首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Basin modelling studies are carried out in order to understand the basin evolution and palaeotemperature history of sedimentary basins. The results of basin modelling are sensitive to changes in the physical properties of the rocks in the sedimentary sequences. The rate of basin subsidence depends, to a large extent, on the density of the sedimentary column, which is largely dependent on the porosity and therefore on the rate of compaction. This study has tested the sensitivity of varying porosity/depth curves and related thermal conductivities for the Cenozoic succession along a cross‐section in the northern North Sea basin, offshore Norway. End‐member porosity/depth curves, assuming clay with smectite and kaolinite properties, are compared with a standard compaction curve for shale normally applied to the North Sea. Using these alternate relationships, basin geometries of the Cenozoic succession may vary up to 15% from those predicted using the standard compaction curve. Isostatic subsidence along the cross‐section varies 2.3–4.6% between the two end‐member cases. This leads to a 3–8% difference in tectonic subsidence, with maximum values in the basin centre. Owing to this, the estimated stretching factors vary up to 7.8%, which further gives rise to a maximum difference in heat flow of more than 8.5% in the basin centre. The modelled temperatures for an Upper Jurassic source rock show a deviation of more than 20 °C at present dependent on the thermal conductivity properties in the post‐rift succession. This will influence the modelled hydrocarbon generation history of the basin, which is an essential output from basin modelling analysis. Results from the northern North Sea have shown that varying compaction trends in sediments with varying thermal properties are important parameters to constrain when analysing sedimentary basins.  相似文献   

2.
《Basin Research》2018,30(5):926-941
Constraining the thermal, burial and uplift/exhumation history of sedimentary basins is crucial in the understanding of upper crustal strain evolution and also has implications for understanding the nature and timing of hydrocarbon maturation and migration. In this study, we use Vitrinite Reflectance (VR) data to elucidate the paleo‐physiography and thermal history of an inverted basin in the foreland of the Atlasic orogeny in Northern Tunisia. In doing so, it is the primary aim of this study to demonstrate how VR techniques may be applied to unravel basin subsidence/uplift history of structural domains and provide valuable insights into the kinematic evolution of sedimentary basins. VR measurements of both the onshore Pelagian Platform and the Tunisian Furrow in Northern Tunisia are used to impose constraints on the deformation history of a long‐lived structural feature in the studied region, namely the Zaghouan Fault. Previous work has shown that this fault was active as an extensional structure in Lower Jurassic to Aptian times, before subsequently being inverted during the Late Cretaceous Eocene Atlas I tectonic event and Upper Miocene Atlas II tectonic event. Quantifying and constraining this latter inversion stage, and shedding light on the roles of structural inheritance and the basin thermal history, are secondary aims of this study. The results of this study show that the Atlas II WNW‐ESE compressive event deformed both the Pelagian Platform and the Tunisian Furrow during Tortonian‐Messinian times. Maximum burial depth for the Pelagian Platform was reached during the Middle to Upper Miocene, i.e. prior to the Atlas II folding event. VR measurements indicate that the Cretaceous to Ypresian section of the Pelagian Platform was buried to a maximum burial depth of ~3 km, using a geothermal gradient of 30°C/km. Cretaceous rock samples VR values show that the hanging wall of the Zaghouan Fault was buried to a maximum depth of <2 km. This suggests that a vertical km‐scale throw along the Zaghouan Fault pre‐dated the Atlas II shortening, and also proves that the fault controlled the subsidence of the Pelagian Platform during the Oligo‐Miocene. Mean exhumation rates of the Pelagian Platform throughout the Messinian to Quaternary were in the order of 0.3 mm/year. However, when the additional effect of Tortonian‐Messinian folding is accounted for, exhumation rates could have reached 0.6–0.7 mm/year.  相似文献   

