首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
A comprehensive methodology that integrates the Universal Soil Loss Equation (USLE) and Geographic Information System (GIS) was adopted in this study to determine the soil erosion and sediment yield of the Irga watershed in Jharkhand, India. Based on the availability and applicability of data in a GIS-environment, the original equations for the model input parameters were, however, modified by researchers. In the present study, a power-law equation was generated to estimate the rainfall erosivity (R) factor, and the Nash-Sutcliffe model efficiency coefficient used to determine the accuracy of the modified R factor. Average annual soil erosion in the Irga watershed is estimated to be 4.3 t ha?1 yr?1. On the other hand, average annual sediment yield of the watershed, estimated using the sediment delivery ratio, was found to be 1.2 t ha?1 yr?1. Low sediment yield indicates that most of the eroded soil was deposited within the watershed.  相似文献   

2.
Soil degradation causes low land productivity. To tackle soil degradation, soil management practices have been implemented in the study area. However, less attention has been given to the management of physical soil quality. Hence, the objective of this study is to evaluate soil physical properties of long-used cultivated lands. Twelve Land Mapping Units (LMUs) were identified by overlaying slope and soil maps. Twelve composite and 12 undisturbed soil samples were collected from the 12 LMUs, and soil physical properties analyzed. Soil bulk density varied from 1.22 g cm?3 in LMU3 to 1.68 g cm?3 in LMU4. Available water capacity ranged from 0.09 in LMU4 to 0.17 in LMU3. Stability index (SI) values ranged from a low of 3.58 at LUM10 to 62.5 at LMU3; stability quotient (SQ) values ranged from 79.4 at LMU9 to 2782.8 at LUM3. Highest and lowest soil crust index values were found to be 1.53 in LMU5 and 0.29 in LMU9. This study indicated that poor soil management practice in the study area has caused soil physical degradation. Therefore, this study provides insight into improved land management of long-used cultivated land in the semi-arid region of the study area and other similar environments.  相似文献   

3.
Integrated nutrient management is important for sustainable agricultural production and protecting environment quality and has been widely investigated around the world. In this article the spatial variability of soil nutrients was investigated and a regionalized nutrient management system was developed using geostatistics and geographic information system technologies. A total of 511 GPS-referenced soil samples were taken in Yongji County, Shanxi province, China, and analysed for major soil nutrients: soil total nitrogen (TN), Olsen extractable phosphorus (OLSENP) and extractable potassium (EXTK). Low concentrations of nitrogen (N) and phosphorus (P) were found and they are likely to be the main limiting nutrients for crop growth in this county. Within the county moderate spatial dependence was found for all three soil variables, but at different spatial scales. The spatial distributions of TN, OLSENP and EXTK were estimated by using kriging interpolation. The cropped areas of the county were divided into fertilizer management categories consisting of four classes of TN, three classes of OLSENP and two classes of EXTK. For the targeted crop yields, regionalized fertilization maps of N, P and K in the county were produced using geographic information system. In 3-year field verification trials in two villages the crop yields of the wheat–maize rotation system increased by 10–20%, and farmers' cash income increased by 1550–2610 RMB ha?1 year?1 where regional fertilization recommendations were implemented, in comparison with traditional farmers' practices. The regionalized maps are a practical alternative to site-specific soil nutrient management approaches in areas where it is not practical, because of small farm size or other constraints, to use intensive soil sampling and chemical analyses.  相似文献   

