首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
Over the course of a day, aridland plants experience a range of incident photosynthetic photon flux (PPF) spanning three orders of magnitude. Rapid photosynthetic responses to changes in PPF have large effects on individual plant carbon gain and water use patterns, hence are important to plant distribution and success. We investigated the response over time of photosynthesis (A), stomatal conductance (g), and inter-cellular CO2 concentration (Ci) to step changes in PPF in a long-lived aridland perennial that typically occurs in two contrasting microhabitats, shade under shrubs of other species and unshaded inter-shrub spaces. An initial rapid response in A and Ci for plants in both microhabitats occurred after abrupt changes in PPF. This was followed by slower changes in these parameters during the rest of the light or dark period. Stomatal conductance responded more gradually to step changes in PPF. The initial increase in A after a dark cycle was significantly greater for plants under shrubs than for plants in inter-shrub spaces, but other changes in A, g and Ci did not differ. We attribute the similar responses in plants from different microhabitats to natural variations in solar radiation and limited selection for differentiation due to population gene pools dominated by plants in the open. Our results support the hypothesis that variable light regimes select for photosynthetic gas exchange processes that closely track changes in incident PPF. Our data also support the hypothesis that gas exchange responses to variable light regimes in aridland plants minimize trade-offs between carbon gain and water loss.  相似文献   

2.
Of all terrestrial ecosystems, the productivity of deserts has been suggested to be the most responsive to increasing atmospheric CO2. The extent to which this prediction holds will depend in part on plant responses to elevated CO2under the highly variable conditions characteristic of arid regions. The photosynthetic responses ofLarrea tridentata , an evergreen shrub, to a step-increase in atmospheric CO2(to 550 μmolmol−1) were examined in the field using Free-Air CO2Enrichment (FACE) under seasonally varying moisture conditions. Elevated CO2substantially increased net assimilation rate (Anet) in Larrea during both moist and dry periods of the potential growing season, while stomatal conductance (gs) did not differ between elevated and ambient CO2treatments. Seasonal and diurnal gas exchange dynamics in elevated CO2mirrored patterns in ambient CO2, indicating that elevated CO2did not extend photosynthetic activity longer into the dry season or during more stressful times of the day. Net assimilation vs. internal CO2(A/Ci) responses showed no evidence of photosynthetic down-regulation during the dry season. In contrast, after significant autumn rains, Amax(the CO2saturated rate of photosynthesis) and CE (carboxylation efficiency) were lower in Larrea under elevated CO2. In situ chlorophyll fluorescence estimation ofLarrea Photosystem II efficiency (Fv/Fm) responded more to water limitation than to elevated CO2. These findings suggest that predictions regarding desert plant responses to elevated CO2should account for seasonal patterns of photosynthetic regulatory responses, which may vary across species and plant functional types.  相似文献   

3.
Water use efficiency of C4 plants is higher than that of C3 plants, and CAM (Crassulaceae Acid Metabolism) plants have the highest water use efficiency. In the desert regions of China, CAM plants are scarce, and C4 plants, especially C4 woody plants, have an important position and role in the desert ecosystem. There are 45 species of C4 woody plants in the desert regions of China, including semi-woody plants, accounting for 6% of the total desert plant species in China, and most of them are concentrated in the families of Chenopodiaceae and Polygonaceae, which are 19 species and 26 species, respectively. The number of C4 herbaceous plants is 107 species, including 48 monocot species and 59 dicot species. C4 woody plants mainly inhabit the northwestern arid desert regions of China west of the Helan Mountains. The drought-resistance and drought-tolerance of C4 herbaceous plants are worse than C4 woody plants, and C4 herbaceous plants mainly inhabit areas with shallow groundwater depth and better water conditions in the desert regions, and are widely distributed along the margins of oases. The abundance of C4 woody plants is closely correlated with drought, but the abundance of C4 herbaceous plants increases with wet conditions.  相似文献   