3.
The combination of vitrinite reflectance, apatite fission track and present‐day borehole temperature data is very useful when performing tectonic and thermal reconstructions in sedimentary basins which, in turn, are essential for assessing risk in hydrocarbon exploration and for testing hypotheses of basin evolution. Releasing the full potential of the combined data set requires that the predictive models are accurate in themselves. Here, we calibrate a new kinetic vitrinite reflectance model ‘basin%Ro’ using borehole data from a number of sedimentary basins and vitrinite reflectance data from laboratory maturation experiments. The entire data set is inverted for the kinetic parameters of the reflectance model under consideration of uncertainty in the temperature histories of the calibration samples. The method is not sensitive to inconsistent calibration data, which are revealed by significant corrections to the temperature histories. The performance of the model is tested on independent well data from the East China Sea and the Nova Scotian Shelf. The widely used easy%Ro‐model overestimates vitrinite reflectance in the interval 0.5–1.7% Ro by up to 0.35%. Delimiting of oil generating intervals by prediction of vitrinite reflectance may lead to significant underestimation of the generative potential, which may call for a revision of some petroleum systems. The overestimation by easy%Ro may have fuelled the idea of pressure retardation of vitrinite reflectance evolution under sedimentary basin conditions, where pressures in fact are too low for this to be important.  相似文献   

4.
Stratigraphic forward modelling was used to simulate the deposition of Upper Cretaceous, Eocene and Oligo‐Miocene source rocks in the Eastern Mediterranean Sea and, thus, obtain a process‐based 3D prediction of the quantity and quality distribution of organic matter (OM) in the respective intervals. Upper Cretaceous and Eocene models support the idea of an upwelling‐related source rock formation along the Levant Margin and the Eratosthenes Seamount (ESM). Along the margin, source rock facies form a narrow band of 50 km parallel to the palaeo shelf break, with high total organic carbon (TOC) contents of about 1% to 11%, and HI values of 300–500 mg HC/g TOC. On top of the ESM, TOC contents are mainly between 0.5% and 3% and HI values between 150 and 250 mg HC/g TOC. At both locations, TOC and HI values decrease rapidly towards the deeper parts of the basin. In the Oligo‐Miocene intervals, terrestrial OM makes up the highest contribution to the TOC content, as marine organic matter (OM) is diluted by high‐sedimentation rates. In general, TOC contents are low (<1%), but are distributed relatively homogenously throughout the whole basin, creating poor quality, but very thick source rock intervals of 1–2 km of cumulative thickness. The incorporation of these source rock models into a classic petroleum system model could identify several zones of thermal maturation in the respective source rock intervals. Upper Cretaceous source rocks started petroleum generation in the late Palaeocene/early Eocene with peak generation between 20 and 15 Ma ca. 50 km offshore northern Lebanon. Southeast of the ESM, generation started in the early Eocene with peak generation between 18 and 15 Ma. Eocene source rocks started HC generation ca. 25 Ma ago between 50 and 100 km southeast of the ESM and reached the oil to wet gas window at present day. However, until today they have converted less than 20% of their initial kerogen. Although the Miocene source rocks are mostly immature, Oligocene source rocks lie within the oil window in the southern Levant Basin and reached the onset of the wet gas window in the northern Levant Basin. However, only 10%–20% of their initial kerogen have been transformed to date.  相似文献   

5.
Stratigraphic data from petroleum wells and seismic reflection analysis reveal two distinct episodes of subsidence in the southern New Caledonia Trough and deep‐water Taranaki Basin. Tectonic subsidence of ~2.5 km was related to Cretaceous rift faulting and post‐rift thermal subsidence, and ~1.5 km of anomalous passive tectonic subsidence occurred during Cenozoic time. Pure‐shear stretching by factors of up to 2 is estimated for the first phase of subsidence from the exponential decay of post‐rift subsidence. The second subsidence event occured ~40 Ma after rifting ceased, and was not associated with faulting in the upper crust. Eocene subsidence patterns indicate northward tilting of the basin, followed by rapid regional subsidence during the Oligocene and Early Miocene. The resulting basin is 300–500 km wide and over 2000 km long, includes part of Taranaki Basin, and is not easily explained by any classic model of lithosphere deformation or cooling. The spatial scale of the basin, paucity of Cenozoic crustal faulting, and magnitudes of subsidence suggest a regional process that acted from below, probably originating within the upper mantle. This process was likely associated with inception of nearby Australia‐Pacific plate convergence, which ultimately formed the Tonga‐Kermadec subduction zone. Our study demonstrates that shallow‐water environments persisted for longer and their associated sedimentary sequences are hence thicker than would be predicted by any rift basin model that produces such large values of subsidence and an equivalent water depth. We suggest that convective processes within the upper mantle can influence the sedimentary facies distribution and thermal architecture of deep‐water basins, and that not all deep‐water basins are simply the evolved products of the same processes that produce shallow‐water sedimentary basins. This may be particularly true during the inception of subduction zones, and we suggest the term ‘prearc’ basin to describe this tectonic setting.  相似文献   

