首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Qiongdongnan Basin is one of the largest Cenozoic rifted basins on the northern passive margin of the South China Sea. It is well known that since the Late Miocene, approximately 10 Ma after the end of the syn‐rift phase, this basin has exhibited rapid thermal subsidence. However, detailed analysis reveals a two‐stage anomalous subsidence feature of the syn‐rift subsidence deficit and the well‐known rapid post‐rift subsidence after 10.5 Ma. Heat‐flow data show that heat flow in the central depression zone is 70–105 mW m?2, considerably higher than the heat flow (<70 mW m?2) on the northern shelf. In particular, there is a NE‐trending high heat‐flow zone of >85 mW m?2 in the eastern basin. We used a numerical model of coupled geothermal processes, lithosphere thinning and depositional processes to analyse the origin of the anomalous subsidence pattern. Numerical analysis of different cases shows that the stretching factor βs based on syn‐rift sequences is less than the observed crustal stretching factor βc, and if the lithosphere is thinned with βc during the syn‐rift phase (before 21 Ma), the present basement depth can be predicted fairly accurately. Further analysis does not support crustal thinning after 21 Ma, which indicates that the syn‐rift subsidence is in deficit compared with the predicted subsidence with the crustal stretching factor βc. The observed high heat flow in the central depression zone is caused by the heating of magmatic injection equivalently at approximately 3–5 Ma, which affected the eastern basin more than the western basin, and the Neogene magmatism might be fed by the deep thermal anomaly. Our results suggest that the causes of the syn‐rift subsidence deficit and rapid post‐rift subsidence might be related. The syn‐rift subsidence deficit might be caused by the dynamic support of the influx of warmer asthenosphere material and a small‐scale thermal upwelling beneath the study area, which might have been persisting for about 10 Ma during the early post‐rift phase, and the post‐rift rapid subsidence might be the result of losing the dynamic support with the decaying or moving away of the deep thermal source, and the rapid cooling of the asthenosphere. We concluded that the excess post‐rift subsidence occurs to compensate for the syn‐rift subsidence deficit, and the deep thermal anomaly might have affected the eastern Qiongdongnan Basin since the Late Oligocene.  相似文献   

2.
Tectonic subsidence in rift basins is often characterised by an initial period of slow subsidence (‘rift initiation’) followed by a period of more rapid subsidence (‘rift climax’). Previous work shows that the transition from rift initiation to rift climax can be explained by interactions between the stress fields of growing faults. Despite the prevalence of evaporites throughout the geological record, and the likelihood that the presence of a regionally extensive evaporite layer will introduce an important, sub‐horizontal rheological heterogeneity into the upper crust, there have been few studies that document the impact of salt on the localisation of extensional strain in rift basins. Here, we use well‐calibrated three‐dimensional seismic reflection data to constrain the distribution and timing of fault activity during Early Jurassic–Earliest Cretaceous rifting in the Åsgard area, Halten Terrace, offshore Mid‐Norway. Permo‐Triassic basement rocks are overlain by a thick sequence of interbedded halite, anhydrite and mudstone. Our results show that rift initiation during the Early Jurassic was characterised by distributed deformation along blind faults within the basement, and by localised deformation along the major Smørbukk and Trestakk faults within the cover. Rift climax and the end of rifting showed continued deformation along the Smørbukk and Trestakk faults, together with initiation of new extensional faults oblique to the main basement trends. We propose that these new faults developed in response to salt movement and/or gravity sliding on the evaporite layer above the tilted basement fault blocks. Rapid strain localisation within the post‐salt cover sequence at the onset of rifting is consistent with previous experimental studies that show strain localisation is favoured by the presence of a weak viscous substrate beneath a brittle overburden.  相似文献   

