首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Urban hierarchies are closely related to economic growth, urban planning and sustainable urban development. Due to the limited availability of reliable statistical data at fine scales, most existing studies on urban hierarchy characterization failed to capture the detailed urban spatial structure information. Previous studies have demonstrated that night time light data are correlated with many urban socio-economic indicators and hence can be used to characterize urban hierarchies. This paper presents a novel method for studying urban hierarchies from night time light data. Night time light data were first conceptualized as continuous mathematical surfaces, termed night time light surfaces. From the morphology of these surfaces the corresponding surface networks were derived. Hereafter, a night time light intensity (NTLI) graph was defined to describe the morphology of the surface network. Then, structural similarity between the night time light surfaces of any two different cities was calculated via a threshold-based maximum common induced graph searching algorithm. Finally, urban hierarchies were defined on the basis of the structural similarities between different cities. Using the 2015 annual NPP-VIIRS night time light data, the urban hierarchies of 32 major cities in China were successfully examined. The results are highly consistent with the reference urban hierarchies.  相似文献   

2.
Our research is concerned with automated generalisation of topographic vector databases in order to produce maps. This article presents a new, agent-based generalisation model called CartACom (Cartographic generalisation with Communicating Agents), dedicated to the treatment of areas of low density but where rubber sheeting techniques are not sufficient because some eliminations or aggregations are needed. In CartACom, the objects of the initial database are modelled as agents, that is, autonomous entities, that choose and apply generalisation algorithms to themselves in order to increase the satisfaction of their constraints as much as possible. The CartACom model focuses on modelling and treating the relational constraints, defined as constraints that concern a relation between two objects. In order to detect and assess their relational constraints, the CartACom agents are able to perceive their spatial surroundings. Moreover, to make the good generalisation decisions to satisfy their relational constraints, they are able to communicate with their neighbours using predefined dialogue protocols. Finally, a hook to another agent-based generalisation model – AGENT – is provided, so that the CartACom agents can handle not only their relational constraints but also their internal constraints. The CartACom model has been applied to the generalisation of low-density, heterogeneous areas like rural areas, where the space is not hierarchically organised. Examples of results obtained on real data show that it is well adapted for this application.  相似文献   

3.
Hierarchies of superimposed structures are found in maps of geological horizons in sedimentary basins. Mapping based on three‐dimensional (3D) seismic data includes structures that range in scale from tens of metres to hundreds of kilometres. Extraction of structures from these maps without a priori knowledge of scale and shape is analogous to pattern recognition problems that have been widely researched in disciplines outside of Geoscience. A number of these lessons are integrated and applied within a geological context here. We describe a method for generating multiscale representations from two‐dimensional sections and 3D surfaces, and illustrate how superimposed geological structures can be topologically analysed. Multiscale analysis is done in two stages – generation of scale‐space as a geometrical attribute, followed by identification of significant scale‐space objects. Results indicate that Gaussian filtering is a more robust method than conventional moving average filtering for deriving multiscale geological structure. We introduce the concept of natural scales for identifying the most significant scales in a geological cross section. In three dimensions, scale‐dependent structures are identified via an analogous process as discrete topological entities within a four‐dimensional scale‐space cube. Motivation for this work is to take advantage of the completeness of seismic data coverage to see ‘beyond the outcrop’ and yield multiscale geological structure. Applications include identifying artefacts, scale‐specific features and large‐scale structural domains, facilitating multiscale structural attribute mapping for reservoir characterisation, and a novel approach to fold structure classification.  相似文献   

4.
Geographic data themes modelled as planar partitions are found in many GIS applications (e.g. topographic data, land cover, zoning plans, etc.). When generalizing this kind of 2D map, this specific nature has to be respected and generalization operations should be carefully designed. This paper presents a design and implementation of an algorithm to perform a split operation of faces (polygonal areas).

The result of the split operation has to fit in with the topological data structure supporting variable-scale data. The algorithm, termed SPLITAREA, obtains the skeleton of a face using a constrained Delaunay triangulation. The new split operator is especially relevant in urban areas with many infrastructural objects such as roads. The contribution of this work is twofold: (1) the quality of the split operation is formally assessed by comparing the results on actual test data sets with a goal/metric we defined beforehand for the ‘balanced’ split and (2) the algorithm allows a weighted split, where different neighbours have different weights due to different compatibility. With the weighted split, the special case of unmovable boundaries is also explicitly addressed.