6.
Structural evolution of African basins: stratigraphic synthesis   总被引:1,自引:0,他引:1  
The structural and stratigraphic character of African interior sedimentary basins is highly variable, indicating contrasting basin-forming mechanisms and subsequent subsidence histories. A stratigraphic database has been compiled for African interior depositional basins for the purpose of better understanding basin thermal and structural development. Data are recorded in the form of stratal age, lithology, thickness and elevation of top with respect to present sea level. The data are obtained from published structure contour maps, well sections, and outcrop geology and elevation. There are various degrees of data coverage of the basins, proportional to the amount of water and oil drilling activity. Consequently, there is excellent coverage of North African basins such as the Algerian basin and the Sirte basin, while there is little known about the subsurface of the Congo basin. The stratigraphic data are used to reconstruct the depositional history of the basins, while backstripping leads to the quantification of the thermo-tectonic component of basin subsidence. The nature of basement subsidence can provide constraints on lithospheric flexural rigidity. In addition, the depositional and thermo-tectonic history of each basin bears upon the mechanisms of basin formation and subsidence. Virtually all types of basins are represented in interior Africa, including thrust-loaded basins (Algerian), passive-margin rift basins (Algerian, Sirte), modern active rift basins (East African), ancient rift basins (Benue, Abu Gabra), basins caused by uplift of their margins (Congo, Chad, Illumeden) and even basins that may be related to thermal subsidence of hot-spot domes (Algerian, Sirte).  相似文献   

7.
The seismically and volcanically active Kivu Rift, in the western branch of the East African Rift System, is a type locale for studies of high‐elevation, humid‐climate rift basins, as well as magmatic basin development. Interpretations of offshore multi‐channel seismic (MCS) reflection data, terrestrial radar topography, lake bathymetry and seismicity data recorded on a temporary array provide new insights into the structure, stratigraphy and evolution of the Kivu rift. The Kivu rift is an asymmetric graben controlled on its west side by a ca. 110 km‐long, N‐S striking border fault. The southern basins of the lake and the upper Rusizi river basin are an accommodation zone effectively linking 1470 m‐high Lake Kivu to 770 m‐high Lake Tanganyika. MCS data in the eastern Kivu lake basin reveal a west‐dipping half graben with at least 1.5 km of sedimentary section; most of the ca. 2 km of extension in this sub‐basin is accommodated by the east‐dipping Iwawa normal fault, which bounds an intrabasinal horst. Lake Kivu experienced at least three periods of near desiccation. The two most recent of these approximately correlate to the African Megadrought and Last Glacial Maximum. There was a rapid lake level transgression of at least 400 m in the early Holocene. The line load of the Virunga volcanic chain enhances the fault‐controlled basin subsidence; simple elastic plate models suggest that the line load of the Virunga volcanic chain depresses the basin by more than 1 km, reduces flank uplift locally and broadens the depocentre. Not only do the voluminous magmatism and degassing to the lake pose a hazard to the riparian population, but our studies demonstrate that magmatism has important implications for short‐term processes such as lake levels, inflow and outlets, as well as long term modification of classic half‐graben basin morphology.  相似文献   

