首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Debris flows in the Gleivarhjalli area in northwestern Iceland occurred after a sudden and intensive snowmelt period during 10–12 June, 1999. The area, in the northwestern part of the town of Ísafjörvur, was chosen for a detailed study. Meteorological data and bedrock conditions, triggering mechanisms and geomorphological and human impacts were examined. This paper describes and emphasises the role of rapid snowmelt as a mechanism for the release of debris flows in a subpolar basaltic fjord setting. Post‐event mapping of erosional and depositional landforms showed strong geomorphic impacts of debris flows and their role in mass transfer in a mountainous environment. The estimated denudation rate for the singleevent is 0.29 mm/km2. The use of a new lichen growth curve provides relative dating of previous unreported events. Finally, the paper estimates the mean return period for debris‐flow events in the Gleivarhjalli area as 4–5 years, thus constituting a serious threat to the community.  相似文献   

2.
Through the alteration of the physical characteristics of a landscape, such as the destruction of vegetation and the formation of a hydrophobic layer, a fire can dramatically amplify erosion rates. On the basis of field observations, it has been proposed that the deposition of a layer of ash on the ground surface can enhance the erosion of mountainous terrain by surface runoff and might even be a necessary condition for the generation of progressively bulked debris flows. In this study, a flume was constructed to investigate the role of ash in increasing both the volume and the transport capacity of runoff. The experiments demonstrated that the presence of ash on the soil surface reduces the ability of flowing water to infiltrate; this effect is even greater when the ash has been pre-wetted. In addition, the ability of ash slurries to infiltrate decreases with increasing ash concentration. The results also indicate that the transport capacity of runoff is enhanced by the incorporation of ash into the flow because of the increased fluid density. However, the addition of ash reduces the boundary Reynolds number such that, at high ash concentrations and with fine-grained sediment, sediment transport declines as the flow becomes hydraulically smooth. The experimental results were also used to evaluate the ability of steep flow fronts, a common characteristic of debris flows and flash floods, to increase sediment transport rates. Finally, it is proposed that ash slurries may evolve into progressively bulked debris flows through a positive feedback between fluid density, transport capacity, and erosivity.  相似文献   

3.
Coupled hillslope and channel processes in headwater streams (HWS) lead to rapid changes in channel dimensions. Changes in channel size and shape caused by a debris flow event along the length of a headwater stream in the Ashio Mountains, Japan, were captured with the aid of repeat high-definition surveys using terrestrial laser scanning (TLS) techniques. The HWS was classified into three distinct reaches below the debris flow initiation zone. A large knickpoint separated an upper bedrock reach from a colluvial reach along the midsection of the drainage. The colluvial reach transitioned to a lower bedrock reach that terminated at the master stream. Cross-sectional and morphometric analyses revealed no statistically significant changes in channel size or shape along the upper bedrock reach. Debris flow erosion generated significant differences in channel size and shape along a colluvial reach. Sediment bulking associated with erosion along the colluvial reach led to increases in channel size along the lower bedrock reach, but no statistical differences in channel shape. Morphometric analyses from the TLS point cloud revealed that debris flow erosion produced a distinct nonlinear change in channel dimensions in the downstream direction within the HWS. Variations in channel substrate along the length of HWS contributed directly to this nonlinear response. The episodic nature and nonlinearity of erosion associated with the current debris flow event highlights the importance of debris flows in general in understanding the transport of sediment, coarse to fine particulate organic material, and large woody debris, which are critical to the long-term management of riverine environments. TLS sampling methods show promise as one component of a multianalytical approach needed to continuously monitor and manage the dynamics of HWS.  相似文献   

4.
坡面泥石流发生的坡度阀值研究   总被引:1,自引:1,他引:0  
曾凡伟  徐刚  李青 《地理科学》2005,25(2):244-247
对重庆市北碚区的21个坡面泥石流的实地调查表明,坡度对坡面泥石流发生具有重要的控制性作用。在对坡面泥石流流域大量原始坡度进行统计分析后发现,各坡面泥石流的坡度服从正态分布规律。根据这一分布规律,将本区坡面泥石流发生的坡度阀值确定为三类。文章从定量的角度阐述了坡度阀值与坡面泥石流发生的关系,为生态脆弱区的划分、工程建设、防灾减灾和政府决策提供服务。  相似文献   