The developed split algorithm can also be used outside the generalization context in other settings. For example, to make two cross-border data sets fit, the algorithm could be applied to allow splitting of slivers.  相似文献   


5.
One feature discovered in the study of complex networks is community structure, in which vertices are gathered into several groups where more edges exist within groups than between groups. Many approaches have been developed for identifying communities; these approaches essentially segment networks based on topological structure or the attribute similarity of vertices, while few approaches consider the spatial character of the networks. Many complex networks are spatially constrained such that the vertices and edges are embedded in space. In geographical space, nearer objects are more related than distant objects. Thus, the relations among vertices are defined not only by the links connecting them but also by the distance between them. In this article, we propose a geo-distance-based method of detecting communities in spatially constrained networks to identify communities that are both highly topologically connected and spatially clustered. The algorithm is based on the fast modularity maximisation (CNM) algorithm. First, we modify the modularity to geo-modularity Qgeo by introducing an edge weight that is the inverse of the geographic distance to the power of n. Then, we propose the concept of a spatial clustering coefficient as a measure of clustering of the network to determine the power value n of the distance. The algorithm is tested with China air transport network and BrightKite social network data-sets. The segmentation of the China air transport network is similar to the seven economic regions of China. The segmentation of the BrightKite social network shows the regionality of social groups and identifies the dynamic social groups that reflect users’ location changes. The algorithm is useful in exploring the interaction and clustering properties of geographical phenomena and providing timely location-based services for a group of people.  相似文献   

6.
The Pipanaco Basin, in the southern margin of the Andean Puna plateau at ca. 28°SL, is one of the largest and highest intermontane basins within the northernmost Argentine broken foreland. With a surface elevation >1000 m above sea level, this basin represents a strategic location to understand the subsidence and subsequent uplift history of high‐elevation depositional surfaces within the distal Andean foreland. However, the stratigraphic record of the Pipanaco Basin is almost entirely within the subsurface, and no geophysical surveys have been conducted in the region. A high‐resolution gravity study has been designed to understand the subsurface basin geometry. This study, together with stratigraphic correlations and flexural and backstripping analysis, suggests that the region was dominated by a regional subsidence episode of ca. 2 km during the Miocene‐Pliocene, followed by basement thrusting and ca. 1–1.5 km of sediment filling within restricted intermontane basin between the Pliocene‐Pleistocene. Based on the present‐day position of the basement top as well as the Neogene‐Present sediment thicknesses across the Sierras Pampeanas, which show slight variations along strike, sediment aggradation is not the most suitable process to account for the increase in the topographic level of the high‐elevation, close‐drainage basins of Argentina. The close correlation between the depth to basement and the mean surface elevations recorded in different swaths indicates that deep‐seated geodynamic process affected the northern Sierras Pampeanas. Seismic tomography, as well as a preliminary comparison between the isostatic and seismic Moho, suggests a buoyant lithosphere beneath the northern Sierras Pampeanas, which might have driven the long‐wavelength rise of this part of the broken foreland after the major phase of deposition in these Andean basins.  相似文献   

7.
Through field rainfall simulation experiments in an upland mountainous watershed of northern Thailand, we have identified two phenomena that increase the potential for Horton overland flow (HOF) generation on agricultural lands. First, there appears to be a transition period of 12–18 months, extending from the time of abandonment until the formation of a dense vegetation layer capable of intercepting rainfall and ponding surface water, during which HOF generation is accelerated. Simulation data indicate these recently abandoned fields may have runoff coefficients (ROCs) as high as 40% during large seasonal storms with wet antecedent soil moisture conditions. In comparison, actively cultivated lands and advanced (>16–18 months) fallow fields, the land surfaces existing before and after the threshold period, have ROCs≤4%. Secondly, compacted path surfaces initiate HOF within agricultural fields, which have saturated hydraulic conductivity (Ks) values that are 100–200 mm h−1 higher. In the study area, path/furrow networks, comprising 8–24% of field surface areas, are designed to provide walking access within fields and channel excess surface flow from the fields. Compared with hoed surfaces, path/furrows reduce the time to HOF generation by about 85% and have ROCs that are six times higher. Access paths have the lowest Ks values of all watershed surfaces, but conveyance efficiency of HOF generated on these surfaces is low. Even recently created field paths are capable of reducing runoff generation time by 40–90% and producing sixfold increases in ROCs. Collectively, the data suggest that agricultural erosion rates are accelerated during the 12–18-month threshold period following abandonment and during storms where path-generated HOF interacts with adjacent planting surfaces. Despite having periods of increased HOF generation, the total HOF contribution from agricultural fields to the basin stream hydrograph is similar in magnitude to that of unpaved roads, which occupy 95% less land area.  相似文献   