8.
The Andean Plateau of NW Argentina is a prominent example of a high‐elevation orogenic plateau characterized by internal drainage, arid to hyper‐arid climatic conditions and a compressional basin‐and‐range morphology comprising thick sedimentary basins. However, the development of the plateau as a geomorphic entity is not well understood. Enhanced orographic rainout along the eastern, windward plateau flank causes reduced fluvial run‐off and thus subdued surface‐process rates in the arid hinterland. Despite this, many Puna basins document a complex history of fluvial processes that have transformed the landscape from aggrading basins with coalescing alluvial fans to the formation of multiple fluvial terraces that are now abandoned. Here, we present data from the San Antonio de los Cobres (SAC) area, a sub‐catchment of the Salinas Grandes Basin located on the eastern Puna Plateau bordering the externally drained Eastern Cordillera. Our data include: (a) new radiometric U‐Pb zircon data from intercalated volcanic ash layers and detrital zircons from sedimentary key horizons; (b) sedimentary and geochemical provenance indicators; (c) river profile analysis; and (d) palaeo‐landscape reconstruction to assess aggradation, incision and basin connectivity. Our results suggest that the eastern Puna margin evolved from a structurally controlled intermontane basin during the Middle Miocene, similar to intermontane basins in the Mio‐Pliocene Eastern Cordillera and the broken Andean foreland. Our refined basin stratigraphy implies that sedimentation continued during the Late Mio‐Pliocene and the Quaternary, after which the SAC area was subjected to basin incision and excavation of the sedimentary fill. Because this incision is unrelated to baselevel changes and tectonic processes, and is similar in timing to the onset of basin fill and excavation cycles of intermontane basins in the adjacent Eastern Cordillera, we suspect a regional climatic driver, triggered by the Mid‐Pleistocene Climate Transition, caused the present‐day morphology. Our observations suggest that lateral orogenic growth, aridification of orogenic interiors, and protracted plateau sedimentation are all part of a complex process chain necessary to establish and maintain geomorphic characteristics of orogenic plateaus in tectonically active mountain belts.  相似文献   

9.
Sedimentary basins in NW‐Germany and the Netherlands represent potential targets for shale gas exploration in Europe due to the presence of Cretaceous (Wealden) and Jurassic (Posidonia) marlstones/shales as well as various Carboniferous black shales. In order to assess the regional shale gas prospectivity of this area, a 3D high‐resolution petroleum system model has been compiled and used to reconstruct the source‐rock maturation based on calibrated burial and thermal histories. Different basal heat flow scenarios and accordingly, different high‐resolution scenarios of erosional amount distribution were constructed, incorporating all major uplift events that affected the study area. The model delivers an independent 3D reappraisal of the tectonic and thermal history that controlled the differential geodynamic evolution and provides a high‐resolution image of the maturity distribution and evolution throughout the study area and the different basins. Pressure, temperature and TOC‐dependent gas storage capacity and gas contents of the Posidonia Shale and Wealden were calculated based on experimentally derived Langmuir sorption parameters and newly compiled source‐rock thickness maps indicating shale gas potential of the Lower Saxony Basin, southern Gifhorn Trough and West Netherlands Basin.  相似文献   

10.
Classical models of lithosphere thinning predict deep synrift basins covered by wider and thinner post‐rift deposits. However, synextensional uplift and/or erosion of the crust are widely documented in nature (e.g. the Base Cretaceous unconformity of the NE Atlantic), and generally the post‐rift deposits dominate basins fills. Accordingly, several basin models focus on this discrepancy between observations and the classical approach. These models either involve differential thinning, where the mantle thins more than the crust thereby increasing average temperature of the lithosphere, or focus on the effect of metamorphic reactions, showing that such reactions decrease the density of lithospheric rocks. Both approaches result in less synrift subsidence and increased post‐rift subsidence. The synextensional uplift in these two approaches happens only for special cases, that is for a case of initially thin crust, specific mineral assemblage of the lithospheric mantle or extensive differential thinning of the lithosphere. Here, we analyse the effects of shear heating and tectonic underpressure on the evolution of sedimentary basins. In simple 1D models, we test the implications of various mechanisms in regard to uplift, subsidence, density variations and thermal history. Our numerical experiments show that tectonic underpressure during lithospheric thinning combined with pressure‐dependent density is a widely applicable mechanism for synextensional uplift. Mineral phase transitions in the subcrustal lithosphere amplify the effect of underpressure and may result in more than 1 km of synextensional erosion. Additional heat from shear heating, especially combined with mineral phase transitions and differential thinning of the lithosphere, greatly decreases the amount of synrift deposits.  相似文献   