5.
坡度阀值与坡面泥石流--以重庆市北碚区为例   总被引:5,自引:0,他引:5  
通过对重庆市北碚区的 2 1个坡面泥石流的实地调查表明 ,坡度对坡面泥石流发生具有重要控制性作用。在对坡面泥石流流域大量原始坡度进行统计分析后发现 ,各坡面泥石流的坡度分布具有明显的正态分布特征 ,且平均坡度分布具有显著的规律。根据这一分布规律 ,将本区坡面泥石流发生的坡度阀值确定为三类 :第一类的坡面泥石流植被覆盖率高 ,远离居民区 ,人类影响活动微弱 ,坡度阀值为 32 4° ;第二类坡面泥石流无一例外均位于林地结合部 ,森林覆盖率很低 ,人类活动影响十分剧烈 ,坡度阀值为 2 7 3° ;第三类的两条坡面泥石流相邻 ,均位于观音峡峡谷地带 ,它们的发生完全受地形条件的控制 ,坡度阀值为 36 8°。本文从定量的角度阐述了坡度阀值与坡面泥石流发生的关系 ,为生态脆弱区的划分、工程建设、防灾减灾和政府决策提供服务  相似文献   

6.
Comparing models of debris-flow susceptibility in the alpine environment   总被引:12,自引:3,他引:9  
Debris-flows are widespread in Val di Fassa (Trento Province, Eastern Italian Alps) where they constitute one of the most dangerous gravity-induced surface processes. From a large set of environmental characteristics and a detailed inventory of debris flows, we developed five models to predict location of debris-flow source areas. The models differ in approach (statistical vs. physically-based) and type of terrain unit of reference (slope unit vs. grid cell). In the statistical models, a mix of several environmental factors classified areas with different debris-flow susceptibility; however, the factors that exert a strong discriminant power reduce to conditions of high slope-gradient, pasture or no vegetation cover, availability of detrital material, and active erosional processes. Since slope and land use are also used in the physically-based approach, all model results are largely controlled by the same leading variables.Overlaying susceptibility maps produced by the different methods (statistical vs. physically-based) for the same terrain unit of reference (grid cell) reveals a large difference, nearly 25% spatial mismatch. The spatial discrepancy exceeds 30% for susceptibility maps generated by the same method (discriminant analysis) but different terrain units (slope unit vs. grid cell). The size of the terrain unit also led to different susceptibility maps (almost 20% spatial mismatch). Maps based on different statistical tools (discriminant analysis vs. logistic regression) differed least (less than 10%). Hence, method and terrain unit proved to be equally important in mapping susceptibility.Model performance was evaluated from the percentages of terrain units that each model correctly classifies, the number of debris-flow falling within the area classified as unstable by each model, and through the metric of ROC curves. Although all techniques implemented yielded results essentially comparable; the discriminant model based on the partition of the study area into small slope units may constitute the most suitable approach to regional debris-flow assessment in the Alpine environment.  相似文献   

7.
Recently burned basins frequently produce debris flows in response to moderate-to-severe rainfall. Post-fire hazard assessments of debris flows are most useful when they predict the volume of material that may flow out of a burned basin. This study develops a set of empirically-based models that predict potential volumes of wildfire-related debris flows in different regions and geologic settings.The models were developed using data from 53 recently burned basins in Colorado, Utah and California. The volumes of debris flows in these basins were determined by either measuring the volume of material eroded from the channels, or by estimating the amount of material removed from debris retention basins. For each basin, independent variables thought to affect the volume of the debris flow were determined. These variables include measures of basin morphology, basin areas burned at different severities, soil material properties, rock type, and rainfall amounts and intensities for storms triggering debris flows. Using these data, multiple regression analyses were used to create separate predictive models for volumes of debris flows generated by burned basins in six separate regions or settings, including the western U.S., southern California, the Rocky Mountain region, and basins underlain by sedimentary, metamorphic and granitic rocks.An evaluation of these models indicated that the best model (the Western U.S. model) explains 83% of the variability in the volumes of the debris flows, and includes variables that describe the basin area with slopes greater than or equal to 30%, the basin area burned at moderate and high severity, and total storm rainfall. This model was independently validated by comparing volumes of debris flows reported in the literature, to volumes estimated using the model. Eighty-seven percent of the reported volumes were within two residual standard errors of the volumes predicted using the model. This model is an improvement over previous models in that it includes a measure of burn severity and an estimate of modeling errors. The application of this model, in conjunction with models for the probability of debris flows, will enable more complete and rapid assessments of debris flow hazards following wildfire.  相似文献   