4.
Preserving soils is a major challenge in ensuring sustainable agriculture for the future. Soil erosion by water is a critical issue in the Mediterranean regions and usually occurs when high-erosive precipitation is in temporal association with poor vegetation cover and density. Modelling soil erosion risks over large spatial scales suffers from the scarcity of accurate information on land cover, rainfall erosivity and their intra-annual dynamics. We estimated the soil erosion risk on arable land in a Mediterranean area (Grosseto Province, southern Tuscany, Italy) and investigated its potential reduction as a response to the change in intra-annual distribution of land cover due to the increase of perennial forage crops. A GIS-based (R)USLE model was employed and a scenario analysis was performed by setting criteria for raising the performance of perennial forage crops. Statistical data on agricultural crops provided an insight into current intra-annual land cover dynamics. Rainfall erosivity was computed on the basis of 22-year hourly precipitation data. The model was used to: i) quantify the potential soil losses of arable land in the study area, ii) identify those areas highly affected by erosion risks iii) explore the potential for soil conservation of perennial crops, thereby enabling appropriate preventive measures to be identified. The erosion rates, averaged over an area of about 140’000 ha, are estimated to 33.42 Mg ha−1 y−1. More than 59% of the study area was subjected to soil losses higher than 11 Mg ha−1 y−1 (from moderate to severe erosion) and the highest rates are estimated for steep inland areas. Arable land with severe soil erosion rates (higher than 33 Mg ha−1 y−1) represent about 35% of the whole study area. The risk of soil loss by water erosion in the study area is estimated to be reduced on average by 36% if perennial crops are increased in terms of 35% of the total arable land. The soil erosion data produced compared well with the published local and regional data. This study thus provides useful preliminary information for landscape planning authorities and can be used as a decision support tool in quantifying the implications of management policies.  相似文献   

5.
Abstract

Headcut erosion has been recognized as one of the main processes involved in gully development in the dry-hot valley region of southwest China. To examine the effect of initial step height on headcut erosion processes, three headcuts were constructed ranging in height from 0.75 to 1.25 m on an active bank gully head, and a series of scouring experiments were conducted under a flow discharge of 120 L min?1. The morphological evolutions of the plunge pools and soil loss volume were estimated by three-dimensional photo-reconstruction methods (3D-PR). As the step height increased, the experimental results showed that: (1) the transformed potential energy and shear stress would increase by approximately 4.89 J s?1 and 26.4 Pa on average when the step height increased 0.25 m; (2) the mean depth and width of the plunge pool exhibited obvious growth, and the morphology of the cross-section developed from approximately V-shaped to U-shaped; and (3) soil loss volume increased logarithmically, with total soil loss volumes of 0.076, 0.105 and 0.116 m3, respectively. Although the significant effects of the initial step height on headcut erosion were verified, further quantitative studies are required to quantify the mechanism of headcut erosion, especially for plunge pool erosion.  相似文献   

6.
Abstract

With the recent technological advances offered by SfM-photogrammetry, we now have the possibility to study gully erosion at very high spatial and temporal scales from multi-temporal DEMs, and thus to enhance our understanding of both gully erosion processes and controls. Here, we examine gully degradation and aggradation at a gully headcut and at four re-incisions along a gully reach in Northern Ethiopia. Environmental controls recorded are topography rainfall, runoff, land use and cover, land management, and soil characteristics. The overall vulnerability of the catchment to erosion is low as calculated from the RUSLE (average 11.83 t ha?1 y?1). This reflects the successful land management of the past years. The runoff coefficient was on average 7.3% (maximum 18.2%). Runoff events caused most geomorphic change in the gully, but slumping of the gully bank also occurred on dry days. Most geomorphic change was caused by one major rainfall event of 54.8 mm d?1, and smaller runoff events caused both degradation and aggradation, often asynchronous between studied sites. Although most research focuses on gully heads alone, re-incisions at lower locations can still cause important gully degradation, which ultimately will reach the gully head and cause instability.  相似文献   

