首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
The objective of this study is the production and visualization of an emotional map to reveal the unique emotions inherent to the areas surrounding the Yeongsan River, which is often referred to as ‘the cradle of civilization’ in Korea. The sites selected for this study are the 11 cities and districts (5667.6 km2) that cut across the vast granary in the southeastern region of Korea, near the Yeongsan River. The emotional map was produced by extracting features of historical and cultural heritage distributed throughout this region and by using a geographic information systems program and its functions for spatial analysis. A database was constructed through interviews with locals and Global Positioning System to index 4318 pieces of cultural heritage to achieve the visualization of emotions. Among the 558 historical relics considered for representing the regional culture, 100 with the largest emotional impact were selected. It was determined that loyalty (), justice (), courtesy (), resentment (), and anger () should be the major emotional elements. Methodologically, a set of regional, periodic, historical, and emotional classification codes were first systematized. After subjecting this data to inverse distance weight interpolation and vertical exaggeration coefficients, the three-dimensional emotional map could be visualized.  相似文献   

8.
9.
10.
11.
12.
13.
14.
The small catchment of Mengda Lake (700 m × 250 m, 20 m deep) lies in a mountainous area at the northeast margin of the Tibetan Plateau. Using sedimentary evidence and absolute age constraints, Wang et al. (J Paleolimnol 51:303–312, 2014) suggested that this lake formed in the early 20th century, perhaps as a consequence of a landslide associated with the 1927 Gulang M8 earthquake. I present evidence to question this hypothesis. Historical records show the lake has been in existence since at least AD 842, i.e. long before the 20th century, and thus its origin is unrelated to the 1927 Gulang earthquake. Documented damage from that shock supports my claim.  相似文献   

15.
This study represents a step towards developing seasonal climate inferences by using high-resolution modern data sets. The importance of seasonal climate changes is highlighted by the instrumental record of a meteorological station close to our study site (lac du Sommet in the Laurentian Mountains, Québec, Canada): Between 1966 and 2001, May temperatures increased significantly by 3.1°C (r = 0.41, n = 35, p < 0.01) but annual mean temperatures only by 0.6°C (r = 0.21, n = 35, p > 0.05). Comparison of this instrumental record with fossil diatom assemblages in a sediment core from lac du Sommet showed that axis one of a principal component analysis (PCA) of the fossil diatoms was best correlated with wind velocity in June (r = 0.62, n = 19, p < 0.005) and that past diatom production was significantly enhanced in periods with colder July temperatures (r =  ?0.77, n = 19, p < 0.0005) and higher wind velocity in June (r = 77, n = 19, p < 0.0005). The strong impact of the spring and summer conditions on overall diatom composition and productivity suggests that seasonal lake responses to climate are more important than annual mean temperatures. However, the seasonal dynamics of diatom communities are not well understood, and seasonality is rarely inferred effectively from lake sediment studies. Our research presents a pilot study to answer a twofold question: Is it possible to identify diatom communities which are typical for warmer or colder seasonal climate using sediment traps, and if it is, can this knowledge be used to infer seasonal climate conditions from fossil diatom assemblages? To address these questions, the seasonal dynamics of diatom communities and water chemistry were studied using sediment traps and water samples at biweekly intervals in four lakes distributed along an altitudinal gradient in the Laurentian Mountains from May through October 2002. Date of ice break-up was significantly related to the diatom assemblages taken in spring and uncorrelated to other significant environmental variables. Summer water temperature, circulation of the water column and pH explained a significant part of the biological variance in summer, and total nitrogen (TN) explained most of the biological variance in autumn. To infer these variables, weighted averaging partial least squares models were applied to the seasonal data sets. Inferred ice break-up dates were significantly correlated with number of days below 0°C in April (r = 0.52, n = 19, p < 0.025), inferred circulation of the water column was significantly related to measured wind velocity in June (r = 0.64, n = 19, p < 0.005), inferred summer water temperature and inferred pH was significantly related to measured July air temperature (r = 0.50, r =  ?53, n = 19, p < 0.025) and inferred TN autumn concentrations had an inverse relationship to August temperatures (r =  ?0.53, n = 19, p < 0.01). This comparison of the historical record with diatom-inferred seasonal climate signals, based on the comparison of fossil diatom assemblages with modern sediment trap data of high temporal resolution, provides a promising new approach for the reconstruction of seasonal climate aspects in paleolimnological studies.  相似文献   