8.
S.J. Hampton  J.W. Cole   《Geomorphology》2009,104(3-4):284-298
Lyttelton Volcano, Banks Peninsula, New Zealand, has historically been viewed as a simple volcanic cone. This paper uses digital terrain models (DTM) and primary volcanic landforms to reinterpret Lyttelton Volcano as having multiple eruptive centres. Primary volcanic landforms are features produced during active volcanism, classified as constructional, hypabyssal, and erosional volcanic features. Constructional volcanic features are lava flows, scoria cones and domes; hypabyssal volcanic features are dykes and sills; and erosional volcanic features are valley and ridge patterns and orientations. Lava flow trends are recognised from aerial photograph analysis and supported by field observations, highlighting radiating lava trends around specific locations within Lyttelton Harbour. Scoria cones and domes occur on the outer flanks of volcanic cones, and are used as such in the identification of remnant cone surfaces. Dyke orientations are plotted and then projected to the interior of the volcano, defining 13 zones of convergence. The projected arrays of these orientations highlight defined regions along the erosional crater rim, each indicating a radial dyke swarm, from which the projected trends of the associated dykes indicate an eruptive centre. Valley and ridge orientations are projected from the longest valley or ridge segment, towards the inner harbour. Radiating erosive patterns are incepted during the growth and degradation of a volcanic cone, with the resulting trends orienting to the summit. Zones of convergence/eruptive centres are identified from lava flow orientations, onlapping lava sequences, scoria cones, and intrusive locations. The summit of a volcanic edifice can be identified from the orientations of valleys and ridges, while radial dyke systems determine whether this summit was a volcanic centre or simply a local topographic high. Volcanic landforms are used to identify cone sectors, the preserved sector associated with a particular eruptive centre. Cone sector limits are defined by a basal footprint and an erosional crater rim, with similar arcuate features (remnant cone features) being exposed in the interior of the volcano. Lyttelton Volcano comprises fifteen volcanic cones, with vent locations controlled by underlying fault lineaments. The growth and erosion of each volcanic cone is reflected in primary volcanic landforms, with the preserved features of cones confined to cone sectors and cone artefacts.  相似文献   

9.
中国2004年泥石流灾害特点及其对减灾的启示   总被引:7,自引:0,他引:7  
崔鹏 《山地学报》2005,23(4):437-441
分析了我国2004年成灾特点,大陆首次出现大规模的大风泥石流,在植被较好的地区仍然有泥石流发生,年内同一地区多次成灾增大了灾害损失,建筑选址不当是造成人员死亡的一个重要原因,低频性泥石流常造成严重灾害.受上述成灾特点的启示,提出在进行潜在泥石流判识时要慎重对待植被较好的区域,注重对低频泥石流的防范,在建筑物选址时应注意潜在泥石流危害,加强重大工程建设区泥石流灾害的预警,建立群测群防体系,进行监测预警,制定临灾预案,发展灾害保险业务以分担灾害风险等减灾对策.  相似文献   

10.
泥石流警报技术探索   总被引:1,自引:0,他引:1  
泥石流警报是减轻泥石流灾害,尤其是减少人员伤亡和贵重财物损失的重要手段.泥石流警报划分为4个类型:提示性警报、形成性警报、非成灾性警报和成灾性警报.泥石流警报的监测机构,划分为4个级别:泥石流预警一级监测站、二级监测站、三级监测站和预警简易监测点.泥石流预警一级监测站主要承担泥石流可能造成的特大灾和超特大灾的警报监测任务,二级监测站主要承担泥石流可能造成的大灾的警报监测任务,三级监测站主要承担泥石流可能造成的中灾的警报监测任务,泥石流预警简易监测点主要承担泥石流可能造成的小灾的警报监测任务.泥石流警报的监测项目:专业监测包括降水、气象其他要素、泥石流次声、地声、泥位、流速、重度、粘度、沟道冲淤变化和次生灾害等,简易监测包括泥石流暴发的前兆现象、降水、水(泥)位与泥沙变化状态和泥石流次声等.泥石流警报的监测数据包括降水、气象其他要素、泥位、流速、重度、粘度、次声、地声、沟道冲淤变化和次生灾害数据等.泥石流成灾性警报分为4等14级,讨论并给出了各等级成灾性警报的临界指标.监测数据的整理分析包括:降水监测的实时降水量要不断地整理为10 min、1 h和1 d的滑动降水量(强度),并不断地与当地以往暴发泥石流的10 min、1 h和1 d降水量(强度)相比较;断面监测数据中的泥石流泥位应转化为泥石流流动的断面面积,并与断面监测数据中的泥石流流速数据结合,通过公式Qc=Wc×Vc转换为泥石流流量.泥石流一旦堵断主河(沟)形成堰塞湖,应立即测量壅塞体的高度,并据此量测和计算堰塞湖的淹设范围及堰塞湖的积蓄水量,评估壅塞体溃决时可能形成的最大流量及其危害范围.泥石流警报的时间提前量t(单位:s),由公式t=L/Vc确定.  相似文献   