7.
We tested the scaling effects of proximate desertification drivers (i.e. soil erosion, bush encroachment and grazing pressure) on soil nutrients in northeastern Tanzania. We analyzed nutrient concentrations in the desertified and non-degraded benchmark. For the desertified landscapes we analyzed nutrient concentrations at the coarse (landscape), medium (micro-landscape) and sampling unit (fine scale) levels. Further, for the desertified micro-landscapes, we used the differences in total nutrient concentrations to identify moderately dysfunctional and dysfunctional micro-landscapes. The desertified micro-landscapes had an overall lower soil organic matter, total nitrogen and exchangeable phosphorus, and soil water, but had elevated cation exchange capacity and soluble bases compared with the benchmark. Different intensities of desertification processes, mediated by the three proximate desertification drivers, produced varied amounts of nutrients corresponding with moderately dysfunctional and dysfunctional micro-landscapes. The dysfunctional micro-landscapes had the lowest nutrient availability. The effects of proximate desertification drivers on pooled nutrients were scale-independent. For individual nutrients only pH, soil water and Mg++ showed scaling effects at the coarse or medium scales for soil erosion, while for grazing pressure pH, soil water, CEC, Na+, Mg2++ and Ca2++ showed scale dependence. The scaling effects were interlinked with landscape processes that operated simultaneously and interactively with different drivers.  相似文献   

8.
Rates of sheet and rill erosion in Germany — A meta-analysis   总被引:2,自引:0,他引:2  
K. Auerswald  P. Fiener  R. Dikau   《Geomorphology》2009,111(3-4):182-193
Knowledge of erosion rates under real conditions is of great concern regarding sustainability of landuse and off-site effects on water bodies and settlements. Experimentally derived rates of sheet and rill erosion are often biased by experimental settings, which deviate considerably from typical landuse, by short measuring periods and by small spatial extensions, which do not account for the pronounced spatio-temporal variability of erosion events. We compiled data from 27 studies covering 1076 plot years to account for this variability. Modelling was used to correct for deficiencies in the experimental settings, which overrepresented arable land and used steeper and shorter slopes as well as higher erosivity than typically found in reality. For example, the average slope gradient was 5.9° for all arable plot experiments while it is only 2.6° on total arable land in Germany. The expected soil loss by sheet and rill erosion in Germany after taking real slopes, landuse and erosivity into account averaged 2.7 t ha− 1 yr− 1. Annual crops contributed the largest proportion (90%) but hops despite its negligible contribution to landuse (0.06%) still contribute 1.0% due to its extraordinary rapid erosion, which was even faster than the measured bare fallow soil loss standardized to otherwise identical conditions. Bare fallow soil loss, which is often used as baseline, was 80 t ha− 1 yr− 1 when standardized to 5.1° slope gradient, 200 m flow path length, and average German erosivity.  相似文献   

9.
Abstract

Erosion rates in residual limestone soils in a humid climate were measured for 10 years at one site, and for 4 years at another site, using erosion pins. Erosion pins were placed in gully floors and on convex divides between adjacent gullies, on abandoned land where vegetation had been removed. We measured an average erosion rate of 20 mm yr?1 over 10 years at one site and only 5 mm yr?1 over 4 years at another site where chert gravel was common on the surface. The 10-year average erosion rate of divides (26 mm yr?1) was significantly greater than the average erosion rate of gullies (14 mm yr?1), suggesting control by different processes, some of which may be seasonal. In winter, it was observed that frost action produced a thin layer of loose soil on the surface of divides. In summer, a hardpan developed on divides, as the soil loosened by winter frosts was transported to gullies, likely by rainsplash or dry ravel. The diffusive processes of frost action, rainsplash, and dry ravel appear to shape the convex divides in this study. Down-cutting of gullies requires channelized flow produced by intense rainfall, which is more common in summer for this location.  相似文献   

