首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Focal mechanisms of small earthquakes with magnitudes of about 3 in the SE Brazilian shield are calculated using S / P amplitude ratios. Low attenuation ( Q p from 400 to 800) in the shield upper-crustal layers allowed sharp S arrivals to be recorded up to distances of 100 km. Besides P -wave polarities, SH -wave first motions were also used to constrain the nodal-plane orientations. Normal and reverse faulting mechanisms with strike-slip components were found. The inversion of four mechanisms to estimate the stress tensor indicated a strike-slip stress regime with roughly E–W-orientated σ 1 and N–S σ 3. Both the orientations and the shape factor ( φ =0.7) of the inverted stress are in excellent agreement with theoretical predictions for that part of Brazil from the driving-force model of Coblentz & Richardson (1996) . Good agreement with the nature of the stress, as well as its orientation, was also found for the model of Meijer (1995) . Both of these theoretical models include spreading stresses along the continent/ocean lithospheric transition. Because the earthquakes are more than 300 km from the continental shelf they should not be affected by the local flexural forces caused by sediment load in the marginal basins. The agreement between observed and theoretical stresses then confirms the importance of continental spreading forces in modelling intraplate stresses.  相似文献   

2.
Measurement of samples from 154 sites in the continental sector of the Cameroon Volcanic Line yielded six palaeomagnetic poles, at 243.6°E, 84.6°N, α 95 = 6.8°; 224.3°E, 81.2°N, α 95 = 8.4°; 176.1°E, 82.0°N, α 95 = 8.5°; 164.3°E, 86.4°N, α 95 = 3.4°; 169.4°E, 82.6°N, α 95 = 4.6° and 174.7°E, 72.8°N, α 95 = 9.5°, belonging to rocks which have been dated by the K–Ar method at 0.4–0.9  Ma, 2.6  Ma, 6.5–11  Ma, 12–17  Ma, 20–24  Ma and 28–31  Ma, respectively. The results are in general agreement with other palaeomagnetic poles from Oligocene to Recent formations in Africa.
  The first three poles for rocks formed between 0.4 and 11  Ma are not significantly different from the present geographical pole. Together with other African poles for the same period, this suggests that the African continent has moved very little relative to the pole since 11  Ma. The other three poles for rocks dated between 12 and 31  Ma are significantly different from the present geographical pole, showing a 5° polar deviation from the present pole in the Miocene and 13° in the Middle Oligocene.  相似文献   

3.
Summary. The geopotential is usually expressed as an infinite series of spherical harmonics, and the odd zonal harmonics are the terms independent of longitude and antisymmetric about the equator: they define the 'pear-shape' effect. The coefficients J 3, J 5, J 7, … of these harmonics have been evaluated by analysing the variations in eccentricity of 28 satellite orbits from near-equatorial to polar. Most of the orbits from our previous determination in 1974 are used again, but three new orbits are added, including two at inclinations between 62° and 63°, which have been specially observed for more than five years by the Hewitt cameras. With the help of the new orbits and revised theory, we have obtained sets of J -coefficients with standard deviations about 40 per cent lower than before. A 9-coefficient set is chosen as representative, and is as follows (all × 109): J 3=– 2530 ± 4, J 5=–245 ± 5, J 7=–336 ± 6, J 9=–90 ± 7, J 11= 159 ± 9, J 13=–158 ± 15, J 15=– 20 ± 15, J 17=– 236 ± 14, J 19=– 27 ± 19. With this set of values, the pear-shape asymmetry of the geoid (north polar minus south polar radius) amounts to 45.1 m instead of the previous 44.7 m. The accuracy of the longitude-averaged geoid profile is estimated as 50 cm, except at latitudes above 86°. The geoid profile and predicted amplitude of the oscillation in eccentricity are compared with those from other sources.  相似文献   

