首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract We present an interpretation of the structure and faulting of an industry multichannel line across the Central North Sea Graben. We observe substantial faulting between the mid-Jurassic and mid-Cretaceous and on the base Zechstein (salt) reflector. To estimate the extension from these faults we consider movement along both planar and curved faults. We demonstrate that summing the heave (the horizontal displacement) overestimates the time measure of elongation for planar, ‘domino-type’, faulting. However, for high-angle normal faults and up to 70% extension (β= 1.7) the heave only overestimates the extension by 13%. In the absence of other information, summing the heave provides a useful estimate of extension in the case of domino-type faulting. For curved ‘listric’ faults the heave is only a true measure of the elongation if the antithetic faulting which removes the voids is vertical. Antithetic movement along inclined shear planes implies significantly more extension. We used the two models; of faulting to introduce progressively greater amounts of internal deformation in the crustal rocks and sediments to attempt to reconcile the estimate of extension necessary to give the observed subsidence and that given by analysing the faults visible on the seismic line. Estimates of extension obtained by allowing antithetic faulting along inclined shear planes are consistent with the range of estimates necessary to account for the post-mid-Jurassic subsidence. The estimates for the prior mid-Jurassic faulting are still substantially less than those necessary to explain the subsidence. However, this is not of major concern as there are many reasons as to why analysis of the faulting should underestimate the pre mid-Jurassic extension. Our interpretation of the seismic line implies curved faults bottoming in the lithologically weak Zechstein salt. These faults are decoupled from the region below and, hence, do not reflect the geometry of the faulting in the basement.  相似文献   

2.
《Basin Research》2018,30(Z1):269-288
A number of major controversies exist in the South China Sea, including the timing and pattern of seafloor spreading, the anomalous alternating strike‐slip movement on the Red River Fault, the existence of anomalous post‐rift subsidence and how major submarine canyons have developed. The Qiongdongnan Basin is located in the intersection of the northern South China Sea margin and the strike‐slip Red River fault zone. Analysing the subsidence of the Qiongdongnan Basin is critical in understanding these controversies. The basin‐wide unloaded tectonic subsidence is computed through 1D backstripping constrained by the reconstruction of palaeo‐water depths and the interpretation of dense seismic profiles and wells. Results show that discrete subsidence sags began to form in the central depression during the middle and late Eocene (45–31.5 Ma). Subsequently in the Oligocene (31.5–23 Ma), more faults with intense activity formed, leading to rapid extension with high subsidence (40–90 m Myr−1). This extension is also inferred to be affected by the sinistral movement of the offshore Red River Fault as new subsidence sags progressively formed adjacent to this structure. Evidence from faults, subsidence, magmatic intrusions and strata erosion suggests that the breakup unconformity formed at ca. 23 Ma, coeval with the initial seafloor spreading in the southwestern subbasin of the South China Sea, demonstrating that the breakup unconformity in the Qiongdongnan Basin is younger than that observed in the Pearl River Mouth Basin (ca. 32–28 Ma) and Taiwan region (ca. 39–33 Ma), which implies that the seafloor spreading in the South China Sea began diachronously from east to west. The post‐rift subsidence was extremely slow during the early and middle Miocene (16 m Myr−1, 23–11.6 Ma), probably caused by the transient dynamic support induced by mantle convection during seafloor spreading. Subsequently, rapid post‐rift subsidence occurred during the late Miocene (144 m Myr−1, 11.6–5.5 Ma) possibly as the dynamic support disappeared. The post‐rift subsidence slowed again from the Pliocene to the Quaternary (24 m Myr−1, 5.5–0 Ma), but a subsidence centre formed in the west with the maximum subsidence of ca. 450 m, which coincided with a basin with the sediment thickness exceeding 5500 m and is inferred to be caused by sediment‐induced ductile crust flow. Anomalous post‐rift subsidence in the Qiongdongnan Basin increased from ca. 300 m in the northwest to ca. 1200 m in the southeast, and the post‐rift vertical movement of the basement was probably the most important factor to facilitate the development of the central submarine canyon.  相似文献   