10.
Using the USPED (Unit Stream Power Erosion Deposition) model, three land use scenarios were analysed for an Italian small catchment (15 km2) of high landscape value. The upper Orme stream catchment, located in the Chianti area, 30 km south of Florence, has a long historical agriculture record. Information on land use and soil conservation practices date back to 1821, hence offering an opportunity to model impacts of land use change on erosion and deposition. For this study, a procedure that takes into account soil conservation practices and potential sediment storage is proposed. The approach was to calculate and model the flow accumulation considering rural and logging roads, location of urban areas, drainage ditches, streams, gullies and permanent sediment sinks. This calculation attempts to assess the spatial variability, especially the impact of support practices (P factor). Weather data from 1980–2003 were taken into account to calculate the R factor. However, to consider the intense pluviometric conditions in terms of the erosivity factor, the 0.75th quantile was used, while the lowest erosivity was modelled using the 0.25th quantile. Results of the USPED model simulation show that in 1821 the mean annual net erosion for the watershed was 2.8 Mg ha− 1 y− 1; in 1954 it was 4.2 Mg ha− 1 y− 1; and in 2004 it was 5.3 Mg ha− 1 y− 1. Conservation practices can reduce erosion processes by ≥ 20 Mg ha− 1 y− 1 when the 1821 practices are introduced in the present management. On the other hand, if the support practices are not considered in the model, soil erosion risk is overestimated. Field observation for the present-day simulation confirmed that erosion and associated sediment deposition predicted by the model depend, as expected, on geomorphology and land use. The model shows limitations that are mainly due to the input data. A high resolution DEM is essential for the delineation of reliable topographic potential to predict erosion and deposition especially in vineyards.  相似文献   

11.
北京密云水库小流域非点源污染负荷估算   总被引:42,自引:0,他引:42  
根据不同类型的非点源污染发生区,选择若干径流小区,进行降雨、径流量、径流水质同步监测,分析不同土地利用类型小区地表径流和泥沙中氮、磷的流失情况。根据地貌特征和土地利用情况,利用通用土壤流失方程和SCS法分别计算不同土地利用类型区土壤侵蚀量和径流量,分析氮、磷的流失特点。结果表明:坡耕地和荒草坡单位面积土壤流失量比较严重;村庄中溶解态氮的流失量最多;村庄和坡耕地是氮、磷流失的重点区域。  相似文献   

12.
三峡库区紫色土陡坡地径流小区大雨强模拟降雨实验表明,以等高植物篱为代表的坡地生态工程能相当有效地减少坡面侵蚀量、径流量和坡面氮、磷养分损失量。由于植物篱和带间覆盖稿秆对径流的阻滞作用使坡面径流与表土的混合、养分溶解交换过程更加充分,径流携带的养分流失成为有效养分流失的主要方式。通过施肥改善土壤渗透特性、抗蚀性及带间覆盖能明显提高控制坡面产沙、产流和养分流失。等高植物篱-农作系统各种处理中以施用有机肥和配施有、无机肥-带间麦秆覆盖两种处理效果最好。  相似文献   

13.
黄土高原小流域土壤养分的空间分布格局-Kriging插值分析   总被引:37,自引:6,他引:31  
王军  傅伯杰  邱扬  陈利顶  余莉 《地理研究》2003,22(3):373-379
本文应用Kriging空间内插法,分析了黄土高原大南沟流域土壤有机质以及全N、全P、有效N和有效P等4种养分含量的空间分布格局。结果表明:土壤有机质呈现出坡上部低于坡下部的规律,其含量低于05%所占的面积最大,以耕地分布的区域为主,较高含量(06~08%)则分布在农果间作地和林地的区域;土壤全N的分布格局与土壤有机质具有相似性,只是坡下部的全N含量高于坡上部的趋势较为明显;土壤全P含量相差较小为138%,不同全P含量的空间分布面积基本相等;有效N和有效P并未表现出土地利用和景观位置控制的分布格局,有效P的空间分布较有效N更为复杂。  相似文献   