11.
In the fall of 2001, an intense thunderstorm in southwest Montana triggered many debris flows in the burned area of Sleeping Child Creek. In most instances, the debris flows cut deep gullies into previously unchannelized colluvial hollows and deposited large volumes of sediment onto the valley floor. The presence of rill networks above the gullies as well as the absence of landslide features indicate that the gullies were scoured by progressively bulked debris flows, a process in which dilute surface runoff becomes increasingly more laden with sediment until it transforms into a debris flow. In this contribution, we present a morphometric analysis of six of the gullies to better understand this relatively understudied process. We find that the locations of the rill heads and gully heads conform to slope-area thresholds that are characteristic of erosion by overland flow. Our data also suggest that the volumes of the debris flows increase exponentially with normalized drainage area, thus lending support to an assumption used in a recently proposed debris flow incision law. Finally, the debris flow fans have been relatively unaltered since deposition, suggesting that the valley may be currently aggrading while the hillslopes are being denuded.  相似文献   

12.
Debris flows are a common event in mountainous environments. They often possess the greatest potential for destruction of property and loss of lives in these regions. Delimiting the spatial extent of potential damage from debris flows relies on detailed studies of the location of depositional zones. Current research indicates debris flow fans have two distinct depositional zones. However, the two zones were derived from studies containing detailed analyses of only a few fans. High resolution airborne laser swath mapping (ALSM) data is used to calculate profile curvature and surface gradient on 19 debris flow fans on the eastern side of Death Valley. The relationship between these parameters is assessed to 1) identify if debris flow fans are accurately represented by two depositional zones, and 2) to assess how these terrain parameters relate to one another at the individual fan scale. The results show at least three zones of deposition exist within the sampled fans. These zones do not hold consistent when individual fan morphometry is analyzed in conjunction with localized fan surface gradients. Fans with consistently shallower gradients exhibit numerous depositional zones with more subtle changes in profile curvature. Steeper gradient fans exhibit significantly fewer zones with more pronounced local changes in profile curvature. The surface complexity of debris flow fans is evident from these analyses and must be accounted for in any type of hazard studies related to these features.  相似文献   

13.
The vegetation on debris flow deposits is examined at seven sites in the Canadian Rocky Mountains. Plant cover, colonizing tree ages, species' presence and abundance, and new stem ages on buried willows are vegetation parameters evaluated for the purpose of dating debris flows. The results indicate that general trends of vegetation development on debris flow deposits can be used to date recent events, at least relatively. The use of several methods to corroborate estimations of deposit age is usually necessary. An optimal approach is to combine absolute and relative dating techniques in evaluating debris flow occurrence, extent, and potential hazard.  相似文献   

14.
Debris flows are one of the many active slope-forming processes within Glacier National Park, Montana. Most debris flow landforms exhibit classic morphology with a distinct failure scarp, incised channel, channel levees, and toe deposits that often develop a lobate form. The Precambrian metasediments that dominate Glacier National Park's geology weather into angular clasts that range in size from platy gravels to boulders. Classic debris flows occur in areas where the topographic expression provides a debris source from cliff faces and an accumulation of regolith, often in the form of talus slopes. Many of these debris flows have long runout zones and can travel many hundreds of meters. Often they cross hiking trails or roads, including the main east–west highway, Going-to-the-Sun Road. Debris flows impacting the road have resulted in several near fatalities, and hikers have been forced to cross active debris flows to reach safe ground. The magnitude of debris flows varies between high magnitude channel incising events and low magnitude channel filling and/or reworking events. The frequency of debris flow events is irregular and appears to be controlled by the hydrology of triggering storms and antecedent moisture conditions, not by the debris supply. As a result, debris flow magnitude is not a function of frequency, but is more closely related to the characteristics of antecedent conditions and individual storms.  相似文献   