4.
207Pb/206Pb single-grain zircon, 40Ar/39Ar single-grain hornblende and biotite, and 40Ar/39Ar bulk-sample muscovite and biotite ages from the Nelshoogte trondhjemite pluton located in eastern Transvaal, South Africa, show that this granitoid had a protracted thermal history spanning 3213±4  Ma to about 3000  Ma. Whole-rock 40Ar/39Ar ages from cross-cutting dolerite dykes indicate that these were intruded at about 1900  Ma. There is no evidence of this or other, later events significantly affecting the argon systematics of the minerals from the pluton dated by the 40Ar/39Ar method.
  The pluton has a well-defined palaeomagnetic pole which is dated at 3179±18 (2 σ ) Ma by 40Ar/39Ar dating of hornblende. This pole (18°N, 310°E, A 95=9°) yields a palaeolatitude of 0°, significantly different from other Archaean poles from the Kaapvaal Craton. The palaeolatitude difference implies that there was significant apparent polar wander during the Archaean. A second, overprinting magnetization seen in the pluton is also seen in the lower-Proterozoic dolerite dykes, and is consistent with other lower-Proterozoic (2150–1950  Ma) poles for southern Africa.  相似文献   

5.
The investigation of L g attenuation characteristics in the region bounding the western branch of the East African rift system using digital recordings from a seismic network located along the rift between Lake Rukwa and Lake Malawi is reported. A set of 24 recordings of L g waves from 12 regional earthquakes has been used for the determination of anelastic attenuation, Q Lg , and regional body-wave magnitude, m b Lg , scale. The events used have body-wave magnitudes, m b , between 4.6 and 5.5, which have been determined teleseismically and listed in ISC bulletins. The data were time-domain displacement amplitudes measured at 10 different frequencies (0.7–5.0  Hz). Q Lg and its frequency dependence, η , in the region can be represented in the form Q Lg = (186.2 ± 6.5)  f  (0.78±0.05). This model is in agreement with models established in other active tectonic regions. The L g -wave-based magnitude formula for the region is given by m b Lg = log   A + (3.76 ± 0.38)  log   D − (5.72 ± 1.06), where A is a half-peak-to-peak maximum amplitude of the 1  s L g wave amplitude in microns and D is the epicentral distance in kilometres. Magnitude results for the 12 regional earthquakes tested are in good agreement with the ISC body-wave magnitude scale.  相似文献   

6.
Summary. Palaeomagnetic results are presented from the c . 160 km2 Caledonian synorogenic layered Fongen-Hyllingen gabbro complex (of probable late Silurian age) located about 75 km SE of Trondheim, Norway, in the allochthonous Seve-Kdli Nappe Complex. A total of 80 oriented samples from eight sites in the northern part of the gabbro were investigated. After detailed af demagnetization two stable high coercivity components emerge: one with a well defined NW direction with D =325°, I =−21° (α95=8°, N =8), and another, less well defined, probably younger, SW direction with D = 237°, I = 6° (α95= 9°, N = 8). Correction for dip of these two directions gives D = 329°, I =−7° (α95= 10°) and D = 238°, I =−11° (α95= 12°), respectively. The corresponding pole positions are P 1 : 19° N, 225° E and P 2: 19° S, 308° E, respectively. The reversed pole -P 2 of the SW direction lies close to other NW European palaeomagnetic poles of Caledonian, Upper Silurian-Lower Devonian age. However, the dominant pole PI is far away from these, and could be due to a late Caledonian geomagnetic excursion of considerable duration; or it could record a c . 90° rotation around a vertical axis of a crustal block within the Scandinavian Caledonides. Block rotation could have been related to nappe translation, although geological observations do not at present appear to support the occurrence of such an event.  相似文献   

7.
Greenish sandstones in the Early Triassic Nogam Formation of the Ryeongnam Block, Korean Peninsula were collected at 23 sites for palaeomagnetic study. A high-temperature magnetization component with unblocking temperatures of 670–690 °C was isolated from seven sites and yielded a positive fold test at the 95 per cent confidence level. The high-temperature component is interpreted to be of primary origin because the folding age is Middle Triassic. The Early Triassic palaeomagnetic direction for the Ryeongnam Block after tilt correction is D =347.1°, I =23.8° ( α 95=5.5°). The palaeomagnetic pole (62.5°N, 336.8°E, A 95 = 4.7°) shows good agreement with the coeval pole for the North China Block, suggesting that the Ryeongnam Block has been part of the North China Block at least since Early Triassic times. A tectonic history of the Korean Peninsula includes obduction of the eastern part of the South China Block onto the central part of the Korean Peninsula in the Permian, with the Ryeongnam Block geographically isolated from the main part of the North China Block. Collision of the North and South China blocks commenced initially at the Korean Peninsula, and suturing of the two blocks progressed westwards.  相似文献   