3.
The southern South African continental margin documents a complex margin system that has undergone both continental rifting and transform processes in a manner that its present‐day architecture and geodynamic evolution can only be better understood through the application of a multidisciplinary and multi‐scale geo‐modelling procedure. In this study, we focus on the proximal section of the larger Bredasdorp sub‐basin (the westernmost of the five southern South African offshore Mesozoic sub‐basins), which is hereto referred as the Western Bredasdorp Basin. Integration of 1200 km of 2D seismic‐reflection profiles, well‐logs and cores yields a consistent 3D structural model of the Upper Jurassic‐Cenozoic sedimentary megasequence comprising six stratigraphic layers that represent the syn‐rift to post‐rift successions with geometric information and lithology‐depth‐dependent properties (porosities and densities). We subsequently applied a combined approach based on Airy's isostatic concept and 3D gravity modelling to predict the depth to the crust‐mantle boundary (Moho) as well as the density structure of the deep crust. The best‐fit 3D model with the measured gravity field is only achievable by considering a heterogeneous deep crustal domain, consisting of an uppermost less dense prerift meta‐sedimentary layer [ρ = 2600 kg m?3] with a series of structural domains. To reproduce the observed density variations for the Upper Cenomanian–Cenozoic sequence, our model predicts a cumulative eroded thickness of ca. 800–1200 m of Tertiary sediments, which may be related to the Late Miocene margin uplift. Analyses of the key features of the first crust‐scale 3D model of the basin, ranging from thickness distribution pattern, Moho shallowing trend, sub‐crustal thinning to shallow and deep crustal extensional regimes, suggest that basin initiation is typical of a mantle involvement deep‐seated pull‐apart setting that is associated with the development of the Agulhas‐Falkland dextral shear zone, and that the system is not in isostatic equilibrium at present day due to a mass excess in the eastern domain of the basin that may be linked to a compensating rise of the asthenospheric mantle during crustal extension. Further corroborating the strike‐slip setting is the variations of sedimentation rates through time. The estimated syn‐rift sedimentation rates are three to four times higher than the post‐rift sedimentation, thereby indicating that a rather fast and short‐lived subsidence during the syn‐rift phase is succeeded by a significantly poor passive margin development in the post‐rift phase. Moreover, the derived lithospheric stretching factors [β = 1.5–1.75] for the main basin axis do not conform to the weak post‐rift subsidence. This therefore suggests that a differential thinning of the crust and the mantle‐lithosphere typical for strike‐slip basins, rather than the classical uniform stretching model, may be applicable to the Western Bredasdorp Basin.  相似文献   

4.
The syn‐rift/post‐rift transition of the late Ediacaran‐mid Cambrian Atlas rift is characterized by the interplay of several processes, such as a widespread episode of fracturing and tilting, associated with encasement of fault‐controlled vein metallic ore deposits of economic importance, and carbonate production and phosphogenesis (Taguedit Bed, Tabia Member) bordering rift‐flank uplifts. A correlatable unconformity marks the end of these processes and the beginning of a thermal subsidence‐dominated regime with development of a more stable, carbonate, peritidal‐dominated platform (Tifnout Member). Late Ediacaran microbial carbonate production and phosphogenesis extended in discontinuous belts around the periphery of uplifted rift shoulders and flanks. Karst development is interpreted to have formed along synsedimentary faults and fractures during abrupt tectonic uplift associated with emplacement of polymetallic hydrothermal dikes (rich in Cu, Fe and subsidiary Pb, Zn). Isotopic analysis indicates that speleothem precipitation in karstic palaeocaves displays significantly lighter δ13C and δ18O values as compared to the host dolomite, implying calcite precipitation by terrestrial fluids rich in decomposing organic matter and/or microbial activity in the cave system.  相似文献   

5.
The Upper Muschelkalk sedimentary record constitutes a major transgressive pulse of north‐eastern Iberia during the Ladinian. This record is arranged in two transgressive–regressive (T–R) sequences formed by two stepped microbial‐dominated carbonate ramp systems where accommodation was mainly controlled by extensional faults. This study seeks to gain new insights into how the evolution of syn‐rift subsidence controls the creation of accommodation space, the depositional styles and, especially, the palaeogeographical domains where specific microbialites developed (thrombolites and stromatolites). Thrombolite bodies (at least 40 m thick) display two types of architecture, biostromal and mud‐mounded and stromatolite bodies (at least 7 m thick) consist of tabular and domed, head‐shaped morphologies. Domed and mounded forms are usually developed during stages of increasing accommodation rates, low‐to flat‐nelief forms tend to grow in association with periods of low accommodation rates. A sea‐level fall of at least 50 m occurred at the end of the Early Ladinian leaving the platform subaerially exposed. As a result, a prominent karst with significant erosional incisions and profuse collapse breccia fillings was formed in the inner and middle ramp settings. The resultant subaerial unconformity bounds T–R sequences 1 and 2. Subsidence curves display two stages of rapid/decelerated total subsidence, constituting two discrete rift/post‐rift pulses in the large Triassic rifting period: (i) Buntsandstein – Middle Muschelkalk, and (ii) Late Muschelkalk – Imon Formation (Rhaetian). The second pulse is characterized by a rapid syn‐rift subsidence during the Late Muschelkalk, and a decelerated post‐rift subsidence throughout the deposition of Keuper facies and Imon Formation. The Late Muschelkalk rapid syn‐rift pulse of total subsidence produces gains in accommodation, which controls the development of the stromatolites and thrombolites (biostromes and mud‐mounds).  相似文献   