8.
The Jiloca depression, one of the largest morpho-structural units of the Iberian Range and traditionally considered as a neotectonic graben, is interpreted as a karst polje developed within an active halfgraben. This polje, 705 km2 in area, constitutes one of the largest documented poljes. Several evidences—(1) a sequence of eight-stepped levels of corrosion surfaces, (2) the reduced thickness of the basin fill, (3) fault-controlled mountain fronts with topographic scarps much higher than the structural throws—demonstrate that great part of the topographic relief of the depression has been generated by corrosional lowering rather than by tectonic subsidence. The height difference between the highest corrosion surface and the polje bottom indicate that the depression has been deepened around 300 m by corrosion processes. The initiation of the karst polje was determined by the creation of the Jiloca halfgraben by normal faults, which deformed a Pliocene regional erosion surface. The development of the polje has been controlled largely by the asymmetric structure and the slight neotectonic activity of the graben. Changes in the position of the polje bottom inferred from the slopes of the different corrosion surfaces (polje paleotopography) may have been controlled by neotectonic movements.  相似文献   

9.
This article provides a decentralized and coordinate-free algorithm, called decentralized gradient field (DGraF), to identify critical points (peaks, pits, and passes) and the topological structure of the surface network connecting those critical points. Algorithms that can operate in the network without centralized control and without coordinates are important in emerging resource-constrained spatial computing environments, in particular geosensor networks. Our approach accounts for the discrepancies between finite granularity sensor data and the underlying continuous field, ignored by previous work. Empirical evaluation shows that our DGraF algorithm can improve the accuracy of critical points identification when compared with the current state-of-the-art decentralized algorithm and matches the accuracy of a centralized algorithm for peaks and pits. The DGraF algorithm is efficient, requiring O(n) overall communication complexity, where n is the number of nodes in the geosensor network. Further, empirical investigations of our algorithm across a range of simulations demonstrate improved load balance of DGraF when compared with an existing decentralized algorithm. Our investigation highlights a number of important issues for future research on the detection of holes and the monitoring of dynamic events in a field.  相似文献   

10.
This article presents a geometric algebra-based model for topological relation computation. This computational model is composed of three major components: the Grassmann structure preserving hierarchical multivector-tree representation (MVTree), multidimensional unified operators for intersection relation computation, and the judgement rules for assembling the intersections into topological relations. With this model, the intersection relations between the different dimensional objects (nodes at different levels) are computed using the Tree Meet operator. The meet operation between two arbitrary objects is accomplished by transforming the computation into the meet product between each pair of MVTree nodes, which produces a series of intersection relations in the form of MVTree. This intersection tree is then processed through a set of judgement rules to determine the topological relations between two objects in the hierarchy. Case studies of topological relations between two triangles in 3D space are employed to illustrate the model. The results show that with the new model, the topological relations can be computed in a simple way without referring to dimension. This dimensionless way of computing topological relations from geographic data is significant given the increased dimensionality of geographic information in the digital era.  相似文献   

11.
Abstract

Incident solar radiation at the Earth's surface is the result of a complex interaction of energy between the atmosphere and the surface. Recently much progress has been made towards the creation of accurate, physically-based solar radiation formulations that can model this interaction over topographic and other surfaces (such as plant canopies) for a large range of spatial and temporal scales. In this paper we summarize our current work on solar radiation models and their implementation within both GIS and image processing systems. An overview of the effects of topography and plant canopies on solar radiation is presented along with a discussion of various options for obtaining the data necessary to drive specific solar radiation models. Examples are given from our own work using two models, ATM (Atmospheric and Topographic Model), a model based within an image processing framework, and SOLARFLUX, a GIS-based model. We consider issues of design, including GIS implementation and interface, computational problems, and error propagation.  相似文献   