8.
Summary. This note presents an exact analytical formula for determining the magnitude of coseismic surface volume change (δ V ) of earthquake faults in a half-space. For a Poisson solid, the formula is remarkably simple; δ V = M zz |8μ, where M zz is one of the moment tensor elements of the source. Maximum δ V values derive from dip slip on faults plunging 45°. For these events, surface volume changes of 0.0001 and 4.3 km3 can be expected for magnitude 5 and 8 earthquakes respectively. All of the coseismic surface volume change is recovered in the interseismic period through relaxation of the Earth and rebound of the surface. A useful rule of thumb for estimating the magnitude of vertical rebound in 45° dip slip events is δ h p=Δ s /24, where Δ s is the coseismic slip on the fault.  相似文献   

9.
Summary. After thermal and alternating field (AF) cleaning, the characteristic high blocking temperature A component of natural remanent magnetization (NRM) of the Tudor gabbro of southern Ontario has a mean direction D = 326°, I =–46° ( k = 132, α95= 4.8°, N = 8 sites). The corresponding palaeopole, 133°E, 12°N ( dp = 4°, dm = 6°), confirms the palaeopole 137°E, 17°N (α95= 8.4°) reported earlier by Palmer & Carmichael, based on AF cleaning only. The A NRM has unblocking temperatures > 515–525°C which exceed the estimated 500°C peak temperature reached locally during ∼ 1050 Ma Grenvillian regional metamorphism. The A NRM therefore predates metamorphism and is probably a primary thermoremanence (TRM). The age of the Tudor NRM has previously been taken to be about 675 Ma, but recent 40Ar/39Ar dating by Baksi has shown that this is the time of post-metamorphic cooling to 200–250°C. Hornblendes record initial cooling of the intrusion to 590±20°C at 1110 Ma and this is the best estimate of the age of the A remanence. Successful Thellier-type palaeointensity determinations on 11 Tudor samples confirm that the A NRM is a TRM and indicate a palaeofield at this time of 18–27 μT, about 50–70 per cent of the present field intensity at 27° magnetic latitude. The anomalous Tudor A palaeopole, which lies well to the west of both 1000–800 Ma Grenvillian palaeopoles and 1100–1050 Ma poles from Interior Laurentia, is interpreted as recording divergence between Grenvillia and Interior Laurentia just before the Grenvillian orogeny, rather than a post-metamorphic extension of the apparent polar wander path as previously assumed.  相似文献   

10.
Oxygen consumption by rotifers Macrotrachela musculosa and Trichotria truncata from Spitsbergen tundra (77°N) was measured using the method of Cartesian divers. The metabolic rate of M. musculosa was: 0.205 10−3mm3 02 per g 10−6 per hour at 2°C, 0.201 10−6mm3 at 6°C and 0.616 10−3mm3 02 per g 10−6 per hour at 10°C. The metabolic rate of Trichotria truncata at 6° was 0.103 10−3mm3 per g 10−6 per hour. The relation between body weight and oxygen consumption by M. musculosa at 2°C is expressed with the equation R = 0.18W0.67, with R – oxygen consumption in mm310−3 per individual per hour and W – wet weight of an animal in g 10−6.  相似文献   