14.
四川紫色土地区鹤鸣观小流域分布式侵蚀产沙模型   总被引:4,自引:0,他引:4  
从四川省南部县鹤鸣观小流域Ⅱ号支沟为研究区,构建了适合紫色土地区小流域分布式侵蚀产沙模型。该模型以20m×20m栅格为空间步长,以10min为时间步长,定量分析鹤鸣观小流域Ⅱ号支沟水土流失程度,模拟了各时段每个栅格次降雨侵蚀产沙过程,计算了每个栅格次降雨径流量、侵蚀量与沉积量,并且运用递归算法计算出整个流域次降雨侵蚀产沙量,模型能够评价流域下垫面各因子空间分布不均匀性和人类活动的影响。在鹤鸣观小流域Ⅱ号支沟进行了模型的检验,模拟过程与实测结果符合较好。  相似文献   

15.
~(137)Cs示踪法土壤侵蚀量估算的本底值问题   总被引:1,自引:0,他引:1  
刘宇  吕一河  傅伯杰  刘国华 《地理研究》2010,29(7):1171-1181
137Cs示踪法因能快速、相对简便地估算土壤侵蚀量而在土壤侵蚀定量研究中得到广泛应用。本底值获取是137Cs示踪法的关键和基础。在具有空间异质性多因素综合作用下,本底值呈现高度的空间异质性。针对本底值空间变异性,从气候气象要素、地形、土壤属性、土地利用/覆被四个方面阐明各因素与本底值空间变异的作用机理。分析了当前137Cs示踪法应用中在本底值获取时参考点存在性及选点的准确性、单个或几个本底值对研究区本底值的代表性和参考点采样设计。提出划分侵蚀测定单元、建立多本底值体系和进行地形校正解决当前137Cs示踪法中本底值存在问题的对策。侵蚀测定计算单元的划分原则和方法、根据已有参考点的137Cs本底值推算各单元137Cs本底值的技术方法、定量化研究各因素对137Cs的作用是今后需要深入的工作。  相似文献   

16.
The paper presents runoff and soil erosion measurements from plots on outward-sloping rainfed agricultural terraces in the Likhu Khola drainage basin, Middle Hills, Nepal, for the pre-monsoon and monsoon periods of 1992 and 1993. Runoff coefficients ranged from 5% to over 50%, depending on the nature of the rainfall event and the characteristics of the terrace. Total rainfall amount provided the highest level of explanation for the variation in runoff. Soil losses ranged from 2.7 to 8.2 t ha–1 for 1993 and up to 12.9 t ha–1 for 1992. The higher losses were associated with red, finer-grained soils. The majority of these rates are lower than the rates of soil loss that have been commonly perceived for the Middle Hills of the Himalaya. However, they are broadly similar to rates obtained from the few other studies that have examined runoff and erosion under traditional rainfed cultivation. The results suggest that a re-evaluation of the degree of land degradation in such areas may be necessary. Relationships between soil loss and rainfall characteristics were highly variable but were improved considerably when vegetation cover was included. This indicates that the maintenance of some form of ground cover is advisable if runoff and erosion are to be minimized.  相似文献   

17.
Land degradation resulting from land-use changes and soil erosion has been a serious environmental problem in Ethiopia. This study addressed the effects of land use and slope position on soil physical and chemical properties in the Gelana sub-watershed, Northern highlands of Ethiopia. A total of 63 soil samples were collected and analyzed using a two-way ANOVA. Results showed that clay, soil pH, soil organic matter, total nitrogen, cation exchange capacity, and exchangeable base contents of the cultivated land were significantly (p < 0.001) lower than those of the forest land, while soil bulk density, available phosphorous, and percentage base saturation were higher for cultivated land than forest land. In general, soil fertility declines as land use changes from forest to grazing and cultivated lands. Sand, clay, bulk density, soil pH, organic matter, total nitrogen, carbon:nitrogen ratio, available phosphorous, cation exchange capacity, exchangeable cations, and percentage base saturation showed significant variation due to slope position differences. Therefore, the study reinforces the need for integrated watershed management for sustainable agricultural production in the study area.  相似文献   

