in modern surface sediments and cores from lakes in Norway, shows surface depletions indicating sharply reduced retention of aluminium where lake pH is below 4.8–5.0. This result complements previous palaeolimnological studies of acid-labile sediment aluminium (A-L aluminium) in acidified lakes, which have focused on up-core concentration increases attributed to enhanced supply of catchment derived aluminium.The surface sediments, while showing great inter-site variation, have on average lower concentrations of A-L aluminium at acidic sites. Further, for lakes with pH<5.0, there is a significant positive correlation of A-L aluminium with pH. The palaeolimnological data show reduced A-L aluminium concentration where diatom inferred pH is below about 4.8–5.0.Because there are both positive and negative effects of acidification, variation in A-L aluminium concentration in cores reveals more information about acidification than was previously supposed. In addition to indicating the time of enhancement of catchment aluminium supply, evidence of whether (and if so when) the water pH fell below 4.9 is also indicated.  相似文献   

11.
Recent sediments of eight small lakes in the northern winter range of Yellowstone National Park were cored to examine stratigraphic records of past changes in limnology and local environment that might be attributed to grazing and other activities of elk, bison, and other large ungulates. Cores of undisturbed sediment were analyzed at close intervals to depths covering the last 100–150 years according to chronologies established by lead-210 dating. Pollen analyses were made to show change in regional vegetation, and diatom and geochemical analyses were made to reveal possible limnological changes resulting from soil erosion and nutrient input from the lake catchments.Variations in sedimentary components prior to establishment of the Park in 1872 indicate some natural variability in environmental factors e.g., erosional inputs in landslide areas west of Gardiner. All lakes had abundant nutrient inputs.After the Park was founded, fire suppression may have been responsible for small increases in pollen percentages of various conifers and Artemisia tridentata (big sagebrush) at different times in different lakes. Perceptible decreases in pollen of willow, aspen, alder, and birch at different times may reflect local ungulate browsing, although drier climatic conditions may have been a factor as well.The most striking manifestation of accelerated erosion in a catchment was found at a lake located beside a road constructed in the 1930s. In contrast to changes at this site, the record of erosion at other lakes is hardly perceptible. Changes in sediment-accumulation rates seen at most sites result from redistribution of sediment within the lake after initial deposition.In the century following Park establishment, the abundance of planktonic diatoms relative to benthic taxa varies among lakes and may reflect differential nutrient inputs or changes in lake level. Four of the five lakes analyzed for diatoms show in the last few decades an increase in planktonic relative to benthic species, implying elevated nutrient inputs. The recent flora, however, is similar to that in pre-Park levels which suggests that these lakes have not been perturbed outside their normal range. Increased nutrient supply in recent decades for at least two of the lakes is supported by the geochemical data, which show an increase in biogenic silica and in organic matter.As a whole, our investigation of the sedimentary record does not support the hypothesis that ungulate grazing has had a strong direct or indirect effect on the vegetation and soil stability in the lake catchments or on the water quality of the lakes.  相似文献   

12.
Several limnological and paleolimnological investigations have linked enhanced atmospheric nitrogen (N) deposition to nutrient enrichment and increased primary production. The Athabasca Oil Sands Region (AOSR) in northeast Alberta, Canada is a significant source of N emissions, particularly since development intensified during the 1990s, and recent paleolimnological investigations provide evidence of increased lake production in adjacent areas subject to enhanced N deposition. The AOSR, however, has also experienced atmospheric warming since ca. AD 1900, and therefore the relative effects of nutrient deposition and climate changes on lake production remain unclear. We undertook a factorial-design paleolimnological assessment of 16 lakes in northwest Saskatchewan to quantify changes in abundance and species composition of scaled chrysophytes over the past 100 years. Study sites included both N-limited and P-limited lakes within control regions, as well as lakes that receive enhanced N deposition from the AOSR. We hypothesized that a change in algal communities within N-limited AOSR-impacted lakes, without concurrent changes in the other lake groups, would suggest AOSR-derived N as a driver of enhanced primary production. Instead, marked increases in concentrations of scaled chrysophytes, mainly Mallomonas crassisquama, occurred in the recent sediments in cores from all four lake groups (N-limited vs. P-limited, impacted vs. control), suggesting that regional climate change rather than N deposition was the paramount process enhancing chrysophyte production. Because chrysophyte abundances tended to be higher in deep, lower-pH lakes, and chrysophyte time series were fit best by lake-specific generalized additive models, we infer that climate effects may have been mediated by additional catchment and/or lake-specific processes.  相似文献   