11.
An integrated provenance analysis of the Upper Cretaceous Magallanes retroarc foreland basin of southern Chile (50°30′–52°S) provides new constraints on source area evolution, regional patterns of sediment dispersal and depositional age. Over 450 new single‐grain detrital‐zircon U‐Pb ages, which are integrated with sandstone petrographic and mudstone geochemical data, provide a comprehensive detrital record of the northern Magallanes foreland basin‐filling succession (>4000‐m‐thick). Prominent peaks in detrital‐zircon age distribution among the Punta Barrosa, Cerro Toro, Tres Pasos and Dorotea Formations indicate that the incorporation and exhumation of Upper Jurassic igneous rocks (ca. 147–155 Ma) into the Andean fold‐thrust belt was established in the Santonian (ca. 85 Ma) and was a significant source of detritus to the basin by the Maastrichtian (ca. 70 Ma). Sandstone compositional trends indicate an increase in volcanic and volcaniclastic grains upward through the basin fill corroborating the interpretation of an unroofing sequence. Detrital‐zircon ages indicate that the Magallanes foredeep received young arc‐derived detritus throughout its ca. 20 m.y. filling history, constraining the timing of basin‐filling phases previously based only on biostratigraphy. Additionally, spatial patterns of detrital‐zircon ages in the Tres Pasos and Dorotea Formations support interpretations that they are genetically linked depositional systems, thus demonstrating the utility of provenance indicators for evaluating stratigraphic relationships of diachronous lithostratigraphic units. This integrated provenance dataset highlights how the sedimentary fill of the Magallanes basin is unique among other retroarc foreland basins and from the well‐studied Andean foreland basins farther north, which is attributed to nature of the predecessor rift and backarc basin.  相似文献   

12.
The Miocene Waitemata Basin was deposited on a moving base provided by the Northland Allochthon, which was emplaced in the Late Oligocene, as a new convergent plate boundary was established in northern New Zealand. The basin experienced complex interaction between tectonic and gravity‐driven shallow deformation. Spectacular examples of the resulting structures exposed on eastern Whangaparaoa Peninsula 50 km north of Auckland provide a world‐class example of weak rock deformation, the neglected domain between soft‐sediment and hard rock deformation. Quartz‐poor turbidite sequences display a protracted sequence of deformations: D1, synsedimentary slumping; D2, large scale deeper‐seated sliding and extensional low‐angle shearing, associated with generation of boudinage and broken formation; D3, thrusting and folding, indicating transport mostly to the SE; D4, thrusting and folding in the opposite direction; D5, further folding, including sinistral shear; D6, steep faults. The deformation sequence suggests continuous or intermittent southeastward transport of units with increasing sedimentary and structural burial. By phase D3, the rocks had passed from the soft‐sediment state to low levels of consolidation. However, with a compressive strength of ~5 MPa they are weak rocks even today. Such weak‐rock deformation must be important in other sedimentary basins, especially those associated with active convergent plate boundaries and with immature source areas for their sediments.  相似文献   