4.
The desert plant Hedysarum scoparium uses leaflets and rachises as its photosynthetic organs. The abundance of leaflets was lower under unfavorable environmental conditions and higher with improved water conditions. To examine the characteristics associated with the adaptation of H. scoparium to its environment, we selected plants with both compound leaves and rachis without leaflets to study the anatomical structures and gas exchange characteristics of the two organs. The results show that the water storage tissues in rachises were more developed compared with the leaflets. The diurnal courses of the net photosynthetic rate for the rachis and the leaflet were both in a bimodal pattern. Meanwhile, both two peak values of the rachis were significantly higher than those of the leaflet. The daily average transpiration rate was significantly higher in the rachis than in the leaflet in order to lower the temperature of the rachises. It was concluded that under desert drought conditions, the leaflets of H. scoparium were partially or completely degraded to reduce the transpiration area as an adaptive response to water deficit, and only the rachises were retained as photosynthetic organ. The rachises were found to be better suited to a desert habitat than the leaflets.  相似文献   

5.
The alleviative effects of exogenous salicylic acid(SA) on plants against drought stress were assessed in Gardenia jasminoides seedlings treated with different concentrations of SA.Drought stress was simulated to a moderate level by 15% polyethylene glycol(PEG) 6000 treatment.Seedlings exposed to 15% PEG for 14 days exhibited a decrease in aboveground and underground dry mass,seedling height,root length,relative water content,photosynthetic pigment content,net photosynthetic rate(Pn),transpiration rate(Tr),stomatal conductance(Gs),and water use efficiency.In PEG-stressed plants,the levels of proline,malondialdehyde(MDA),hydrogen peroxide(H_2O_2),and electrolyte leakage rose significantly,whereas antioxidative activity,including superoxide,peroxidase,and catalase activities,declined in leaves.However,the presence of SA provided an effective method of mitigating PEG-caused physiological stresses on G.jasminoides seedlings,which depended on SA levels.PEG-treated plants exposed to SA at 0.5–1.0 mmol/L significantly eased PEG-induced growth inhibition.Application of SA,especially at concentrations of 0.5–1.0 mmol/L,considerably improved photosynthetic pigments,photosynthesis,antioxidative activity,relative water content,and proline accumulation,and decreased MDA content,H_2O_2 content,and electrolyte leakage.By contrast,the positive effects were not evident,or even more severe,in PEG+SA4 treatment.Based on these physiological and biochemical data,a suitable concentration of SA,potential growth regulators,could be applied to enhance the drought tolerance of G.jasminoides.  相似文献   

6.
《Polar Science》2007,1(1):55-62
To evaluate the effects of low atmospheric pressure on leaf photosynthesis, we compared the photosynthesis of identical leaves of Fagus crenata at lowland (0 m a.s.l.) and at highland (2360 m a.s.l.). At the high altitude, the atmospheric pressure and partial pressure of CO2 at intercellular air spaces in the leaf (Ci360) decreased to 77% and 78% of those at the low altitude, respectively. On the other hand, the efficiency of photosynthetic CO2-utilization was apparently higher at the high altitude because of a mitigation of the O2-inhibition of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) under low ambient partial pressure of O2. This stimulation of photosynthesis partly compensated a photosynthetic depression due to the low Ci360, and the net assimilation rate (An360) at the high altitude retained 94% of the value at the low altitude. A theoretical model indicated that the stimulation of photosynthesis at high altitudes depend on internal conductance (gi) and/or on Rubisco content. The model demonstrated that low atmospheric pressure at high altitudes caused severe restrictions of photosynthesis when leaves had a small gi and/or a large amount of Rubisco, whichever are repeatedly reported in alpine plants.  相似文献   

7.
Domestication of wild plants needs efforts focused particularly on the development of the theoretical basis of plant responses to environmental conditions. The objective of this study was to assess the effect of radiation on seedling growth and physiology of Prosopis alba, P. chilensis, P. flexuosa and P. glandulosa. Seedlings were grown in a greenhouse and randomly assigned to three light environments: full-sun, 52% sun, and 38% sun. No significant differences were found in the rate of leaf appearance and plant height 60 days after the light treatments began. Instantaneous CO2uptake was not affected by the light environment during leaf development and did not differ among species. Variations in radiation availability resulted in significant differences in biomass accumulation, shoot/root ratio, protein and total non-structural carbohydrates contents. The practice of shading seedlings reduces the chances of survival ofProsopis due to an increase of the shoot/root ratio and a reduction of total biomass, stored carbohydrates, and the C:N balance.  相似文献   