6.
The Andean Orogen is the type‐example of an active Cordilleran style margin with a long‐lived retroarc fold‐and‐thrust belt and foreland basin. Timing of initial shortening and foreland basin development in Argentina is diachronous along‐strike, with ages varying by 20–30 Myr. The Neuquén Basin (32°S to 40°S) contains a thick sedimentary sequence ranging in age from late Triassic to Cenozoic, which preserves a record of rift, back arc and foreland basin environments. As much of the primary evidence for initial uplift has been overprinted or covered by younger shortening and volcanic activity, basin strata provide the most complete record of early mountain building. Detailed sedimentology and new maximum depositional ages obtained from detrital zircon U–Pb analyses from the Malargüe fold‐and‐thrust belt (35°S) record a facies change between the marine evaporites of the Huitrín Formation (ca. 122 Ma) and the fluvial sandstones and conglomerates of the Diamante Formation (ca. 95 Ma). A 25–30 Myr unconformity between the Huitrín and Diamante formations represents the transition from post‐rift thermal subsidence to forebulge erosion during initial flexural loading related to crustal shortening and uplift along the magmatic arc to the west by at least 97 ± 2 Ma. This change in basin style is not marked by any significant difference in provenance and detrital zircon signature. A distinct change in detrital zircons, sandstone composition and palaeocurrent direction from west‐directed to east‐directed occurs instead in the middle Diamante Formation and may reflect the Late Cretaceous transition from forebulge derived sediment in the distal foredeep to proximal foredeep material derived from the thrust belt to the west. This change in palaeoflow represents the migration of the forebulge, and therefore, of the foreland basin system between 80 and 90 Ma in the Malargüe area.  相似文献   

7.
The Adana Basin of southern Turkey, located at the SE margin of the Central Anatolian Plateau in the vicinity of the Arabia‐Eurasia collision zone, is ideally suited to record Neogene and Quaternary topographic and tectonic changes in the easternmost Mediterranean realm. On the basis of our correlation of 34 seismic reflection profiles with corresponding exposed units along the margins of the Adana Basin, we identify and characterize the seismic facies that corresponds to the upper part of the Messinian Handere Formation (ca. 5.45 to 5.33 Ma), which consists mainly of fluvial conglomerates and marls. The seismic reflection profiles indicate that ca. 1100 km3 of the Handere Formation upper sub‐unit is distributed over ca. 3000 km2, reflecting local sedimentation rates of up to 12.5 mm year?1. This indicates a major increase in both sediment supply and subsidence rates at ca. 5.45 Ma. Our provenance analysis of the Handere Formation upper sub‐unit based on clast counting and palaeocurrent measurements reveals that most of the sediment is derived from the Taurus Mountains at the SE margin of the Central Anatolian Plateau and regions farther north. A comparison of these results with the composition of recent fluvial conglomerates and the present‐day drainage basins indicates major changes between late Messinian and present‐day source areas. We suggest that these changes in drainage patterns and lithological characteristics result from uplift and ensuing erosion of the SE margin of the plateau. We interpret the tectonic evolution of the southern flank of the Anatolian Plateau and the coeval subsidence and sedimentation in the Adana Basin to be related to deep lithospheric processes, particularly lithospheric delamination and slab break‐off.  相似文献   

8.
Constraining the thermal and denudational evolution of continental margins from extensional episodes to early orogenic stages is critical in the objective to better understand the sediment routing during the growth of orogenic topography. Here, we report 160 detrital zircon U/Pb ages and 73 (U‐Th)/He ages from Albian, Upper Cretaceous and Eocene sandstones from the south‐central Pyrenees. All samples show dominant zircon U/Pb age peaks at 310–320 Ma, indicating a primary contribution from Variscan granites of the central Pyrenean Axial Zone. A secondary population at 450–600 Ma documents zircon grains sourced from the eastern Pyrenees. Zircon (U‐Th)/He ages recovered from older samples document, a Triassic age peak at ca. 241 Ma, corresponding to denudation coeval with the initiation of Atlantic rifting. An Early Cretaceous cooling event at ca. 133 Ma appears consistent with rift‐related exhumation and thermal overprint on the Iberian margin. The (U‐Th)/He age peaks from ca. 80 Ma to ca. 68 Ma with decreasing depositional ages are interpreted to reflect the southward‐migrating thrust‐related exhumation on the pro‐wedge side of the Pyrenean orogen. The increase in lag times, from ca. 15 Ma in the Tremp Formation (ca. 65 Ma) to 28 Ma in the Escanilla Formation (ca. 40 Ma), suggests decreasing exhumation rates from 0.4 km Myr–1 to 0.2 km Myr–1. The apparent inconsistency with convergence rates is used to infer that rocks cooled at 68 Ma may have resided in the crust before final exhumation to the surface. Finally, the cooling event observed at 68 Ma provides support to the inferred acceleration of convergence, shortening and exhumation during Late Cretaceous times.  相似文献   