11.
Palaeomagnetic data from 182 hand samples collected in a rock sequence of about 620-m of red beds of Late Palaeozoic to Early Triassic age exposed in north-western Argentina (30.3° S 67.7° W), are given.
After cleaning, the majority of the Upper Palaeozoic samples (Middle Section of Paganzo Group) show reversed polarity and yield a palaeomagnetic pole at 78° S 249° E (α95= 3°). They also record a polarity transition which we have correlated with the Middle Permian Quebrada del Pimiento Normal Event. The position of the palaeomagnetic pole and the K-Ar age of a basalatic sill at the base of the sequence support this correlation.
Stable remanent magnetization has been isolated in the majority of samples from the Upper Section of the Paganzo Group; it is predominantly reversed and reveals three normal events and also three geomagnetic excursions suggesting an Illawarra Zone age (post Kiaman, Late Tatarian-Early Scythian). The palaeomagnetic pole of the reversely magnetized samples is located at 75° S 285° E(α95= 13°).
The red beds involved in this study are correlated with red beds from the Corumbataí Formation (State of Paraná, Brazil) and with igneous rocks from the Quebrada del Pimiento Formation (Province of Mendoza, Argentina).
The South American Middle and Upper Permian, Upper Permian—Lower Triassic, Lower, Middle and Upper Triassic and Middle Jurassic palaeomagnetic poles reflect a quasistatic period with mean pole at 82° S 244° E, (α95= 4°) which followed the South American Late Palaeozoic polar shift.  相似文献   

12.
3-D images of P velocity and P - to S -velocity ratio have been produced for the upper crust of the Friuli area (northeastern Italy) using local earthquake tomography. The data consist of 2565 P and 930 S arrival times of high quality. The best-fitting V P and V P / V S 1-D models were computed before the 3-D inversion. V P was measured on two rock samples representative of the investigated upper layers of the Friuli crust. The tomographic V P model was used for modelling the gravity anomalies, by converting the velocity values into densities along three vertical cross-sections. The computed gravity anomalies were optimized with respect to the observed gravity anomalies. The crust investigated is characterized by sharp lateral and deep V P and V P / V S anomalies that are associated with the complex geological structure. High V P / V S values are associated with highly fractured zones related to the main faulting pattern. The relocated seismicity is generally associated with sharp variations in the V P / V S anomalies. The V P images show a high-velocity body below 6 km depth in the central part of the Friuli area, marked also by strong V P / V S heterogeneities, and this is interpreted as a tectonic wedge. Comparison with the distribution of earthquakes supports the hypothesis that the tectonic wedge controls most of the seismicity and can be considered to be the main seismogenic zone in the Friuli area.  相似文献   

13.
Summary. The Cordova gabbro of southern Ontario intrudes 1300 Myr old volcanic rocks of the Hastings Lowlands in the Grenville Structural Province. Three distinct vector magnetizations (A, B and C) have been isolated, using a combination of stable endpoints, subtracted vectors from orthogonal vector plots and converging remagnetization circles. The A magnetization, with mean direction D = 294° I =– 55.5° ( k = 42, α95= 5.5°, N = 18 sites), is a high coercivity, high blocking temperature remanence recorded by 49 samples. The B magnetization was isolated in 33 samples and has a mean direction D = 305.5° I =– 1.5° ( k = 24, α95, N = 11 sites). B has lower coercivities and blocking temperatures than A where the two are superimposed. The A and B palaeopoles, 151°E, 10.5°S ( dp = 6°, dm = 8°) and 165.5°E, 24°N ( dp = 5°, dm = 9.5°), fall on the Grenville Track around 900 and 820 Ma respectively. The A and B magnetizations thus date from uplift and cooling following the Grenvillian orogeny. The third magnetization, the C component, has been isolated in 23 samples. Its mean direction is D = 180° I = 27.5° ( k = 18, α95= 10.5°, N = 12 sites). The C is a low coercivity, low blocking temperature overprint of A and B. Its palaeopole, 102°E, 31°N ( dp = 6.5°, dm = 12°), is unlike post-1300 Precambrian poles for cratonic North America but matches Silurian and late Ordovician poles. 40Ar/39Ar plateau ages of 446 and 447 Ma determined by Lopez-Martinez and York for plagioclases from one of the Cordova samples confirm this age assignment. The C magnetization therefore records a previously unrecognized mild thermal or hydrothermal event that occurred in Palaeozoic time, long after the Grenvillian orogeny.  相似文献   