18.
This paper reports soil losses from 15 erosion plots in the Middle Hills, Nepal, for the 1992 and 1993 monsoon and pre-monsoon seasons. In total, 912 rainfall events were monitored. Land cover varied from grassland and relatively undisturbed mixed broadleaf forest, to degraded Sal forest and bare ground. Soil losses ranged from less than 0.1 t ha-1 yr-1 for grassland and undisturbed forest plots, to 3–10 t ha-1 yr-1 for Sal forest in various states of degradation, and over 15 t ha-1 yr-1 for the bare sites. These results are broadly consistent with those reported in other parts of the Himalayan Middle Hills. Soil loss values could be explained by variations in runoff amounts and rainfall intensity, as well as by the nature of the land cover. Ground and low shrub cover was more important than canopy cover in protecting the forest soils. Human activity has unquestionably led to accelerated rates of soil loss but the degree of acceleration depends on the nature of the human activity and especially the care with which the land is managed. [Key words: soil loss, land use, Nepal, land degradation.]  相似文献   

19.
This research assessed the soil erosion threat in the Congo Nile Ridge Region of Rwanda. The study forecasted erosion by applying the Revised Universal Soil Erosion (RUSLE) with five factors (rainfall, soil, topography, cover management, and support practices) and spatial data. About 85.5% of the area under investigation was predisposed to erosion with unsustainable average soil loss rates of > 1 t/ha/yr. The outcomes of the research highlighted that the average rate of estimated soil loss in the region prone to erosion was > 63.62 t/ha/yr, resulting in an overall annual predicted soil loss of approximately 44 × 106 t in 2016. All of the districts studied have steep slope gradients (30.4%–36.1%) and high annual rainfall totals (1199–1484 mm/yr), except Rubavu district. More than 88.8% of croplands had unsustainable average soil loss rates of > 1 t/ha/yr. The analysis indicated that both terracing and strip cropping have the potential to reduce rates of soil loss in the farmland, by 64.4% and 10.4%, respectively. The results of this study will serve as a baseline for soil erosion mitigation and land-use planning in the study area and Rwanda at large.  相似文献   

20.
贵州猫跳河流域土地利用变化和土壤侵蚀(英文)   总被引:4,自引:2,他引:2  
Due to the extremely poor soil cover, a low soil-forming rate, and inappropriate intensive land use, soil erosion is a serious problem in Guizhou Province, which is located in the centre of the karst areas of Southwest China. In order to bring soil erosion under control and restore environment, the Chinese Government has initiated a serious of ecological rehabilitation projects such as the Grain-for-Green Programme and Natural Forest Protection Program and brought about tremendous influences on land-use change and soil erosion in Guizhou Province. This paper explored the relationship between land use and soil erosion in the Maotiao River watershed, a typical agricultural area with severe soil erosion in central Guizhou Province. In this study, we analyzed the spatio-temporal dynamic change of land-use type in Maotiao River watershed from 1973 to 2007 using Landsat MSS image in 1973, Landsat TM data in 1990 and 2007. Soil erosion change characteristics from 1973 to 2007, and soil loss among different land-use types were examined by integrating the Revised Universal Soil Loss Equation (RUSLE) with a GIS environment. The results indicate that changes in land use within the watershed have significantly affected soil erosion. From 1973 to 1990, dry farmland and rocky desertified land significantly increased. In contrast, shrubby land, other forestland and grassland significantly decreased, which caused accelerated soil erosion in the study area. This trend was reversed from 1990 to 2007 with an increased area of land-use types for ecological use owing to the implementation of environmental protection programs. Soil erosion also significantly varied among land-use types. Erosion was most serious in dry farmland and the lightest in paddy field. Dry farmland with a gradient of 6°-25° was the major contributor to soil erosion, and conservation practices should be taken in these areas. The results of this study provide useful information for decision makers and planners to take sustainable land use management and soil conservation measures in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号