9.
Deciphering the evolution of mountain belts requires information on the temporal history of both topographic growth and erosion. The exhumation rate of a mountain range undergoing shortening is related to the erodability of the uplifting range as well as the efficiency of erosion, which partly depends on the available precipitation. Young, rapidly deposited sediments have low thermal conductivity and are readily eroded, in contrast to underlying resistant basement rocks that have a higher thermal conductivity. Apatite fission‐track thermochronology can quantify cooling; thermal models constrain the relationship between this cooling and exhumation. By utilizing geological relations for a datum, we can examine the evolution of rock uplift, surface uplift and exhumation. In the northern Sierras Pampeanas of Argentina, a young sedimentary basin that overlay resistant crystalline basement prior to rapid exhumation provides an ideal setting to examine the effect of contrasting thermal and erosional regimes. There, tectonically active reverse‐fault‐bounded blocks partly preserve a basement peneplain at elevations in excess of 4500 m. Prior to exhumation, the two study areas were covered by 1000 and 1600 m of recently deposited sediments; this sequence begins with shallow marine deposits immediately overlying the regional erosion surface. Apatite fission‐track data were obtained from vertical transects in the Calchaquíes and Aconquija ranges. At Cumbres Calchaquíes, erosion leading to the development of the peneplain commenced in the Cretaceous, probably as a result of rift‐shoulder uplift. In contrast, Sierra Aconquija cooled rapidly between 5.5 and 4.5 Myr. At the onset of this rapid exhumation, the sediment was quickly removed, causing fast cooling, but relatively slow rates of surface uplift. Syntectonic conglomerates were produced when faulting exposed resistant bedrock; this change in rock erodability led to enhanced surface uplift rates, but decreased exhumation rates. The creation of an orographic barrier after the range had attained sufficient elevation further decreased exhumation rates and increased surface uplift rates. Differences in the magnitude of exhumation at the two transects are related to both differences in the thickness of the sedimentary basin prior to exhumation and differences in the effective precipitation due to an orographic barrier in the foreland and hence differences in the magnitude of headward erosion.  相似文献   

10.
Regional seismic reflection profiles tied to lithological and biostratigraphic data from deep exploration wells have been used to determine the structure and evolution of the poorly known basins of northern Somalia. We recognize six major tectonostratigraphic sequences in the seismic profiles: Middle‐Late Jurassic syn‐rift sequences (Adigrat and Bihen Group), ?Cenomanian‐Campanian syn‐rift sequences (Gumburo Group), Campanian‐Maastrichtian syn‐rift sequences (Jesomma Sandstones), Palaeocene post‐rift sequences (Auradu Limestones), Early‐Middle Eocene post‐rift sequences (Taleh Formation) and Oligocene‐Miocene (Daban Group) syn‐rift sequences. Backstripping of well data provides new constraints on the age of rifting, the amount of crustal and mantle extension, and the development of the northern Somalia rifted basins. The tectonic subsidence and uplift history at the wells can be explained by a uniform extension model with three episodes of rifting punctuated by periods of relative tectonic quiescence and thermal subsidence. The first event initiated in the Late Jurassic (~156 Ma) and lasted for ~10 Myr and had a NW‐SE trend. We interpret the rift as a late stage event associated with the break‐up of Gondwana and the separation of Africa and Madagascar. The second event initiated in the Late Cretaceous (~80 Ma) and lasted for ~20–40 Myr. This event probably correlates with a rapid increase in spreading rate on the ridges separating the African and Indian and African and Antarctica plates and a contemporaneous slowing down of Africa's plate motion. The backstripped tectonic subsidence data can be explained by a multi‐rift extensional model with stretching factor, β, of 1.09–1.14 and 1.05–1.28 for the first and second rifting events, respectively. The model, fails, however, to completely explain the slow subsidence and uplift history of the margin during Early Cretaceous to Late Cretaceous. We attribute this slow subsidence to the combined effect of a sea‐level fall and regional uplift, which caused a major unconformity in northern Somalia. The third and most recent event occurred in the Oligocene (~32 Ma) and lasted for ~10 Myr. This rift developed along the Gulf of Aden and reactivated the Guban, Nogal and Daroor basins, and is related to the opening of the Gulf of Aden. As a result of these events the crust and upper mantle were thinned by up to a factor of two in some basins. In addition, several distinct petroleum systems developed. The principal exploration play is for Mesozoic petroleum systems with the syn‐rift Oligocene‐Miocene as a subordinate objective owing to low maturity and seal problems. The main seals for the different plays are various shales, some of which are also source rocks, but the Early Eocene evaporites of the Taleh formations can also perform a sealing role for Palaeogene or older generated hydrocarbons migrating vertically.  相似文献   