13.
Transtensional basins are sparsely described in the literature compared with other basin types. The oblique‐divergent plate boundary in the southern Gulf of California has many transtensional basins: we have studied those on San Jose island and two other transtensional basins in the region. One major type of transtensional basin common in the southern Gulf of California region is a fault‐termination basin formed where normal faults splay off of strike‐slip faults. These basins suggest a model for transtensional fault‐termination basins that includes traits that show a hybrid nature between classic rift and strike‐slip (pull‐apart) basins. The traits include combinations of oblique, strike‐slip and normal faults with common steps and bends, buttress unconformities between the fault steps and beyond the ends of faults, a common facies pattern of terrestrial strata changing upward and away from the faults into marine strata, small fault blocks within the basin that result in complex lateral facies relations, common Gilbert deltas, dramatic termination of the margin of the basin by means of fault reorganization and boundary faults dying and an overall short basin history (few million years). Similar transtensional fault‐termination basins are present in Death Valley and other parts of the Eastern California shear zone of the western United States, northern Aegean Sea and along ancient strike‐slip faults.  相似文献   

14.
The onset of deformation in the northern Andes is overprinted by subsequent stages of basin deformation, complicating the examination of competing models illustrating potential location of earliest synorogenic basins and uplifts. To establish the width of the earliest northern Andean orogen, we carried out field mapping, palynological dating, sedimentary, stratigraphic and provenance analyses in Campanian to lower Eocene units exposed in the northern Eastern Cordillera of Colombia (Cocuy region) and compare the results with coeval succession in adjacent basins. The onset of deformation is recorded in earliest Maastrichtian time, as terrigenous detritus arrived into the basin marking the end of chemical precipitation and the onset of clastic deposition produced by the uplift of a western source area dominated by shaly Cretaceous rocks. Disconformable contacts within the upper Maastrichtian to middle Palaeocene succession document increasing supply of quartzose sandy detritus from Cretaceous quartzose rocks exposed in eastern source areas. The continued unroofing of both source areas produced a rapid shift in depositional environments from shallow marine in Maastrichtian to fluvial‐lacustrine systems during the Palaeocene‐early Eocene. Supply of immature Jurassic sandstones from nearby western uplifts, together with localized plutonic and volcanic Cretaceous rocks, caused a shift in Palaeocene sandstones composition from quartzarenites to litharenites. Supply of detrital sandy fragments, unstable heavy minerals and Cretaceous to Ordovician detrital zircons, were derived from nearby uplifted blocks and from SW fluvial systems within the synorogenic basin, instead of distal basement rocks. The presence of volcanic rock fragments and 51–59 Ma volcanic zircons constrain magmatism within the basin. The Maastrichtian–Palaeocene sequence studied here documents crustal deformation that correlates with coeval deformation farther south in Ecuador and Peru. Slab flattening of the subducting Caribbean plate produced a wider orogen (>400 km) with a continental magmatic arc and intra‐basinal deformation and magmatism.  相似文献   

15.
Intrusive magmatism is an integral and understudied component in both volcanic and nonvolcanic passive margins. Here, we investigate the thermal effects of widespread (ca. 20 000 km2) intrusive magmatism on the thermal evolution of organic‐rich sedimentary rocks on the nonvolcanic Newfoundland passive margin. ODP 210‐1276 (45.41°N, 44.79°W) intersects two sills: an older, upper sill and a younger, lower sill that are believed to correspond to the high amplitude ‘U‐reflector’ observed across the Newfoundland Basin. A compilation of previous work collectively provides; (1) emplacement depth constraints, (2) vitrinite reflectance data and (3) 40Ar/39Ar dates. Collectively, these data sets provide a unique opportunity to model the conductive cooling of the sills and how they affect thermal maturity of the sedimentary sequence. A finite differences method was used to model the cooling of the sills, with the model outputs then being entered into the EASY%Ro vitrinite reflectance model. The modelled maturation profile for ODP 210‐1276 shows a significant but localized effect on sediment maturity as a result of the intrusions. Our results suggest that even on nonvolcanic margins, intrusive magmatism can significantly influence the thermal evolution in the vicinity of igneous intrusions. In addition, the presence of widespread sills on nonvolcanic passive margins such as offshore Newfoundland may be indicative of regional‐scale thermal perturbations that should be considered in source rock maturation studies.  相似文献   