3.
Baxter  Cooper  Hill  & O'Brien 《Basin Research》1999,11(2):97-111
The Vulcan Sub-basin, located in the Timor Sea, north-west Australia, developed during the Late Jurassic extension which ultimately led to Gondwanan plate breakup and the development of the present-day passive continental margin. This paper describes the evolution of upper crustal extension and the development of Late Jurassic depocentres in this subbasin, via the use of forward modelling techniques. The results suggest that a lateral variation in structural style exists. The south of the basin is characterized by relatively large, discrete normal faults which have generated deep sub-basins, whereas more distributed, small-scale faulting further north reflects a collapse of the early basin margin, with the development of a broader, 'sagged' basin geometry. By combining forward and reverse modelling techniques, the degree of associated lithosphere stretching can be quantified. Upper crustal faulting, which represents up to 10% extension, is not balanced by extension in the deeper, ductile lithosphere; the magnitude of this deeper extension is evidenced by the amount of post-Valanginian thermal subsidence. Reverse modelling shows that the lithosphere stretching
factor has a magnitude of up to β=1.55 in the southern Vulcan Sub-basin, decreasing to β=1.2 in the northern Vulcan Sub-basin. It is proposed that during plate breakup, deformation in the Vulcan Sub-basin consisted of depth-dependent lithosphere extension. This additional component of lower crustal and lithosphere stretching is considered to reflect long-wavelength partitioning of strain associated with continental breakup, which may have extended 300–500 km landward of the continent–ocean boundary.  相似文献   

4.
Depth‐dependent stretching, in which whole‐crustal and whole‐lithosphere extension is significantly greater than upper‐crustal extension, has been observed at both non‐volcanic and volcanic rifted continental margins. A key question is whether depth‐dependent stretching occurs during pre‐breakup rifting or during sea‐floor spreading initiation and early sea‐floor spreading. Analysis of post‐breakup thermal subsidence and upper‐crustal faulting show that depth‐dependent lithosphere stretching occurs on the outer part of the Norwegian volcanic rifted margin. For the southern Lofoten margin, large breakup lithosphere β stretching factors approaching infinity are required within 100 km of the continent–ocean boundary to restore Lower Eocene sediments and flood basalt surfaces (~54 Ma) to interpreted sub‐aerial depositional environments at sea level as indicated by well data. For the same region, the upper crust shows no significant Palaeocene and Late Cretaceous faulting preceding breakup with upper‐crustal β stretching factors <1.05. Further north on the Lofoten margin, reverse modelling of post‐breakup subsidence with a β stretching factor of infinity predicts palaeo‐bathymetries of ~1500 m to the west of the Utrøst Ridge and fails to restore Lower Eocene sediments and flood basalt tops to sea level at ~54 Ma. If these horizons were deposited in a sub‐aerial depositional environment, as indicated by well data to the south, an additional subsidence event younger than 54 Ma is required compatible with lower‐crustal thinning during sea‐floor spreading initiation. For the northern Vøring margin, breakup lithosphere β stretching factors of ~2.5 are required to restore Lower Eocene sediments and basalts to sea level at deposition, while Palaeocene and Late Cretaceous upper‐crustal β stretching factors for the same region are < 1.1. The absence of significant Palaeocene and late Cretaceous extension on the southern Lofoten and northern Vøring margins prior to continental breakup supports the hypothesis that depth‐dependent stretching of rifted margin lithosphere occurs during sea‐floor spreading initiation or early sea‐floor spreading rather than during pre‐breakup rifting.  相似文献   

5.
RASC/CASC is a computer-based system for quantitative stratigraphic analysis developed by Agterberg, Gradstein, and co-workers. The application of the system to the Neogene biostratigraphy of the Pearl River Mouth Basin demonstrates the advantages of the system. The occurrence data of hundreds of fossils from dozens of wells are analyzed objectively based on established stratigraphic and statistical rules embedded in the system. Through permutation of the score matrix, the optimum sequence of fossil events is obtained. The calculation of inter-fossil distances allows the automated biostratigraphic zonation and the age-event correlation. Then the regional geological timetable is constructed and the inter-well chronological correlation and high-resolution subsidence analysis becomes possible, even for wells with incomplete fossil records. Uncertainty at each step is quantified. While all these are important accomplishments in a stratigraphic study, results of the study also help identify problems in allocation of fossil events and dating lithologic divisions.  相似文献   