8.
DNA barcoding is an increasingly prevalent molecular biological technology which uses a short and conserved DNA fragment to facilitate rapid and accurate species identification. Kalidium species are distributed in saline soil habitat throughout Southeast Europe and Northwest Asia, and used mainly as forage grass in China. The discrimination of Kalidium species was based only on morphology-based identification systems and limited to recognized species. Here, we tested four DNA candidate loci, one nuclear locus (ITS, internal transcribed spacer) and three plastid loci (rbcL, matK and ycf1b), to select potential DNA barcodes for identifying different Kalidium species. Results showed that the best DNA barcode was ITS locus, which displayed the highest species discrimination rate (100%), followed by matK (33.3%), ycf1b (16.7%), and rbcL (16.7%). Meanwhile, four loci clearly identified the variant species, Kalidium cuspidatum (Ung.-Sternb.) Grub.var. sinicum A. J. Li, as a single species in Kalidium.  相似文献   

9.
王珊珊  陈曦  周可法  王重 《中国沙漠》2014,34(4):1023-1030
蒸腾速率(Tr)是植物生理生态学研究中表征蒸腾耗水的常用指标,研究植物的蒸腾耗水有助于了解当地生态系统稳定性和水资源的可持续利用,但在遥感应用尤其在干旱区遥感应用中很少被使用。本文以古尔班通古特沙漠南缘的主要建群种多枝柽柳(Tamarix ramosissima)作为研究对象,应用高光谱指数法对其Tr日变化过程进行研究,寻找和确定最佳的Tr光谱指数。选择的6个光谱指数判定系数R2介于0.06~0.73,其中简单比值(SR)光谱指数有最高的判定系数(R2=0.73)、较低的均方根误差(RMSE=0.24)和较为简单的形式,光谱范围处于近红外波段(1 645~1 655nm)/(1 775~1 785nm)。SR作为Tr最佳光谱指数,对植被水分关系变化敏感,能够较好地记录和监测Tr日变化过程,有益于揭示光谱指数物理和生理机制。  相似文献   

10.
Hesperaloe funifera(Agavaceae) is being investigated as a new specialty-fiber crop for arid lands. The objective of this study was to examine the effects of reduced solar radiation on photosynthesis and growth in this CAM species.Peak CO2uptake integrated through 24 h was found to be highest during the fall. Although shading greatly reduced CO2uptake in fall and winter, the decrease was not statistically significant for the spring and summer. Total biomass was significantly different for the three light treatments, with average fresh weights of 5243 g, 4488 g, and 3671 g for the full-sun, 53%-sun, and 20%-sun treatments, respectively. The greatest differences were found in the crown growth, which would affect future production of both leaves and flower stalks.Photosynthesis and growth results suggest that the cultivation ofHesperaloe funiferawill be favored in well-lit environments characteristic of arid or semi-arid climates.  相似文献   

11.
Citrulus colocynthis(wild gourd) is a desert plant of the Cucurbitaceae, naturally adapted to arid environments. It was known in biblical times as a source of seed oil and its fruits were used as an efficient laxative. Accessions were collected in Israel and evaluated as a potential oil seed crop adapted to arid zones. It was found that its oil composition is similar to safflower oil, with a total of 80-85% unsaturated fatty acids. A potential yield of oil of 250-400 l ha−1was calculated. The best yield was obtained during the first 4 weeks of the 10-week maturation period. Yield potential should be estimated under desert conditions in order to evaluate the plant's economic future as a crop suitable for an arid environment.  相似文献   