13.
Lake sediments contain archives of past environmental conditions in and around water bodies and stable isotope analyses (δ13C and δ15N) of sediment cores have been used to infer past environmental changes in aquatic ecosystems. In this study, we analyzed organic matter (OM), carbon (C), nitrogen (N), phosphorus (P), and δ13C and δ15N values in sediment cores from three subtropical lakes that span a broad range of trophic state. Our principal objectives were to: (1) evaluate whether nutrient concentrations and stable isotope values in surface deposits reflect modern trophic state conditions in the lakes, and (2) assess whether stratigraphic changes in the measured variables yield information about shifts in trophic status through time, or alternatively, diagenetic changes in sediment OM. Three Florida (USA) lakes of very different trophic status were selected for this study. Results showed that both δ13C and δ15N values in surface sediments of the oligo-mesotrophic lake were relatively low compared to values in surface sediments of the other lakes, and were progressively lower with depth in the sediment core. Sediments of the eutrophic lake had δ13C values that declined upcore, whereas δ15N values increased toward the sediment surface. The eutrophic lake displayed δ13C values intermediate between those in the oligo-mesotrophic and hypereutrophic lakes. Sediments of the hypereutrophic lake had relatively higher δ13C and δ15N values. In general, we found greater δ13C and δ15N values with increasing lake trophic state.  相似文献   

14.
Cladocera as indicators of trophic state in Irish lakes   总被引:1,自引:0,他引:1  
We examined the impact of lake trophic state on the taxonomic and functional structure of cladoceran communities and the role of nutrient loading in structuring both cladoceran and diatom communities. Surface sediment assemblages from 33 Irish lakes were analysed along a gradient of total phosphorus concentration (TP; 4.0–142.3 μg l−1), using a variety of statistical approaches including ordination, calibration and variance partitioning. Ordination showed that the taxonomic structure of the cladoceran community displayed the strongest response to changes in lake trophic state, among 17 measured environmental variables. Trophic state variables chlorophyll-a and TP explained about 20% of the variance in both cladoceran and diatom assemblages from a set of 31 lakes. Procrustes analysis also showed significant concordance in the structure of cladoceran and diatom communities (P < 0.001). Thus, lake trophic state affects the taxonomic structure of both primary and secondary producers in our study lakes. We also found a significant decrease in relative abundance of taxa associated with both macrophytes and sediments, or sediments only, along the TP gradient (r = −0.49, P = 0.006, n = 30), as well as an increase in the proportion of the planktonic group (r = 0.43, P = 0.017, n = 30). This suggests that cladoceran community structure may also be shaped by lake trophic state indirectly, by affecting habitat properties. We found no relationship between lake trophic state and the relative abundance of each of three cladoceran groups that display different body size. We compared community structure between bottom and top sediment samples in cores from six Irish lakes. Results revealed similar trajectories of nutrient enrichment over time, as well as a strong shift in cladoceran functional structure in most systems. This study confirms that Cladocera remains in lake sediments are reliable indicators of lake trophic state. This study also highlights the fact that taxonomic and functional structure should both be considered to account for the multiple factors that shape cladoceran communities.  相似文献   

15.
Ecology of testate amoebae (thecamoebians) in subtropical Florida lakes   总被引:1,自引:1,他引:0  
Fifty-seven surface sediment samples from 35 Florida lakes were collected to study testate amoebae. Seven genera, 17 species, and 28 strains were identified in the 46 sediment samples from 31 lakes that contained testate rhizopods. Seven species accounted for ≥90% of the individuals in all samples. Sediment total phosphorus (TPsed), organic matter (OM), and total carbon:total nitrogen ratio (TC:TN) were measured to assess the effect of these variables on thecamoebian assemblages. OM content was the only sediment variable that influenced presence/absence of thecamoebians. Samples with <5% OM contained no thecamoebians. Lakes with multiple surface sediment samples showed high Morisita–Horn similarity values (0.74–0.99), indicating that all sites at which samples were collected in a lake provided representative thecamoebian assemblages. No relationship was observed between thecamoebian diversity indices and sediment variables. Lake trophic state and pH were examined to explore potential water column influences on thecamoebian communities. Highest thecamoebian diversity indices were found in mesotrophic to eutrophic lakes with pH near 8.0. These results suggest that water column conditions have a greater influence on thecamoebian assemblages than do sediment variables. We used multivariate analysis to evaluate the relations between water quality variables and testate rhizopod assemblages. Canonical correspondence analysis (CCA) showed that alkalinity and pH are the water column variables that most influence the relative abundance of species. Thecamoebians thus hold promise as bioindicators of acidification in Florida lakes. Thecamoebian remains in lake sediment cores should be useful to infer past anthropogenic shifts in lake pH.  相似文献   