6.
Stratigraphic data from petroleum wells and seismic reflection analysis reveal two distinct episodes of subsidence in the southern New Caledonia Trough and deep‐water Taranaki Basin. Tectonic subsidence of ~2.5 km was related to Cretaceous rift faulting and post‐rift thermal subsidence, and ~1.5 km of anomalous passive tectonic subsidence occurred during Cenozoic time. Pure‐shear stretching by factors of up to 2 is estimated for the first phase of subsidence from the exponential decay of post‐rift subsidence. The second subsidence event occured ~40 Ma after rifting ceased, and was not associated with faulting in the upper crust. Eocene subsidence patterns indicate northward tilting of the basin, followed by rapid regional subsidence during the Oligocene and Early Miocene. The resulting basin is 300–500 km wide and over 2000 km long, includes part of Taranaki Basin, and is not easily explained by any classic model of lithosphere deformation or cooling. The spatial scale of the basin, paucity of Cenozoic crustal faulting, and magnitudes of subsidence suggest a regional process that acted from below, probably originating within the upper mantle. This process was likely associated with inception of nearby Australia‐Pacific plate convergence, which ultimately formed the Tonga‐Kermadec subduction zone. Our study demonstrates that shallow‐water environments persisted for longer and their associated sedimentary sequences are hence thicker than would be predicted by any rift basin model that produces such large values of subsidence and an equivalent water depth. We suggest that convective processes within the upper mantle can influence the sedimentary facies distribution and thermal architecture of deep‐water basins, and that not all deep‐water basins are simply the evolved products of the same processes that produce shallow‐water sedimentary basins. This may be particularly true during the inception of subduction zones, and we suggest the term ‘prearc’ basin to describe this tectonic setting.  相似文献   

7.
《Basin Research》2018,30(Z1):336-362
The subsidence evolution of the Tethyan Moroccan Atlas Basin, presently inverted as the Central High Atlas, is characterized by an Early Jurassic rifting episode, synchronous with salt diapirism of the Triassic evaporite‐bearing rocks. Two contrasting regions of the rift basin – with and without salt diapirism – are examined to assess the effect of salt tectonics in the evolution of subsidence patterns and stratigraphy. The Djebel Bou Dahar platform to basin system, located in the southern margin of the Atlas Basin, shows a Lower Jurassic record of normal faulting and lacks any evidence of salt diapirism. In contrast, the Tazoult ridge and adjacent Amezraï basin, located in the centre of the Atlas Basin, reveals spectacular Early Jurassic diapirism. In addition, we analyse alternative Central High Atlas post‐Middle Jurassic geohistories based on new thermal and burial models (GENEX® 4.0.3 software), constrained by new vitrinite reflectance data from the Amezraï basin. The comparison of the new subsidence curves from the studied areas with published subsidence curves from the Moroccan Atlas, the Saharan Atlas (Algeria) and Tunisian Atlas show that fast subsidence peaks were diachronous along the strike, being younger towards the east from Early–Middle Jurassic to Late Cretaceous. This analysis also evidences a close relationship between these high subsidence rate episodes and salt diapirism.  相似文献   

8.
We present a new lithostratigraphy and chronology for the Miocene on central Crete, in the Aegean forearc. Continuous sedimentation started at ~10.8 Ma in the E–W trending fluvio‐lacustrine Viannos Basin, formed on the hangingwall of the Cretan detachment, which separates high‐pressure (HP) metamorphic rocks from very low‐grade rocks in its hangingwall. Olistostromes including olistoliths deposited shortly before the Viannos Basin submerged into the marine Skinias Basin between 10.4 and 10.3 Ma testifies to significant nearby uplift. Uplift of the Skinias Basin between 9.7 and 9.6 Ma, followed by fragmentation along N–S and E–W striking normal faults, marks the onset of E–W arc‐parallel stretching superimposed on N–S regional Aegean extension. This process continued between 9.6 and 7.36 Ma, as manifested by tilting and subsidence of fault blocks with subsidence events centred at 9.6, 8.8, and 8.2 Ma. Wholesale subsidence of Crete occurred from 7.36 Ma until ~5 Ma, followed by Pliocene uplift and emergence. Subsidence of the Viannos Basin from 10.8 to 10.4 Ma was governed by motion along the Cretan detachment. Regional uplift at ~10.4 Ma, followed by the first reworking of HP rocks (10.4–10.3 Ma) is related to the opening and subsequent isostatic uplift of extensional windows exposing HP rocks. Activity of the Cretan detachment ceased sometime between formation of extensional windows around 10.4 Ma, and high‐angle normal faulting cross‐cutting the detachment at 9.6 Ma. The bulk of exhumation of the Cretan HP‐LT metamorphic rocks occurred between 24 and 12 Ma, before basin subsidence, and was associated with extreme thinning of the hangingwall (by factor ~10), in line with earlier inferences that the Cretan detachment can only explain a minor part of total exhumation. Previously proposed models of buyoant rise of the Cretan HP rocks along the subducting African slab provide an explanation for extension without basin subsidence.  相似文献   