11.
The late‐stage evolution of the southern central Pyrenees has been well documented but controversies remain concerning potential Neogene acceleration of exhumation rates and the influence of tectonic and/or climatic processes. A popular model suggests that the Pyrenees and their southern foreland were buried below a thick succession of conglomerates during the Oligocene, when the basin was endorheic. However, both the amount of post‐orogenic fill and the timing of re‐excavation remain controversial. We address this question by revisiting extensive thermochronological datasets of the Axial Zone. We use an inverse approach that couples the thermo‐kinematic model Pecube and the Neighbourhood inversion algorithm to constrain the history of exhumation and topographic changes since 40 Ma. By comparison with independent geological data, we identified a most probable scenario involving rapid exhumation (>2.5 km Myr?1) between 37 and 30 Ma followed by a strong decrease to very slow rates (0.02 km Myr?1) that remain constant until the present. Therefore, the inversion does not require a previously inferred Pliocene acceleration in regional exhumation rates. A clear topographic signal emerges, however: the topography has to be infilled by conglomerates to an elevation of 2.6 km between 40 and 29 Ma and then to remain stable until ca. 9 Ma. We interpret the last stage of the topographic history as recording major incision of the southern Pyrenean wedge, due to the Ebro basin connection to the Mediterranean, well before previously suggested Messinian ages. These results thus demonstrate temporally varying controls of different processes on exhumation: rapid rock uplift in an active orogen during late Eocene, whereas base‐level changes in the foreland basin control the post‐orogenic evolution of topography and exhumation in the central Pyrenees. In contrast, climate changes appear to play a lesser role in the post‐orogenic topographic and erosional evolution of this mountain belt.  相似文献   

12.
Dolomitization in the Western Canadian Sedimentary Basin has been extensively researched, producing vast geochemical datasets. This provides a unique opportunity to assess the regional sources and flux of dolomitizing fluids on a larger scale than previous studies. A meta‐analysis was conducted on stable isotope, strontium isotope (87Sr/86Sr), fluid inclusion and lithium‐rich formation water data published over 30 years, with new petrographic, X‐ray diffraction, stable isotope and rare‐earth element (REE+Y) data. The Middle to Upper Devonian Swan Hills Formation, Leduc Formation and Wabamun Group contain replacement dolomite (RD) cross‐cut by stylolites, suggesting replacement dolomitization occurred during shallow burial. Stable isotope, REE+Y and 87Sr/86Sr data indicate RD formed from Devonian seawater, then recrystallized during burial. Apart from the Wabamun Group of the Peace River Arch (PRA), saddle dolomite cement (SDC) is more δ18O(PDB) depleted than RD, and cross‐cuts stylolites, suggesting precipitation during deep burial. SDC 87Sr/86Sr data indicate contributions from 87Sr‐rich basinal brines in the West Shale Basin (WSB) and PRA, and authigenic quartz/albite suggests basinal brines interacted with underlying clastic aquifers before ascending faults into carbonate strata. The absence of quartz/albite within dolomites of the East Shale Basin (ESB) suggests dolomitizing fluids only interacted with carbonate strata. We conclude that replacement dolomitization resulted from connate Devonian seawater circulating through aquifers and faults during shallow burial. SDC precipitated during deep burial from basinal brines sourced from basal carbonates (ESB) and clastic aquifers (WSB, PRA). Lithium‐rich formation waters suggest basinal brines originated as residual evapo‐concentrated Middle Devonian seawater that interacted with basal aquifers and ascended faults during the Antler and Laramide Orogenies. These results corroborate those of previous studies but are verified by new integrated analysis of multiple datasets. New insights emphasize the importance of basal aquifers and residual evapo‐concentrated seawater in dolomitization, which is potentially applicable to other regionally dolomitized basins.  相似文献   