12.
A field experiment was conducted to test the hypothesis that competitive interactions affect demographic responses of desert dune annuals to gradients in sand stability. The experiment was based on a three-way factorial design with two types of neighbor treatments (complete neighbor removalvs. control), two types of habitats (stablevs. unstable sands) and two species which characterize sandy areas of the western Negev Desert (Neurada procumbensandBromus fasciculatus). Each of the eight treatment/habitat/species combinations was characterized by three demographic variables: seedling survival to reproduction, fruit number per reproductive plant and fruit number per seedling. All of these variables exhibited significant interactions between the effects of neighbor removal and habitat type, indicating that neighbor conditions were important in determining the observed patterns of demographic variation. Moreover, while plants ofNeurada procumbensgrowing without neighbors suffered more mortality on unstable sands, conspecific plants growing at natural density conditions suffered more mortality on stable sands. In the case ofBromus fasciculatus, individuals growing in the absence of competitive effects produced more fruits on stable sands, but conspecific plants growing at natural density conditions exhibited higher fruit production on unstable sands. These findings indicate that competitive effects not only modify, but may even reverse demographic responses of desert dune annuals to gradients in sand stability. Based on these results and evidence from two other studies it is suggested that seed dispersal from abiotically favorable into less favorable habitats may increase fitness of desert annuals by reducing the average effect of competition.  相似文献   

13.
Carbon and oxygen isotope ratios of bone apatite were measured in 14 endothermic and ectothermic vertebrates native to the Chihuahuan Desert and collected in June and July of 1999 and 2000. The δ8O values of most reptiles were very high, up to 44‰ (standard mean ocean water (SMOW), some of the highestδ18 O values ever measured for an animal. The δ18O values of rodents and birds were lower (32±5‰ vSMOW), and the earless lizard Holbrookia maculata were the lowest of all species analysed (25‰). Omnivorous grasshopper mice (Onychomys torridus) had lower δ18O values than granivorous rodents. Results from oxygen analysis likely reflect variation in diet and body water flux differences between endotherms and ectotherms. Carbon isotope analysis revealed a dramatic shift in diet from C3 plants in 1999 to C4 plants in 2000 in most rodents and birds. Kangaroo rats and reptiles did not change, having a constantδ13 C value indicative of a C3-based diet in both years. This suggests reliance on winter annual plant seed caches for kangaroo rats, but not other rodents. The carbon isotope data can be explained in terms of seasonal differences within and between years in the timing and intensity of the seasonal rainfall events, and the productivity of summer and winter annual plants. This study illustrates that stable isotope analysis is a powerful method for tracking dietary change and feeding behavior in desert vertebrates.  相似文献   

14.
连续2年对新疆阿勒泰地区荒漠植物大赖草(Leymus racemosus)居群(公路附近沙丘平坦处,P1;农田周围沙丘平坦处,P2;周围积水沙丘中下部,P3;多个沙丘中间平坦处,P4;多个沙丘中间隆起处,P5)、小穗间和小穗内的结实格局进行了比较研究。结果表明:(1)2011年大赖草的穗长、穗宽、总花数、结实率和大种子比率都高于2012年,小种子数低于2012年;2年的结实率在5个居群间均表现为P2P3P1P5P4。(2)每花序内不同小穗的穗宽、总花数和结实率表现为中部下部上部。(3)每小穗均有3.7±0.56朵花、0.6±0.09粒种子,小穗基部的结实率较高。大赖草结实率在年际和不同环境下波动较大,水分和温度是影响其结实格局的主要因素;小穗间及小穗内的资源分配符合资源竞争假说。大赖草花多果少的结实格局是适应荒漠资源贫瘠、干旱少雨气候条件的一种生殖保障。  相似文献   