9.
BILL Higgs 《Basin Research》1988,1(3):155-165
Abstract The Plio-Quaternary history of the Gulf of Corinth Basin has been controlled by dominantly north-south extension. The basin has an asymmetric graben geometry that is, at the present time, controlled by a master fault (the Gulf of Corinth Fault) downthrowing to the north and running offshore from the north Peloponnese coast.
Detailed structural interpretation of single-channel seismic data collected during RRS 'Shackleton' cruise 1/82 combined with onshore structural studies indicates that the basin geometry is not controlled simply by the main Gulf of Corinth Fault. The subsidence history for the uppermost 1 km of sediment can be documented using time-structure contour maps and isochron maps. These indicate that there is a general narrowing in the size of the basin with time, achieved by fault-controlled subsidence switching to antithetic faults concentrated towards the basin centre. It can also be demonstrated that growth of sediments into topographic lows is not only controlled by sea bed rupture but also by more passive sea bed flexure over 'blind' faults at depth.
The main conclusion of this study is that the 3D geometry of the Gulf of Corinth Basin changes not only spatially but also temporally. Active growth faulting and, therefore, the position of depocentres can switch across the basin and the relative importance of synthetic and antithetic faults controls the geometry of the basin, forming grabens, asymmetric grabens and half-grabens throughout the basin history.  相似文献   

10.
中国珠三角盆地和日本关东盆地平地人口密度对比研究   总被引:1,自引:0,他引:1  
改革开放以来,大量人口向珠三角盆地聚集,不断增加的人口负荷给区域可持续发展带来巨大压力,也给珠三角盆地国土承载力带来挑战。以中国珠三角盆地和日本关东盆地作为研究区,选取2地2000和2010年普查人口和国土面积数据,进行计算、分析和对比,认为用可居住的平地人口密度才能真实反映区域人口压力状况。研究结果表明,日本关东盆地人口增长率从1995年开始已降到0.5%,人口承载力接近饱和。以人口承载力接近饱和的日本关东盆地为参考对象,对比中国珠三角盆地和日本关东盆地的平地人口密度,2000年时中国珠三角盆地的平地人口密度低于日本关东盆地,珠三角盆地还有一定吸纳人口的能力;2010年时中国珠三角盆地的平地人口密度已超过日本关东盆地,其人口规模已经接近其国土承载力极限,进一步集聚人口的能力已经非常有限。依靠人口集聚发展劳动密集型产业推动经济增长的传统发展模式已经难以为继,转变经济发展方式势在必行。  相似文献   