16.
Long-term water quality monitoring data from two riverine lakes in the Upper Mississippi River basin, Lakes St. Croix and Pepin, were analyzed to compare the long-term average water quality conditions and land use distributions, water quality trends and loads at lake inlets and outlets, trends from long-term versus short-term monitoring records, and the ability of paleolimnological cores to accurately infer lake water quality conditions. During the 1976–2004 period, the long-term average concentrations of nutrients, suspended solids, and chlorophyll-a were consistently lower at the Lake St. Croix inlet versus the Lake Pepin inlet, which drains a greater proportion of urban and agricultural runoff. Despite these differences, nutrient trends were similar at the inlets to both lakes; reductions in total phosphorus and ammonium concentrations were attributed to improvements in point source technologies, whereas increasing nitrate concentrations were attributed to both point source changes and nonpoint source increases. Despite improvements in several water quality variables, nitrate concentrations are increasing in both lakes, sediment trends indicate persistent nonpoint source inputs to Lake Pepin, and current total phosphorus concentrations remain well above pre-1950s levels in both lakes. Since urban development and agriculture are increasing in the Lake St. Croix and Lake Pepin Watersheds, continued point source regulation and additional nonpoint source control efforts will be needed to further improve water quality in these lakes. The 1976–2004 trends for most water quality variables were similar at inlet versus outlet sites on Lake St. Croix. Trends at Lake Pepin inlet versus outlet sites were less similar, but data availability limited the comparison to the 1993–2003 period. While the truncated data record highlighted short-term trends in both lakes, the full data record was most useful for exploring general patterns in water quality. Length of monitoring record affected our ability to detect trends at the inlets to both lakes, and altered the magnitude of detected trends. During the two decades of the 1980s and 1990s, paleolimnological estimates of retained phosphorus loads were similar to those estimated from recent water quality monitoring. These similarities support the use of paleolimnological approaches to infer past water quality conditions in Lakes St. Croix and Pepin. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

17.
Banks Island (N.W.T.) has become a focal point for climate change studies in the Canadian Arctic. However, long-term climatic and environmental data are very sparse from this large island, as they are for the entire southwestern region of the Canadian Arctic Archipelago. In this paleolimnological study, diatom species assemblage shifts documented in cores collected from a pond and a lake on Banks Island were interpreted to represent a response to climate warming commencing in the nineteenth century. We found that, although the timing and overall nature of the species changes in the two cores were consistent, the signal was muted in the deeper site likely as a result of differences in ice cover extent and duration between lakes and ponds. A high-resolution study was also conducted from a second pond, at sub-decadal resolution, that only spanned the last ∼60 years. In the deeper lake site, Fragilaria construens and F. pinnata dominated the assemblages, similar to those noted in other high Arctic regions where lakes are characterized by extended ice cover. In contrast, Denticula kuetzingii dominated the shallower ponds and, in the case of the pond core representing the longer time period, this taxon increased in the post-1850 sediments, likely coincident with climate warming. In all cores, diatom assemblages became more diverse and Achnanthes species (particularly A. minutissima) increased from ∼1850 to the present, similar to changes documented in other Arctic regions. Beta diversity values calculated for the diatom species changes indicated that assemblage shifts in the Banks Island cores were of similar magnitude to those recorded in other Arctic regions with high species turnover, such as Ellesmere Island. A diatom-based Total Nitrogen (TN) transfer function previously developed for Banks Island was applied to the three 210Pb dated cores as an exploratory tool for inferring past changes in nitrogen concentrations. In both the lake and pond cores, diatom-inferred TN concentrations tended to increase in the more recent sediments, as may be expected with warming; however these trends were not very distinct.  相似文献   