13.
We describe the tectono‐sedimentary evolution of a Middle Jurassic, rift‐related supra‐detachment basin of the ancient Alpine Tethys margin exposed in the Central Alps (SE Switzerland). Based on pre‐Alpine restoration, we demonstrate that the rift basin developed over a detachment system that is traced over more than 40 km from thinned continental crust to exhumed mantle. The detachment faults are overlain by extensional allochthons consisting of upper crustal rocks and pre‐rift sediments up to several kilometres long and several hundreds of metres thick, compartmentalizing the distal margin into sub‐basins. We mapped and restored one of these sub‐basins, the Samedan Basin. It consists of a V‐shape geometry in map view, which is confined by extensional allochthons and floored by a detachment fault. It can be restored over a minimum distance of 11 km along and about 4 km perpendicular to the basin axis. Its sedimentary infill can be subdivided into basal (initial), intermediate (widening) and top (post‐tectonic) facies tracts. These tracts document (1) formation of the basin initially bounded by high‐angle faults and developing into low‐angle detachment faults, (2) widening of the basin and (3) migration of deformation further outboard. The basal facies tract is made of locally derived, poorly sorted gravity flow deposits that show a progressive change from hangingwall to footwall‐derived lithologies. Upsection the sediments develop into turbidity current deposits that show retrogradation (intermediate facies tract) and starvation of the sedimentary system (post‐tectonic facies tract). On the scale of the distal margin, the syn‐tectonic record documents a thinning‐ and fining‐upward sequence related to the back stepping of the tectonically derived sediment source, progressive starvation of the sedimentary system and migration of deformation resulting in exhumation and progressive delamination of the thinned crust during final rifting. This study provides valuable insights into the tectono‐sedimentary evolution and stratigraphic architecture of a supra‐detachment basin formed over hyper‐extended crust.  相似文献   

14.
The Sivas Basin, located in the Central Anatolian Plateau of Turkey, is a foreland basin that records a complex interaction between sedimentation, salt tectonics and regional shortening during the Oligo‐Miocene leading to the formation of numerous mini‐basins. The Oligocene sedimentary infill of the mini‐basins consists of a thick continental succession, the Karayün Formation, comprising a vertical succession of three main sub‐environments: (i) playa‐lake, (ii) fluvial braided, and (iii) saline lacustrine. These sub‐environments are seen as forming a large Distributive Fluvial System (DFS) modified through time as a function of sediment supply and accommodation related to regional changes in climate and tectonic regime. Within neighbouring mini‐basins and despite a similar vertical stratigraphic succession, subtle variations in facies assemblages and thickness are observed in stratigraphic units of equivalent age, thus demonstrating the local control exerted by halokinesis. Stratigraphic and stratal patterns reveal in great detail the complex interaction between salt tectonics and sedimentation including different types of halokinetic structures such as hooks, wedges and halokinetic folds. The regional variations of accommodation/sediment supply led to coeval changes in the architectural patterns recorded in the mini‐basins. The type of accommodation regime produces several changes in the sedimentary record: (i) a regime dominated by regional accommodation limits the impact of halokinesis, which is recorded as very small variations in stratigraphic thickness and facies distribution within and between mini‐basins; (ii) a regime dominated by localized salt‐induced accommodation linked to the subsidence of each individual mini‐basin enhances the facies heterogeneity within the DFS, causing sharp changes in stratigraphic thickness and facies assemblages within and between mini‐basins.  相似文献   

15.
《Basin Research》2018,30(5):990-1014
Fault‐controlled dolostone bodies have been described as potential hydrocarbon‐bearing reservoirs. Numerous case studies have described the shape and size of these often non fabric selective dolostone bodies within the vicinity of crustal‐scale lineaments, usually from Palaeozoic or Mesozoic carbonate platforms, which have undergone one or more phases of burial and exhumation. There has been little attention paid, however, to fault‐strike variability in dolostone distribution or the preferential localization of these bodies on particular faults. This study focuses on dolostone bodies adjacent to the Hammam Faraun Fault (HFF), Gulf of Suez. This crustal‐scale normal fault was activated in the Late Oligocene, coincident with the onset of extension within the Suez Rift. Dolomitization in the prerift Eocene Thebes Formation occurred in the immediate footwall of the HFF forming two massive, non facies selective dolostone bodies, ca. 500 m wide. Facies‐controlled tongues of dolostone on the margins of the massive dolostone bodies extend for up to 100 m. The geochemical signature of the dolostone bodies is consistent with replacement by Miocene seawater, contemporaneous with the rift climax and localization of strain along the HFF. A conceptual model of dolomitization from seawater that circulated within the HFF during the rift climax is presented. Seawater was either directly drawn down the HFF or circulated from the hanging wall basin via a permeable aquifer towards the HFF. The lateral extent of the massive dolostone bodies was controlled by pre‐existing HFF‐parallel fracture corridors on the outer margins of the damage zone of the fault. The behaviour of these fracture corridors alternated between acting as barriers to fluid flow before rupture and acting as flow conduits during or after rupture. Multiple phases of dolomitization and recrystallization during the ca. 10 Ma period in which dolomitization occurred led to mottled petrographical textures and wide‐ranging isotopic signatures. The localization of dolomitization on the HFF is interpreted to reflect its proximity to a rift accommodation zone which facilitated vertical fluid flow due to perturbed and enhanced stresses during fault interaction. It is possible that the presence of jogs along the strike of the fault further focused fluid flux. As such, it is suggested that the massive dolostones described in this study provide a window into the earliest stages of formation of fault‐controlled hydrothermal dolostone bodies, which could have occurred in other areas and subsequently been overprinted by more complex diagenetic and structural fabrics.  相似文献   