11.
Subsidence analyses from the Betic Cordillera, southeast Spain   总被引:1,自引:0,他引:1  
Fifty‐four Mesozoic–Cenozoic stratigraphic sections from the Betic Cordillera of southeast Spain have been analysed in order to estimate the timing and amount of lithospheric stretching that occurred at the western end of the Tethyan Ocean since the Hercynian Orogeny. The standard backstripping technique has been used in order to calculate the water‐loaded subsidence of basement for each section. Water‐loaded subsidence curves were then inverted in order to determine the variation of lithospheric strain rate as a function of time, which yields estimates of timing, magnitude and intensity of stretching. Rifting commenced during the Late Permian/Early Triassic times and continued intermittently throughout the Mesozoic in response to the opening of the Tethyan Ocean to the east and the opening of the Atlantic Ocean to the west. Two major events in the Permo‐Triassic/Early Jurassic and the Late Jurassic/Early Cretaceous can be clearly identified. Stretching factors are generally small (1.1–1.25) probably because the Betic Cordillera was located at the westernmost end of the Tethys. Peak strain rates of ~10?15 s?1 were obtained for Mesozoic rift events and these values are in broad agreement with those obtained throughout the Tethyan Realm. We have also analysed the Neogene extensional event, which played an important role in forming the existing Mediterranean Sea. A combination of well‐log information and calibrated seismic reflection data was modelled. Peak strain rates in these younger basins are almost one order of magnitude faster than those estimated for the Mesozoic basins. These higher values appear to be typical of back‐arc extensional basins elsewhere. To the west and north of the Betic Cordillera, the Guadalquivir foreland basin developed as extension took place further east. Backstripped sections from this basin clearly record the northward migration of foreland basin subsidence through time.  相似文献   

12.
The large thickness of Upper Carboniferous strata found in the Netherlands suggests that the area was subject to long-term subsidence. However, the mechanisms responsible for subsidence are not quantified and are poorly known. In the area north of the London Brabant Massif, onshore United Kingdom, subsidence during the Namurian–Westphalian B has been explained by Dinantian rifting, followed by thermal subsidence. In contrast, south and east of the Netherlands, along the southern margin of the Northwest European Carboniferous Basin, flexural subsidence caused the development of a foreland basin. It has been proposed that foreland flexure due to Variscan orogenic loading was also responsible for Late Carboniferous subsidence in the Netherlands. In the first part of this paper, we present a series of modelling results in which the geometry and location of the Variscan foreland basin was calculated on the basis of kinematic reconstructions of the Variscan thrust system. Although several uncertainties exist, it is concluded that most subsidence calculated from well data in the Netherlands cannot be explained by flexural subsidence alone. Therefore, we investigated whether a Dinantian rifting event could adequately explain the observed subsidence by inverse modelling. The results show that if only a Dinantian rifting event is assumed, such as is found in the United Kingdom, a very high palaeowater depth at the end of the Dinantian is required to accommodate the Namurian–Westphalian B sedimentary sequence. To better explain the observed subsidence curves, we propose (1) an additional stretching event during the Namurian and (2) a model incorporating an extra dynamic component, which might well explain the very high wavelength of the observed subsidence compared with the wavelength of the predicted flexural foreland basin.  相似文献   

13.
Abstract Expressions are obtained for temperature as a function of depth, and for surface elevation and surface heat flow using a simplified model to represent lithosphere extending on a low-angle detachment surface. The geometry of the resulting basin is determined by the dip of the detachment surface φ and the original thickness of the crust, h. For small extension the width of the basin is h /tan φ and with increasing extension the width of the basin cannot exceed 2 h /tan φ before sea-floor spreading begins. The asymmetry of heat flow and subsidence profiles across the basin is described and the predictions of the model are compared with those of the model for uniform extension by pure shear. The amplitude of thermal subsidence for the detachment-zone model is typically half as great as for the pure-shear model with the same extension factor. As the total subsidence is the same for each model the initial subsidence is correspondingly greater for the detachment-zone model. The time-integrated anomalous heat flow in the detachment-zone model is also approximately half that in the pure-shear model.  相似文献   

14.
The Oligo-Miocene Most Basin is the largest preserved sedimentary basin within the Eger Graben, the easternmost part of the European Cenozoic Rift System (ECRIS). The basin is interpreted as a part of an incipient rift system that underwent two distinct phases of extension. The first phase, characterised by NNE–SSW- to N–S-oriented horizontal extension between the end of Eocene and early Miocene, was oblique to the rift axis and caused evolution of a fault system characterised by en-échelon-arranged E–W (ENE–WSW) faults. These faults defined a number of small, shallow initial depocentres of very small subsidence rates that gradually merged during the growth and linkage of the normal fault segments. The youngest part of the basin fill indicates accelerated subsidence caused probably by the concentration of displacement at several major bounding faults. Major post-depositional faulting and forced folding were related to a change in the extension vector to an orthogonal position with respect to the rift axis and overprinting of the E–W faults by an NE–SW normal fault system. The origin of the palaeostress field of the earlier, oblique, extensional phase remains controversial and can be attributed either to the effects of the Alpine lithospheric root or (perhaps more likely because of the dominant volcanism at the onset of Eger Graben formation) to doming due to thermal perturbation of the lithosphere. The later, orthogonal, extensional phase is explained by stretching along the crest of a growing regional-scale anticlinal feature, which supports the recent hypothesis of lithospheric folding in the Alpine–Carpathian foreland.  相似文献   