12.
ABSTRACT

Cost surfaces are a crucial aspect of route optimization and least cost path (LCP) calculations and are used in awide range of disciplines including computer science, landscape ecology, and energy-infrastructure modeling. Linear features present akey weakness to traditional routing calculations along cost surfaces because they cannot identify whether moving from acell to its adjacent neighbors constitutes crossing alinear barrier (increased cost) or following acorridor (reduced cost). Following and avoiding linear features can drastically change predicted routes. We introduce an approach to address this adjacency issue using asearch kernel that identifies these critical barriers and corridors. We have built this approach into anew Java-based open-source software package– CostMAP (cost surface multi-layer aggregation program)– which calculates cost surfaces and cost networks using the search kernel. CostMAP allows users to input multiple GIS data layers and to set weights and rules for developing aweighted-cost network. We compare CostMAP performance with traditional cost surface approaches and show significant performance gains– both following corridors and avoiding barriers– by modeling the movement of alarge terrestrial animal– the Baird’s Tapir (Tapirus bairdii)– in amovement ecology framework and by modeling pipeline routing for carbon capture and storage (CCS).  相似文献   

13.
Site visibility analysis is an important research topic with many applications in Geographical Information Systems. This paper introduces a new paradigm in terrain guarding, called k-guarding. K-guarding is a generalization of the classic guarding problem where, instead of only one guard, each surface patch is guarded by at least k guards. Afterwards, two optimization problems based on k-guarding are defined: an optimum k-guarding, and a constrained k-guarding. There are three heuristic approaches—k-greedy add, k-stingy drop, and k-reverse greedy—that are proposed as a solution to the above-mentioned optimization problems. The first two are known approaches adapted to k-guarding, while k-reverse greedy is a new, original heuristic. The heuristics are compared using actual topographic surfaces. It is shown that our approach (k-reverse greedy) gives on average the best near optimum solutions. The most surprising finding of the experiments is that the combination of heuristics introduced here yields even better results.  相似文献   

14.
《Basin Research》2018,30(3):544-563
Previous research demonstrates that large basins on the periphery of the northern edge of the Tibetan Plateau were partitioned during development of intrabasin mountain ranges. These topographic barriers segregated basins with respect to surface flow and atmospheric circulation, ponded sediments, and formed rain shadows. However, complex mixing between airmasses and nonsystematic isotope‐elevation lapse rates have hampered application of quantitative paleoaltimetry to determine the timing of development of critical topographic barriers. We address the timing and drivers for changes in surface connectivity and atmospheric circulation in the Linxia and Xunhua basins using a multidisciplinary approach incorporating detrital zircon geochronology, Monte Carlo inverse flexural modelling, and published stable isotope data. Disruption of surface flow between the two basins during exhumation of the Jishi Shan preceded development of topography sufficient to intercept moisture‐bearing airmasses. Detrital zircon data point to disruption of an eastward‐flowing axial fluvial network between 14.7 and 13.1 Ma, coincident with the onset of exhumation in the Jishi Shan. Flexural modelling suggests that by 13 Ma, the Jishi Shan had developed 0.3 ± 0.1 km of relief; sufficient to disrupt eastward‐flowing drainage networks but insufficient to intercept moisture‐bearing airmasses. Stable isotope data indicate that, although surface connections between the Xunhua and Linxia basins were broken, the two basins continued to be dominated by a common climate regime until 9.3 Ma. Subsequent reintegration of surface flow between the basins occurred between 9.3 and 7.6 Ma. Divergence in the stable isotope and depositional environment records between the two basins suggests that at 9.3 Ma the paleo‐Yellow River breached the growing Jishi Shan dam, and may have reintegrated surface flow between the two basins via erosion of the modern Yellow River gorge, which transects the Jishi Shan. The reintegration of the Xunhua and Linxia basins’ surface connection is confirmed by reintroduction of a Songpan‐Ganzi flysch sediment source by 7.6 Ma. Continued exhumation and uplift of the Jishi Shan developed 0.8 ± 0.2 km of relief by ca. 8 Ma capable of intercepting moisture‐bearing airmasses; isolating and increasing aridity in the Xunhua Basin while decreasing it in the Linxia Basin. Our findings point to protracted development of the modern ca. 1 km of relief in the Jishi Shan between 14 and ca. 4.5 Ma followed by attainment of a topographic equilibrium which persists into modern times.  相似文献   