16.
Studies of salt‐influenced rift basins have focused on individual or basin‐scale fault system and/or salt‐related structure. In contrast, the large‐scale rift structure, namely rift segments and rift accommodation zones and the role of pre‐rift tectonics in controlling structural style and syn‐rift basin evolution have received less attention. The Norwegian Central Graben, comprises a complex network of sub‐salt normal faults and pre‐rift salt‐related structures that together influenced the structural style and evolution of the Late Jurassic rift. Beneath the halite‐rich, Permian Zechstein Supergroup, the rift can be divided into two major rift segments, each comprising rift margin and rift axis domains, separated by a rift‐wide accommodation zone – the Steinbit Accommodation Zone. Sub‐salt normal faults in the rift segments are generally larger, in terms of fault throw, length and spacing, than those in the accommodation zone. The pre‐rift structure varies laterally from sheet‐like units, with limited salt tectonics, through domains characterised by isolated salt diapirs, to a network of elongate salt walls with intervening minibasins. Analysis of the interactions between the sub‐salt normal fault network and the pre‐rift salt‐related structures reveals six types of syn‐rift depocentres. Increasing the throw and spacing of sub‐salt normal faults from rift segment to rift accommodation zone generally leads to simpler half‐graben geometries and an increase in the size and thickness of syn‐rift depocentres. In contrast, more complex pre‐rift salt tectonics increases the mechanical heterogeneity of the pre‐rift, leading to increased complexity of structural style. Along the rift margin, syn‐rift depocentres occur as interpods above salt walls and are generally unrelated to the relatively minor sub‐salt normal faults in this structural domain. Along the rift axis, deformation associated with large sub‐salt normal faults created coupled and decoupled supra‐salt faults. Tilting of the hanging wall associated with growth of the large normal faults along the rift axis also promoted a thin‐skinned, gravity‐driven deformation leading to a range of extensional and compressional structures affecting the syn‐rift interval. The Steinbit Accommodation Zone contains rift‐related structural styles that encompass elements seen along both the rift margin and axis. The wide variability in structural style and evolution of syn‐rift depocentres recognised in this study has implications for the geomorphological evolution of rifts, sediment routing systems and stratigraphic evolution in rifts that contain pre‐rift salt units.  相似文献   

17.
Stratigraphic data from petroleum wells and seismic reflection analysis reveal two distinct episodes of subsidence in the southern New Caledonia Trough and deep‐water Taranaki Basin. Tectonic subsidence of ~2.5 km was related to Cretaceous rift faulting and post‐rift thermal subsidence, and ~1.5 km of anomalous passive tectonic subsidence occurred during Cenozoic time. Pure‐shear stretching by factors of up to 2 is estimated for the first phase of subsidence from the exponential decay of post‐rift subsidence. The second subsidence event occured ~40 Ma after rifting ceased, and was not associated with faulting in the upper crust. Eocene subsidence patterns indicate northward tilting of the basin, followed by rapid regional subsidence during the Oligocene and Early Miocene. The resulting basin is 300–500 km wide and over 2000 km long, includes part of Taranaki Basin, and is not easily explained by any classic model of lithosphere deformation or cooling. The spatial scale of the basin, paucity of Cenozoic crustal faulting, and magnitudes of subsidence suggest a regional process that acted from below, probably originating within the upper mantle. This process was likely associated with inception of nearby Australia‐Pacific plate convergence, which ultimately formed the Tonga‐Kermadec subduction zone. Our study demonstrates that shallow‐water environments persisted for longer and their associated sedimentary sequences are hence thicker than would be predicted by any rift basin model that produces such large values of subsidence and an equivalent water depth. We suggest that convective processes within the upper mantle can influence the sedimentary facies distribution and thermal architecture of deep‐water basins, and that not all deep‐water basins are simply the evolved products of the same processes that produce shallow‐water sedimentary basins. This may be particularly true during the inception of subduction zones, and we suggest the term ‘prearc’ basin to describe this tectonic setting.  相似文献   