15.
We present results from interpretation of a 3D seismic data set, located within the NW German sedimentary basin, as part of the Southern Permian Basin. We focused on the development of faults, the timing of deformation, the amount of displacement during multiphase deformation, strain partitioning, and the interaction between salt movements and faulting. We recognised the central fault zone of the study area to be the Aller-lineament, an important NW-trending fault zone within the superimposed Central European Basin System. From structural and sedimentological interpretations we derived the following evolution: (1) E–W extension during Permian rifting, (2) N–S extension within cover sediments, and E–W transtension affecting both basement and cover, contemporaneously during Late Triassic and Jurassic, (3) regional subsidence of the Lower Saxony Basin during Late Jurassic/Early Cretaceous, (4) N–S compression within cover sediments, and E–W transpression affecting both basement and cover, contemporaneously during Late Cretaceous/Early Tertiary inversion and (5) major subsidence and salt diapir rise during the Cenozoic. We suggest that the heterogeneity in distribution and timing of deformation in the working area was controlled by pre-existing faults and variations in salt thickness, which led to stress perturbations and therefore local strain partitioning. We observed coupling and decoupling between pre- and post-Zechstein salt units: in decoupled areas deformation occurred only within post-salt units, whereas in coupled areas deformation occurred in both post- and pre-salt units, and is characterised by strike-slip faulting.  相似文献   

16.
Tectonic subsidence of thermally generated basins is sensitive to the insulating effect of sediment. Compacting sediment reduces thermal subsidence, increases apparent stretching factors and reduces uncertainty in estimates of the breakup age. The transient effect of sediment insulation on the shape of the subsidence curve is considered by comparing model results with an exponential fit from 16 to 144 Myr after breakup. Misfits are dependent on the model parameters used, the degree of stretching, the degree of sediment compaction and the bottom boundary condition used in modelling. The magnitude of the misfit ranges up to 90 m (uncorrected for eustatic loading). These effects may alter the interpretation of backstripping results. Application to a data set from the Cambro-Ordovician miogeocline of the Great Basin, western USA, increases apparent stretching factors and reduces uncertainty in the predicted earliest Cambrian breakup age. In this case the misfits to exponential subsidence are quite large (?300 m) so that correction for the insulating effect of sediment does not eliminate a probable eustatic signal consistent with the Sauk sequence. If a eustatic signal is assumed, correction for model error suggests that the thermal parameters used are an improvement over those previously adopted and that the base of the lithosphere thins as sediments are added at the surface.  相似文献   

17.
The base of the Late Devonian–Early Carboniferous Drummond Basin, a major backarc extensional feature in eastern Australia which formed in response to detachment faulting, is extensively exposed in central Queensland. Here a crystalline basin floor is overlain by the Silver Hills Volcanics, a synrift sequence of predominantly silicic ash flow tuffs and lavas ranging to over 2 km in thickness. Detailed mapping of faults and stratigraphic logging of thickness changes within the Silver Hills Volcanics have allowed the rift-phase structural architecture that accompanied initial subsidence near the basin margin to be resolved. A complex mosaic of block faults with throws of up to 1 km is indicated. Locally developed mosaics may conform to, or depart from, the configuration predicted by the detachment faulting model. Structural fabric of the basement was a critical determinant of the extensional geometry. Distributed shear along pre-existing penetrative planar fabrics is considered to have accommodated hangingwall extension at lower strain rates whereas the propagation of tension fractures and the development of block faults by failure on pre-existing, brittle, basement dislocations facilitated extension at higher strain rates. The detachment fault inferred to lie beneath the extended hangingwall carapace has not been mapped at the surface and is thought to dissipate into a broad zone of distributed shear within basement to the east of the basin. Volcanism coincided with the initiation of extensional movements at which time deep crustal repositories for evolved magma were tapped by extensional fractures. The main extensional faults cutting the basinal succession were not used as conduits for magmatic products which were sourced from the basin margin and from extended hinterland to the east.  相似文献   