15.
In this paper we explore the development and assimilation of a high resolution topographic surface with a one-dimensional hydraulic model for investigation of avulsion hazard potential on a gravel-bed river. A detailed channel and floodplain digital terrain model (DTM) is created to define the geometry parameter required by the 1D hydraulic model HEC-RAS. The ability to extract dense and optimally located cross-sections is presented as a means to optimize HEC-RAS performance. A number of flood scenarios are then run in HEC-RAS to determine the inundation potential of modeled events, the post-processed output of which facilitates calculation of spatially explicit shear stress (τ) and level of geomorphic work (specific stream power per unit bed area, ω) for each of these. Further enhancing this scenario-based approach, the DTM is modified to simulate a large woody debris (LWD) jam and active-channel sediment aggradation to assess impact on innundation, τ, and ω, under previously modeled flow conditions. The high resolution DTM facilitates overlay and evaluation of modeled scenario results in a spatially explicit context containing considerable detail of hydrogeomorphic and other features influencing hydraulics (bars, secondary and scour channels, levees). This offers advantages for: (i) assessing the avulsion hazard potential and spatial distribution of other hydrologic and fluvial geomorphic processes; and (ii) exploration of the potential impacts of specific management strategies on the channel, including river restoration activities.  相似文献   

16.
This study explores the surface variability of alluvial fans from digital elevations model (DEM) derivatives generated from 1-m planimetric resolution airborne laser swath mapping data. Channel and interfluve dimensions of debris flow (DF) fans and fans generated from predominantly fluvial flows and some older debris flows (mixed flow [MF]) are extracted with the aid of a planimetric curvature classification. Significant differences are identified between the fan surface topography of DF and MF fans. MF fans tend to have smaller channel and interfluve widths, have smaller elevation differences between the crest of the interfluve and channel, and are more dissected than DF fans. The morphometric differences between the two fan classes can be explained by differences in the primary processes that develop the surficial features, but also the preponderance for secondary erosional processes acting on the MF fans.  相似文献   

17.
Debris flow initiation and sediment recharge in gullies   总被引:2,自引:0,他引:2  
Drew Brayshaw  Marwan A. Hassan   《Geomorphology》2009,109(3-4):122-131
Landslides that enter gullied low-order drainages can either initiate debris flow or stop, depositing sediment in the channel. This process is one of the most common ways that debris flows initiate, but little attention to date has been paid to evaluating the factors that affect whether or not the initial landslide will become a debris flow or deposit sediment in the channel. Statistically significant parameters that determine whether slope failures become debris flows or act to recharge in-channel sediment are channel gradient, angle of entry of failure into the channel, initial failure volume, and the amount of in-channel stored sediment. Steeper channels, low angles of entry, lower volumes of in-channel sediment, and larger initial failures were more likely to result in debris flows. This study found that as the volume of in-channel stored sediment increased, the volume of initial failure required to initiate a debris flow also increased. This result calls into question the simple supply-limited model of cyclical debris recharge and debris flow in low-order gullied drainages and suggests a negative feedback mechanism between debris accumulation and debris flow susceptibility.  相似文献   

18.
神府东胜煤田我国本世纪重要能源供应地,90年代大规模开发以来泥石流频繁发生,通过实地考察发现:神府东胜煤田泥石流规模小、同人为诱发的人为泥石流,泥石流的分布特征与人工采石场等弃土弃堆放地的分布紧密对应;泥石流呈集群式分布,与地面物质组成密切相关;泥石流主要分布在面积为1km^2以下的二级沟里。  相似文献   

19.
川西北高原地貌垂直地带性明显:现在流水地貌带海拔高度<3800m;冰缘地貌带为38004200m;冰川地貌带>4200m;相应的主导地貌过程分别是流水侵蚀、冻融侵蚀和冰川侵蚀。川西北高原是大面积构造隆升背景下冻融侵蚀形成的夷平地貌,花岗岩和石灰岩等结晶岩抗寒冻风化能力强,三叠系砂板岩,抗寒冻风化能力差,前者可以形成冰川发育的高山,后者为融冻地貌等发育的丘状起伏的高原面。南水北调西线一期工程主要位于流水地貌带与冰缘地貌带的交界地带,滑坡、崩塌、融冻土流是工程沿线的主要斜坡灾害,规模多为中小型。工程沿线地区泥石流沟数量多、规模小,但流水地貌带内的部分沟谷可能有大型泥石流发生。融冻土流是该区河流泥沙的主要来源,侵蚀产沙对水库淤积的影响应引起重视。冰缘地貌和流水地貌的交错带部位,地貌过程对气候变化的响应相当敏感。  相似文献   

20.
Several rainstorms with strong erosional effects have been recorded in Scandinavia during recent decades. The erosion occurs by the release of rapid mass movements on mountain slopes or through fluvial incision and bank collapse along streams and rivers. Various factors, such as terrain characteristics and seasonal timing of the rainstorm event, are thought to favour the predominance of either of the two types of erosion for particular events. A new example of this variable impact of rainstorms is briefly described, and related research issues are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号