16.
Lithospheric folding is an important mode of basin formation in compressional intraplate settings. Basins formed by lithospheric folding are characterized by distinct features in subsidence history. A comparison with extensional basins, foreland basins, intracratonic basins and pull‐apart basins provides criteria for the discrimination between these modes of basin formation. These findings are important in deciphering the feedbacks between tectonics and surface processes. In addition, inferences on accommodation space and thermal regime have important consequences for hydrocarbon maturity. Lithospheric folding is coupled to compressional reactivation of basins and faults, and therefore, strongly affects reservoir characteristics of sedimentary basins.  相似文献   

17.
We describe the tectono‐sedimentary evolution of a Middle Jurassic, rift‐related supra‐detachment basin of the ancient Alpine Tethys margin exposed in the Central Alps (SE Switzerland). Based on pre‐Alpine restoration, we demonstrate that the rift basin developed over a detachment system that is traced over more than 40 km from thinned continental crust to exhumed mantle. The detachment faults are overlain by extensional allochthons consisting of upper crustal rocks and pre‐rift sediments up to several kilometres long and several hundreds of metres thick, compartmentalizing the distal margin into sub‐basins. We mapped and restored one of these sub‐basins, the Samedan Basin. It consists of a V‐shape geometry in map view, which is confined by extensional allochthons and floored by a detachment fault. It can be restored over a minimum distance of 11 km along and about 4 km perpendicular to the basin axis. Its sedimentary infill can be subdivided into basal (initial), intermediate (widening) and top (post‐tectonic) facies tracts. These tracts document (1) formation of the basin initially bounded by high‐angle faults and developing into low‐angle detachment faults, (2) widening of the basin and (3) migration of deformation further outboard. The basal facies tract is made of locally derived, poorly sorted gravity flow deposits that show a progressive change from hangingwall to footwall‐derived lithologies. Upsection the sediments develop into turbidity current deposits that show retrogradation (intermediate facies tract) and starvation of the sedimentary system (post‐tectonic facies tract). On the scale of the distal margin, the syn‐tectonic record documents a thinning‐ and fining‐upward sequence related to the back stepping of the tectonically derived sediment source, progressive starvation of the sedimentary system and migration of deformation resulting in exhumation and progressive delamination of the thinned crust during final rifting. This study provides valuable insights into the tectono‐sedimentary evolution and stratigraphic architecture of a supra‐detachment basin formed over hyper‐extended crust.  相似文献   

18.
Measurement of dispersed vitrinite reflectance in organic sediments is one of the few regional data sets used for placing bounds on the thermal history of a sedimentary basin. Reflectance data are important when access to complementary information such as high‐quality seismic data is unavailable to place bounds on subsidence history and in locations where uplift is an important part of the basin history. Attributes which make vitrinite reflectance measurements a useful data set are the relative ease of making the measurement, and the availability of archived well cores and cuttings in state, provincial, and federal facilities. In order to fully utilize vitrinite data for estimating the temperature history in a basin, physically based methods are required to calibrate an equivalent reflectance from a modelled temperature history with measured data. The most common method for calculating a numerical vitrinite reflectance from temperature history is the EASY%Ro method which we show systematically underestimates measured data. We present a new calculated reflectance model and an adjustment to EASY%Ro which makes the correlation between measured vitrinite values and calculated vitrinite values a physical relationship and more useful for constraining thermal models. We then show that calibrating the thermal history to vitrinite on a constant age date surface (e.g., top Cretaceous) instead of calibrating the thermal history in depth removes the heating rate component from the reflectance calculation and makes thermal history calibration easier to understand and more directly related to heat flow. Finally, we use bounds on the vitrinite–temperature relationships on a constant age date surface to show that significant uncertainty exists in the vitrinite data reported in most data sets.  相似文献   