15.
Nonstructural carbohydrates(NSC) and nitrogen metabolism strongly influence growth and development in plants. The biosynthesis of cellulose and lignin(structural carbohydrates, SC) depends largely on the supply of NSC. We desire to examine which hypothesis, carbon limitation or growth limitation, best fits the alpine plant response between NSC, SC, carbon(C), nitrogen(N) and altitude. We compared the foliar concentrations of carbohydrates, C and N between the leaves of Picea crassifolia(lower-elevation tree-line species) and Sabina przewalskii(high-elevation tree-line species) in their response to changing elevation. Our site was located in the mid-northern area of Qilian Mountains, China. We found that foliar soluble sugar(SG) concentrations were significantly higher in P. crassifolia than in S. przewalskii at the 2,700–3,400 m level. Foliar NSC levels in P. crassifolia increased at the 2,700–3,100 m level, indicating that growth was limited gradually resulting in a surplus of NSC(to conform to GLH), subsequently decreasing at the 3,100–3,400 m level, the assimilation declined leading to C deficit(to conform to CLH). SC(SC metabolism disorders at 3,100–3,400 m), C, N and starch were significantly lower in P. crassifolia than in S. przewalskii. Conversely, foliar SG concentration shows a fall-rise trend with increasing elevation for S. przewalskii. SC concentration in S. przewalskii leaves decreased with an increase of elevation and has a significantly positive correlation to N concentration marking the assimilation of plants. Therefore, the high-elevation tree-line species(S. przewalskii) utilize or store more foliar SG leading to a decrease of SG concentration for survival and growth/regrowth in an adverse environment, higher total C, N, SC, starch contents and lower NSC level. Also, their change trends along the elevational gradient in leaves of S. przewalskii indicate better assimilation strategies for SG use under environmental stress compared to P. crassifolia. This indicates that foliar C metabolism along the elevation follows the principle of the growth-limitation hypothesis(GLH) or carbon limitation hypothesis(CLH), which depends on the acclimation of different alpine life-forms to the environment.  相似文献   

16.
Changes in dry matter accumulation and allocation, gas exchange, abscisic acid content (ABA) and water use efficiency (WUE) of three contrasting Populus davidiana ecotypes were recorded after exposure to five different soil water contents. The ecotypes used were from dry, middle and wet climate regions, respectively. In the controlled environment study, five different soil water contents which were watered to 100%, 80%, 60%, 40% and 20% field capacity were used, respectively. Significant differences in height growth (HT), total biomass (TB), total leaf area (LA), total leaf number (TLN), specific leaf area (SLA), root/shoot ratio (RS), net photosynthesis (A), transpiration (E), stomatal conductance (C), transpiration efficiency (WUET) and instantaneous water use efficiency (WUEi) between the ecotypes were detected under all soil water contents. Ecotypic differences in ABA and carbon isotope composition (δ13C) were also detected under low soil water contents, but these differences were not significant under high soil water content. Compared with the wet climate ecotype, the dry climate ecotype had lower HT, TB, LA, TLN, SLA, A, E and C, and higher RS, WUET and WUEi under all soil water contents. On the other hand, the dry climate ecotype also exhibited higher ABA and δ13C as affected by low soil water contents than the wet climate ecotype. These morphological and physiological responses to water availability showed that the different ecotypes may employ different survival strategies under drought at the initial phase of seedling growth and establishment. The wet climate ecotype possesses a prodigal water use strategy and quick growth, while the dry climate ecotype exhibits a conservative water use strategies and slow growth.  相似文献   

17.
Rainfall interception by sand-stabilizing shrubs related to crown structure   总被引:2,自引:0,他引:2  
On the edge of the Tengger Desert in northern China,revegetation has changed the landscape from moving dunes to stabilized dunes covered by shrubs,which further modifies the pattern of rainfall redistribution.To study rainfall interception loss by shrubs and its relationship to rainfall properties and crown structure,throughfalls passing through crowns of Artemisia ordosica Krash.and Caragana korshinskii Kom.were measured using nine PVC cups under the canopy of each of the two shrubs during 73 rain events over a three-year period,with total rainfall of 260.9 mm.Interception losses of gross rainfall by A.ordosica and C.korshinskii account for 15% and 27% of the total on a crown area basis,and 6% and 11% on a ground area basis,respectively.Individual throughfall(T) and interception(I) were significantly related to rainfall amount(Pg),duration(D),and intensity(R).Ratios of throughfall to rainfall(T/Pg) and interception to rainfall(I/Pg) were not only significantly related to Pg,D,and R,but also to shrub species,and interactions of species with crown volume(CV) and leaf area index(LAI).Under most rain events,interceptions by C.korshinskii with greater CV and LAI were significantly higher than those by A.ordosica,and more rainfall interception occurred at locations closer to the stems of the two shrubs.For C.korshinskii,I/Pg had a significant positive linear relation with CV and LAI,while T/Pg had a significant negative linear relation with them.CV has a greater influence on T/Pg and I/Pg than does LAI.Using a regression method,canopy water storage capacities are estimated to be 0.52 and 0.68 mm,and free throughfall coefficient to be 0.62 and 0.47 for A.ordosica and C.korshinskii,respectively.  相似文献   