18.
Changes in sandstone and conglomerate maturity in tectonically active basins can be considered either as the product of climatic change or of tectonic restructuring of the feeder drainage system. Besides these regional controls, changes in the configuration of local sources can expressively affect basin fill composition. The Early Cretaceous fluvial successions of the Tucano Basin, a rift basin in northeastern Brazil related to the South Atlantic opening, contain one such case of abrupt change in maturity, marked by the passage from pebbly sandstone and conglomerate rich in quartz and quartzite fragments (Neocomian to Barremian São Sebastião Formation) to more feldspathic pebbly sandstone and conglomerate bearing pebbles of varied composition (Aptian Marizal Formation). Systematic analysis of stratigraphic and spatial variation in palaeocurrents and composition of pebbles and cobbles from both units, integrated with the recognition of fluvial and alluvial fan deposits distribution, revealed an abrupt decrease in maturity during the passage from the São Sebastião Formation to the Marizal Formation. This change is explained by exhumation of basement rocks and erosional removal of originally widespread Silurian to Jurassic sandstone and conglomerate units which were a major source of reworked vein quartz and quartzite pebbles to the São Sebastião Formation. Basin border faults activation during the deposition of the Marizal Formation caused adjacent basement uplift above the local erosional base level at the basin borders, whereas during the São Sebastião Formation deposition, the basin border fault scarps probably exposed mineralogically mature sedimentary units. The proposed model has important implications for interpreting changes in sediment maturity in rift basin successions, as similar results are expected where activation of basin border faults occurs after the erosional removal of older sedimentary or volcanic units that controlled syn‐rift successions composition.  相似文献   

19.
《Basin Research》2018,30(Z1):596-612
The formation of syn‐depositional fractures in carbonate platforms is considered an important feature in the understanding of platform evolution. This study investigates the mechanisms of fracture formation in rimmed flat‐topped carbonate platforms in the very well‐exposed Cariatiz Miocene Fringing Reef Unit, SE Spain. Fracture data were obtained using a combination of LIDAR and field mapping techniques, which proved useful in understanding general fracture trends. The morphological expression of fracture sets, preferred fracture localization, crosscutting relationships and fracture fill are characteristics that provide constraints on the timing of fracture formation and opening. Three dominant fracture populations were identified, amongst which a margin parallel and a margin perpendicular fracture set. Margin parallel fractures localize around the platform margin and form vertically extensive dikes that crosscut facies boundaries. The sedimentary fill of such fractures suggests syn‐depositional fracture formation under marine conditions. Together, fracture characteristics suggest a gravitational driver for the formation of tensile stress and the development of margin parallel fractures along the platform edge. Margin perpendicular structures form sub‐vertical dikes and fracture corridors. Margin perpendicular fractures localize on the platform slope and show two types of fracture fill, indicating marine and continental origins. Based on variations of fracture morphology along the carbonate platform, fracture localization, petrographic analysis of sedimentary fill and stable isotope analysis on sparite cements, we suggest a gravitational control on the formation of these fractures. Two mechanisms for the formation of subvertical margin perpendicular fractures are proposed: (1) principal stress rotation as a result of downslope loading. (2) Differential compaction over buried gulley systems on antecedent clinoform slopes. We suggest that the formation of sub‐vertical margin perpendicular fractures might be a systematic feature in slopes of flat‐topped carbonate platforms.  相似文献   

20.
《Basin Research》2018,30(3):522-543
We present a source‐to‐sink analysis to explain sediment supply variations and depositional patterns over the Holocene within an active rift setting. We integrate a range of modelling approaches and data types with field observations from the Sperchios rift basin, Central Greece that allow us to analyse and quantify (1) the size and characteristics of sediment source areas, (2) the dynamics of the sediment routing system from upstream fluvial processes to downstream deposition at the coastline, and (3) the depositional architecture and volumes of the Holocene basin fill. We demonstrate that the Sperchios rift comprises a ‘closed’ system over the Holocene and that erosional and depositional volumes are thus balanced. Furthermore, we evaluate key controls in the development of this source‐to‐sink system, including the role of pre‐existing topography, bedrock erodibility and lateral variations in the rate of tectonic uplift/subsidence. We show that tectonic subsidence alone can explain the observed grain size fining along the rift axis resulting in the downstream transition from a braided channel to an extensive meander belt (>15 km long) that feeds the fine‐grained Sperchios delta. Additionally, we quantify the ratios of sediment storage to bypass for the two main footwall‐sourced alluvial fan systems and relate the fan characteristics to the pattern and rates of fault slip. Finally, we show that ≥40% of the sediment that builds the Sperchios delta is supplied by ≤22% of the entire source area and that this can be primarily attributed to a longer‐term (~106 years) transient landscape response to fault segment linkage. Our multidisciplinary approach allows us to quantify the relative importance of multiple factors that control a complex source‐to‐sink system and thus improve our understanding of landscape evolution and stratigraphic development in active extensional tectonic settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号