15.
Abstract The age of recent deposits can be determined using an intrinsic characteristic of the lichen ‘population’ growing on their surface. This paper presents a calibrated dating curve based on the gradient of the size‐frequency distribution of yellow‐green Rhizocarpon lichens. The dating potential of this new curve is tested on surfaces of known age in southeast Iceland. This particular size—frequency technique is also compared with the more traditional largest‐lichen approach. The results are very encouraging and suggest that the gradient can be used as an age indicator, at least on deposits formed within the last c. 150 years – and probably within the last c. 400 years – in the maritime subpolar climate of southeast Iceland. Using both lichenometric techniques, revised dates for moraines on two glacier forelands are presented which shed new light on the exact timing of the Little Ice Age glacier maximum in Iceland.  相似文献   

16.
In order to obtain qualitative and quantitative characteristics of leaf epidermal micromorphology and mesophyll structure to evaluate the responses of Elaeagnus angustifolia L. to different environment...  相似文献   

17.
A method is presented for generalising cartographic lines using an approach based on determination of their structure. Constrained Delaunay triangulation is used to construct a skeleton of the space surrounding the lines and hence represent line features in terms of skeleton branches. Several statistical measures are used to characterise the triangulation branches. The measures enable selective generalisation of different types of line feature, leading to the possibility of user-specification of the style of generalisation. In our implementation of the approach, the triangulation is updated dynamically to allow both sides of multiple lines to be processed, while guaranteeing topological consistency between the resulting generalised lines.  相似文献   

18.
Loci of extreme curvature of the topographic surface may be defined by the derivation function (T) depending on the first‐, second‐, and third‐order partial derivatives of elevation. The loci may partially describe ridge and thalweg lines. The first‐ and second‐order partial derivatives are commonly calculated from a digital elevation model (DEM) by fitting the second‐order polynomial to a 3×3 window. This approach cannot be used to compute the third‐order partial derivatives and T. We deduced formulae to estimate the first‐, second‐, and third‐order partial derivatives from a DEM fitting the third‐order polynomial to a 5×5 window. The polynomial is approximated to elevation values of the window. This leads to a local denoising that may enhance calculations. Under the same grid size of a DEM and root mean square error (RMSE) of elevation, calculation of the second‐order partial derivatives by the method developed results in significantly lower RMSE of the derivatives than that using the second‐order polynomial and the 3×3 window. An RMSE expression for the derivation function is deduced. The method proposed can be applied to derive any local topographic variable, such as slope gradient, aspect, curvatures, and T. Treatment of a DEM by the method developed demonstrated that T mapping may not substitute regional logistic algorithms to detect ridge/thalweg networks. However, the third‐order partial derivatives of elevation can be used in digital terrain analysis, particularly, in landform classifications.  相似文献   

19.
20.
Light may be an important limiting resource that influences community structure of chenopod shrublands. As part of a larger study that aimed to determine the factors that influence chenopod community structure, the focus of this study was the influence of plant canopy on the growth and establishment of smaller plants. We therefore measured the height and cover of three chenopods (Enchylaena tomentosa, Maireana brevifolia and Maireana georgei) when growing within and outside of the canopy of Atriplex bunburyana under field conditions. All three chenopods had lower cover and E. tomentosa was taller when growing within the canopy of A. bunburyana in comparison to those growing outside of the canopy. The chenopods were then grown under three artificial shade regimes. Plant height, cover, biomass, relative leaf area and photosynthetic surface area measurements showed that each species responded differently to shade. E. tomentosa biomass was facilitated by shade. This was inferred by an increase in total plant biomass. M. brevifolia, in contrast, tolerated shade by increasing above-ground biomass allocation. M. georgei was adversely affected by the shade regimes: root biomass decreased in response to shade. Competition for light is, therefore, likely to influence chenopod community structure of semi-arid and arid environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号