19.
The China–Mongolia border region contains many late Mesozoic extensional basins that together constitute a regionally extensive basin system. Individual basins within the system are internally composed of a family of sub‐basins filled with relatively thin sedimentary piles mostly less than 5 km in thickness. There are two types of sub‐basins within the basins, failed and combined, respectively. The failed sub‐basins are those that failed to continue developing with time. In contrast, the combined ones are those that succeeded in growing by coalescing adjacent previously isolated sub‐basins. Thus, a combined sub‐basin is bounded by a linked through‐going normal fault that usually displays a corrugated trace on map view and a shallower dip on cross‐section. Along‐strike existence of discrete depocenters and alternation of sedimentary wedges of different types validate the linkage origin of combined sub‐basins. Localized high‐strain extension resulted in large‐amount displacement on linked faults, but contemporaneously brought about the cessation of some isolated fault segments and the formation of corresponding failed sub‐basins in intervening areas between active linked faults. Some combined sub‐basins might have evolved into supradetachment basins through time, concurrent with rapid denudation of footwall rocks and formation of metamorphic core complexes in places. A tectonic scenario of the broad basin system can be envisioned as an evolution from early‐stage distributed isolated sub‐basins to late‐stage focused combined or/and supradetachment sub‐basins bounded by linked faults, accompanied by synchronous cessation of some early‐formed sub‐basins. Initiation of the late Mesozoic extension is believed to result from gravitational collapse of the crust that had been overthickened shortly prior to the extension. Compression, arising from collision of Siberia and the amalgamated North China–Mongolia block along the Mongol–Okhotsk suture in the time interval from the Middle to Late Jurassic, led to significant shortening and thickening over a broad area and subsequent extensional collapse. Pre‐ and syn‐extensional voluminous magmatism must have considerably reduced the viscosity of the overthickened crust, thereby not only facilitating the gravitational collapse but enabling the lower‐middle crust to flow as well. Flow of a thicker crustal layer is assumed to have occurred coevally with upper‐crustal stretching so as to diminish the potential contrast of crustal thickness by repositioning materials from less extended to highly extending regions. Lateral middle‐ and lower‐crustal flow and its resultant upward push upon the upper crust provide a satisfying explanation for a number of unusual phenomena, such as supracrustal activity of the extension, absence or negligibleness of postrift subsidence of the basin system, less reduction of crustal thickness after extension, and non‐compression‐induced basin inversion, all of which have been paradoxical in the previous study of the late Mesozoic basin tectonics in the China–Mongolia border region.  相似文献   

20.
Mapping and correlation of 2D seismic reflection data define the overall subsurface structure of the East Gobi basin (EGB), and reflect Jurassic–Cretaceous intracontinental rift evolution through deposition of at least five distinct stratigraphic sequences. Three major northeast–southwest‐trending fault zones divide the basin, including the North Zuunbayan (NZB) fault zone, a major strike‐slip fault separating the Unegt and Zuunbayan subbasins. The left‐lateral NZB fault cuts and deforms post‐rift strata, implying some post‐middle‐Cretaceous movement. This fault likely also had an earlier history, based on its apparent role as a basin‐bounding normal or transtensional fault controlling deposition of the Jurassic–Cretaceous synrift sequence, in addition to radiometric data suggesting a Late Triassic (206–209 Ma) age of deformation at the Tavan Har locality. Deposits of the Unegt subbasin record an early history of basin subsidence beginning ~155 Ma, with deposition of the Upper Jurassic Sharilyn and Lower Cretaceous Tsagantsav Formations (synrift sequences 1–3). Continued Lower Cretaceous synrift deposition is best recorded by thick deposits of the Zuunbayan Formation in the Zuunbayan subbasin, including newly defined synrift sequences 4–5. Geohistory modelling supports an extensional origin for the EGB, and preliminary thermal maturation studies suggest that a history of variable, moderately high heat flow characterized the Jurassic–Cretaceous rift period. These models predict early to peak oil window conditions for Type 1 or Type 2 kerogen source units in the Upper Tsagantsav/Lower Zuunbayan Formations (Synrift Sequences 3–4). Higher levels of maturity could be generated from distal depocentres with greater overburden accumulation, and this could also account for the observed difference in maturity between oil samples from the Tsagan Els and Zuunbayan fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号