16.
17.
Geochemical anomalies and stable isotope ratios (18O, 13C) in authigenic carbonates and organic matter (13C) from a 660-year sediment core from Lake Chenghai, southern China, provide a continuous history of recent lake eutrophication. The multi-proxy geochemical and isotopic record can be divided into a three-part history of contrasting limnological development, including: (1) a clear-water, oligotrophic open lake system (1340 and 1690 AD); (2) an environmentally unstable, hydrologically closed, oligotrophic lake system (1690–1940 AD); and (3) an increasingly eutrophic, closed lake system marked by higher organic matter, nitrogen, CaCO3, and pigment concentrations, and lower 18O and 13C values in authigenic calcite (1940–1999 AD). The unanticipated lowering of 18O and 13C of authigenic calcite during eutrophication is thought to be the result of disequilibrium water–carbonate fractionation of oxygen and carbon isotopes during periods of elevated primary production, pH, and [CO3 2–] activities in the water column. The recent eutrophication of Lake Chenghai indicated by these geochemical proxies is essentially simultaneous with large-scale human migration and the application of agricultural fertilizers in the catchment area during the 20th century.  相似文献   

18.
The stable isotopic records of ostracode valves deposited during the last interglaciation in Raymond Basin, Illinois, have 13C and 18O values as high as +16.5 and +9.2 respectively, the highest values yet reported from continental ostracodal calcite. Located in south-central Illinois, Raymond, Pittsburg, Bald Knob, and Hopwood Farm basins collectively have yielded important long pollen and ostracode records that date from about 130000 years ago to the present. Although fossils from the present-day interglaciation are not well preserved, these records constitute the only described, conformable, fossiliferous successions of this age from the interior of glaciated North America.The high 13C values from Raymond Basin are attributed to the residual effects of methane loss either by ebullition or by emission through the stems of senescent emergent aquatic vegetation. A mass balance model suggests that an increase in 13C of dissolved inorganic carbon on the order of +15 is possible within a few hours given modest rates of methanogenesis of about 0.02 mol m-2 d-1. The 13C records from other studies of ostracode valves have values approaching, but not exceeding about +14 suggesting a limiting value to 13C enrichment due to simultaneous inputs and outputs of dissolved inorganic carbon.Values of 18O in ostracodal calcite are quite variable (–4 to +9) in sediment from the late Sangamon subepisode. A model of isotopic enrichment in a desiccating water body implies that a reduction in reservoir volume of 20% could produce this range of isotopic values. High humidity and evaporation probably account for most of the 18O variability.  相似文献   

19.
20.
Due to methodological challenges there are only a few studies that focus on macrophyte dynamics in large lakes despite their notable role in a lake’s ecosystem functioning. This study investigates composition and productivity changes of the submerged vegetation of Lake Karakul, Pamir Mountains (Tajikistan), using sedimentary ancient DNA metabarcoding and elemental (C/N) and isotopic (δ13C, δ15N) measurements of Stuckenia cf. pamirica (Baagøe) Z. Kaplan (Potamogetonaceae) leaf remains. No Stuckenia cf. pamirica leaf remains were found for 28.7–26.1 cal ka BP, when both Potamogetonaceae and Chara (L.) DNA sequences were recorded, suggesting sparse submerged vegetation at the coring site. This agrees with the inference of a deep lake reached using geochemical proxies. From 26.1 to 17.5 cal ka BP a few macrophyte remains and high numbers of Potamogetonaceae sequences were recovered: lake level was probably low, as suggested by other studies on the lake. Another phase of increased numbers of Chara sequences and the absence of Stuckenia cf. pamirica leaf remains was found between 17.5 and 12.2 cal ka BP, which coincides with a lake-level transgression at Lake Karakul as indicated by paleo-shoreline investigations. Analyses of macrophyte remains reveal intermediate paleo-productivity from 6.9 cal ka BP and high paleo-productivity from 2.2 cal ka BP onwards. From comparisons with other studies, we suggest that lake-level changes are the main driver for the submerged vegetation composition and productivity at the coring site in Lake Karakul and underline our conclusions by depicting the present-day distribution of Stuckenia cf. pamirica and Chara within the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号