18.
Responses of photosynthesis (Pn), stomatal conductance (gs), pre-dawn leaf water potential (Ψlp) and leaf water content (ωl) of creosote bush to 10 rainfall events in the Chihuahuan Desert were investigated. Infiltration of rainwater was manipulated by applying municipal biosolids. The responses of Pnand water relation parameters to rainfall (>10 mm) were mainly dependent upon drought severity: (1) following a moderate drought, Pn, gs, Ψlpand ωlrecovered to corresponding values of irrigated plants within 2 days after a 23-mm rainfall; (2) Ψlpand gsresponded to a 15-mm rainfall within 2 days, following a 25-day drought, whereas responses of Pnand ωlwere delayed for several days; (3) responses of Pn, gs, Ψlpand ωlto a 14·7-mm rainfall were all delayed for several weeks following a 110-day drought, but the delay was longer in Pn, gsand ωlthan in Ψlp. Creosote bush responded to small rainfall events (approximately 6 to 8 mm) with an increase in Ψlp, but without noticeable changes in gsand Pn, suggesting a strong stomatal control of water loss even though xylem embolism was reduced. Biosolids applied at high rates (3·4 and 9 kgm−2) decreased the soil water by 2 to 4 mm following rainfall events, and this in turn delayed and decreased the responses of Pnand water relation parameters to rainfall.Pnand gswere linearly related to ωland exponentially related to Ψlp. With the generally coincidental responses of Pnor gsand ωlto rainfall, we concluded that the responses of Pnand gsto rainfall were dependent on leaf rehydration which resulted from restored hydraulic conductance following drought.  相似文献   

19.
The germination behaviour of five Helianthemum species (H. almeriense, H. appeninum, H. cinereum, H. hirtum, H. squamatum) has been studied under controlled conditions. Constant 15, 20 or 25 °C and alternating 25/15 °C temperature regimes and 16/8 h light/dark photoperiod conditions were used. Presowing treatments applied were manual scarification, boiling water, hot water, dry heat and sulphuric acid. Germination values recorded were final germination percentage and germination rate expressed as days to reach 50% of the final germination percentage (T50). Incubation temperature had no significant effect on final germination percentage for untreated seeds of the five Helianthemum species. However, variation due to temperature was significant for scarified seeds, with the lowest germination percentage attained at 25 °C. In all Helianthemum species studied, the highest germination percentages were obtained by manual scarification of seeds. Germination rate of scarified seeds decreased as germination temperature increased. The different presowing treatments investigated allowed some germination in some species, but none were any better than manual scarification. The high germination among most species studied, following mechanical rupture of the seed coat, shows that the mechanism of dormancy lies in the seed coat. The physical dormancy caused by impermeable seed-coat appears to be the main reason of poor germination of untreated seeds of Helianthemum species studied.  相似文献   

20.
Recent drought has led to unprecedented levels of plant mortality across the Southwestern US. An unaddressed feature of this drought's impact is how soil characteristics and soil hydrological behavior affect desert plant canopy die-back and mortality. Here, we present a multi-year study in the Mojave Desert assessing canopy die-back and whole-plant mortality of white bursage (Ambrosia dumosa) and creosotebush (Larrea tridentata) in soils varying in surface and sub-surface horizon development, and topographic (hillslope vs. channel) positions. Canopy die-back and mortality was more widespread A. dumosa than in L. tridentata, and dead plants tended to be smaller than surviving plants, especially in channel and hillslope locations. This suggests that juveniles were particularly vulnerable where plants depended heavily on augmentation of incident precipitation by runoff. Canopy die-back was greater in young, weakly developed soils that fostered extensive plant growth, while plants growing in older, well-developed soils showed markedly lower branch and plant mortality, especially in A. dumosa. We attributed these differences in plant response in part to variation in distributions of large rocks within soil profiles, which might affect soil hydrological heterogeneity and intensity of plant competition for water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号