18.
The numerous and widespread lakes of the Tibetan Plateau (TP) constitute the largest group of alpine lakes on Earth. Some of the lakes are fed mainly by glacier meltwater and others by precipitation and groundwater. Past changes in the environments of these lakes differed because of differences in lake hydrological regimes and the complex pattern of climate change on the TP. Here we present records of scanning XRF, inorganic carbon (IC) concentration n-alkanoic acid average chain length (ACL) and percent aquatic inputs (Paq) in sediment cores from two non-glaciated lakes on the central TP (Dagze Co and Jiang Co), which span the past 19,000 years. We used these measures to investigate past changes in catchment hydrology, climate and environment. Variations in the concentration of Ti and other lithogenic elements at the two sites were influenced mainly by surface runoff, which is supported by the variation of IC, Ca/(Al, Ti, Fe) (reflecting authigenic carbonate precipitation), Rb/Sr (a chemical weathering proxy), and ACL and Paq. We attribute variations in surface runoff to changes in the precipitation/evaporation ratio, caused by the pattern of climate change on the central TP since the late Pleistocene. During the late Pleistocene, stronger runoff (indicated by higher Ti, higher Rb/Sr and Paq, lower IC, Ca/(Al, Ti, Fe) and ACL) likely resulted from lower temperatures. Lower runoff during the Holocene may reflect intensified evaporation caused by higher temperatures. Comparison with records from glaciated lakes in the region reveals opposite trends in catchment hydrology. Overall, our results suggest that since the late Pleistocene the central TP was influenced mainly by the Indian Summer Monsoon.  相似文献   

19.
Paleolimnological techniques for assessing recent drainage basin disturbance are evaluated in three Moroccan lakes with catchments contrasted in terms of land-use and vegetation. Rates of sediment accumulation in the two lakes with agricultural catchments were relatively high (>1.6 cm yr-1) in the most recent past. Dilution effects prevented core dating by the 210Pb method alone and post-1953 chronologies were constructed by combining 210Pb and 137Cs data. The recent sediment accumulation rate at the currently least disturbed site, where natural Cedrus forest is still abundant, was relatively low (<0.4 cm yr-1) but has increased since the mid-19th century.Magnetic, geochemical, pollen, and diatom studies of all three lake sediment cores linked with modern field survey data show that soil erosion in the most vegetationally disturbed catchment (Dayat-er-Roumi) has been high throughout the recent past and that intensity peaks are probably associated with wetland drainage operations beginning in the 1940's. At the partially forested site (Dayat Affougah), pre-1950's woodland clearance and other land-use changes are the likely cause of past major soil erosion episodes. The site currently dominated by natural Cedrus forest (Lac Azigza) shows only minor disturbance during the past c. 150 years although a major soil erosion episode occrred in the 17th century.Paleolimnological analysis has clearly demonstrated that major landscape change has occurred at all three sites. However, only at the two sites with catchment cultivation do previously accelerated soil erosion and lake sediment accumulation rates persist to the present. Information essential for formulation of appropriate management plans is presented and the importance of paleolimnology in assessing man-induced lake-catchment disturbance is stressed.  相似文献   

20.
In order to assess how best to manage impacted lake systems, one needs to understand the trophic functioning of the lake system and the recent states through which the lake may have transitioned. Lakes in the middle and lower reaches of the Yangtze have been heavily impacted over recent decades. In order to understand recent changes in functional status, we examined sediment cores covering the last 120?years from two lakes in the same catchment with differing status: one algal-dominated (Taibai Lake) and the other macrophyte-dominated (Longgan Lake). Chironomid head capsules were identified from both sites and an expanded chironomid-total phosphorus (TP) transfer function (21 sites were added to the 30-lake model previously developed by Zhang et al. 2006) was used to assess the lakes?? response to recent anthropogenic change. Quantitative chironomid-inferred TP (CI-TP) reconstructions showed that Taibai Lake experienced clear changes in trophic status since the 1860s. Before the 1950s, the CI-TP concentration was relatively stable around 50?C80???g?L?1, while it reached to 80?C130???g?L?1 in the latter period. CI-TP for Longgan Lake, however, showed a relative decline from the range of 50?C75???g?L?1 since the 1880s to 30?C40???g?L?1 in recent years, accompanied by strong evidence from the chironomids for increased macrophyte biomass as TP levels declined. Both reconstructions agreed with diatom inferences of TP from the same lakes. The stark difference between these two sites is thought to reflect a function of macrophyte development, with Taibai Lake losing its plants through increased nutrient levels and internal recycling, whereas Longgan Lake, which is much bigger in area and hence potentially more resilient to change, was able to develop macrophyte communities over the same time period. The positive feedbacks associated with abundant macrophytes retained the clear water state of Longgan Lake, but a further increase in nutrients might lead to decrease in resilience of the relatively stable macrophyte state and loss of benthic pathways of primary production, which would push the lake towards eutrophication. Unless nutrient inputs to Longgan are controlled, Longgan Lake might lose macrophyte communities and follow a developmental pathway similar to that observed in Taibai Lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号