18.
珠江流域多尺度极端降水时空特征及影响因子研究   总被引:3,自引:0,他引:3  
基于珠江流域74个气象站点1952~2013年逐日降水和气温数据,采用POT抽样、Mann-Kendall(MK)趋势检验、泊松回归等方法,从降水量级、降水频率及发生时间等方面系统分析了珠江流域年、雨季及旱季3个时间尺度上的极端降水特征,并从降水对温度变化响应及ENSO影响等角度,探讨了极端降水变化特征的机理。研究表明:珠江流域极端降水年内分布不均,多发于4~9月,其中6月份发生频率最高;珠江流域极端降水频率在雨季及年际间分布较为均匀。但在旱季,珠三角地区极端降水在不同年份差异性较大;在雨季及年际尺度上,极端降水年序列趋势性并不显著;而相对干旱季节,极端降雨量级、发生频次均随年份增加呈显著上升趋势,且发生时间提前。珠江流域农业以水稻(Oryzasativa)种植为主,旱季极端降水增加易导致冬汛及其引起的作物倒伏与农田渍涝等灾害,同时对秋冬防洪提出新的挑战,需要引起人们的关注;温度升高和ENSO事件对珠江流域极端降水过程有显著影响。从ENSO影响的角度讲,在厄尔尼诺年,珠江流域西部极端降水量级和频率增加,而流域东部沿海区域极端降水量级减少,时间延后。  相似文献   

19.
在回顾南海北部海岸和陆架地层证据的基础上,梳理了珠江三角洲晚第四纪演变历史。结果显示:1)本区晚第四纪地层拥有2套海相沉积,上(新)海相层是当前间冰期(或10.5 ka B.P.以来)高海平面期间形成的沉积物,而下(老)海相层最可能是末次间冰期(126―120 ka B.P.)高海平面阶段留下的沉积物;2)老海相层顶面埋深在三角洲盆地内至少比现今海平面低10~15 m,在珠江口一带则低于20 m,这说明珠江三角洲盆地存在构造沉降,因为2次间冰期的海平面高度是相近的;3)在新生代欧亚板块大陆向东南伸展的构造格局下,南海北部陆架和海岸带经历长期连续的沉降,而长期平均沉降率在0.12 mm/a左右,明显低于GPS测出的现代沉降率;4)在这种板块运动基础上,晚第四纪断裂活动增强了三角洲盆地的沉降,为2次海侵提供了可容沉积空间。  相似文献   

20.
基于社会脆弱性的中国高温灾害人群健康风险评价   总被引:11,自引:3,他引:8  
谢盼  王仰麟  刘焱序  彭建 《地理学报》2015,70(7):1041-1051
本研究通过综合考虑高温胁迫、社会脆弱性和人口暴露,提出基于社会脆弱性的高温灾害风险评价框架,结合气象数据、遥感数据、社会经济数据构建多元数据融合的评价指标体系,开展全国分县高温灾害风险评价。研究结果表明,高温灾害脆弱性热点区域主要集中在中国新疆西部、豫西皖北交界处、四川盆地、洞庭湖流域、广西境内珠江流域;而华中地区湖北江汉平原和湖南洞庭湖流域、西南地区四川省和重庆市交界处的四川盆地、华东地区江浙沪一带、华南珠江流域,则是中国突出的高温灾害风险热点区。高温灾害脆弱性热点区和高温灾害风险热点区的分布出现比较明显的差异,高温灾害脆弱性热点区主要分布于高温胁迫较高或社会经济较差的不发达地区,区域人群由于经济上的适应能力较差而受到高温威胁的概率较大;而高温灾害风险则强调灾害一旦发生时的可能损失,其热点区域主要分布于人口聚集、经济较为发达的大城市区域。就主导因子分区来说,高温胁迫主导区域主要为平原、盆地以及大江大河流域,社会脆弱性主导区域主要位于经济欠发达地区以及脆弱性人群聚集区;人口暴露主导区域则主要集中在人口密集的中心城市和沿海地区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号