14.
Approaches to Modelling the Surface Albedo of a High Arctic Glacier   总被引:1,自引:0,他引:1  
Broadband surface albedo measurements, made during the summer melt season at three weather stations on John Evans Glacier (79°40 ' N, 74°00 ' W), varied strongly with the solar zenith angle ( θ z ). Tests were carried out to assess the impact of diurnal variations in surface albedo on seasonal net shortwave radiation ( K * ) totals. Removing the diurnal signal from albedo measurements by daily averaging of hourly measurements, or by applying midday measurements to all hours of the day, changed K * by up to 16%. Ignoring measurements made at θ z & 75°, to account for measurement (cosine) error at high θ z , decreased K * by between 5 and 18%. Given the sensitivity of K * to diurnal patterns in surface albedo, experiments were carried out with two albedo models. One model accounted for albedo variations with θ z and one did not. The model driven by θ z , when implemented within a surface energy balance model for John Evans Glacier, produced better melt estimates. This suggests that diurnal variations in surface albedo should be accounted for in energy balance models of glacier melt.  相似文献   

15.
Summary. Fifty-six orientated samples were collected from 13 sites on five dolerite dykes (between lat.14°23°N, long.77°43'E and lat.14°08'N, long. 77°49'E), which adjoin the south-western margin of the Cuddapah basin in Anantapur district, Andhra Pradesh. After af demagnetization, two dykes (five sites) striking ENE possess similar magnetic directions, (1) D = 57°, 1=-69° (K = 52, α95= 7°) and (2) D = 71°, I = -72° ( K = 260, α95= 5°). Again dykes (3) (three sites), and (4) (two sites) have similar strike (NE) and magnetic directions, D = 64°. I=-7 α( K = 142, α95 = 8°) and D = 53°, I =-8° (K = 142, α95= 6°) and dyke (5) (two sites) striking NW shows D = 320°, I = -34° ( K = 68, α95= 13°). Remanent directions estimated from total field magnetic anomaly data agree well with these results. Synthesis of these data with 10 other published palaeomagnetic studies of Precambrian dolerite dykes on the Indian peninsula, suggest that these three systems of dykes adjoining the Cuddapah basin had been emplaced prior to the basin formation perhaps representing the initial thermal event responsible for the basin development and also that there have been at least three separate periods of dyke emplacement on this shield. The radiometric data, however, are very sparse and these periods cannot be dated with confidence.  相似文献   

16.
Summary . The great Etorofu earthquake of 1958 November 6 is characterized by a relatively small aftershock area (70 × 150 km2) and an extremely large felt area. The felt area is more extensive than those of any other large earthquakes which have occurred in the southern Kurile to northern Japan arc since the beginning of this century. The mechanism is a pure thrust fault typical of most great earthquakes in island arcs. A body wave magnitude of m b = 8.2 is obtained at periods around 6 s using more than 40 observations, although an m b value of only 7.6–7.7 would be expected empirically from the observed surface wave magnitude of M s= 8.1–8.2. Both an unusually large felt area and a high m b indicate a dominance of high-frequency components in the seismic waves. A seismic moment of M o= 4.4 × 1028 dyne cm is determined from long-period surface waves from which a high stress drop of Δσ = 78 bar is obtained using a relatively small aftershock area. Historic data indicate an anomalously long time interval between the 1958 event and any earlier great earthquake from the same source region. The observed high stress drop can be interpreted as a consequence of this long intervening period through which strain built up. The dominance of the high-frequency seismic waves can then be interpreted as a result of this high stress drop. Stress drops, seismic wave spectra and recurrence intervals of great earthquakes are in this way closely related to each other. The 1958 event may represent a high strength extreme of stochastic fluctuation of fracture strength relevant to great earthquakes.  相似文献   

17.
Summary. Attenuation of earthquake intensities with epicentral distance was studied by analysing the intensity data for 39 earthquakes in the United States. Attenuation of MM intensity ( I ) with distance (Δ km) follows a simple relation of the type log I = log I 0 - m Δ, where I 0 is the intensity at the epicentre and m is a constant. Slope m is found to be inversely proportional to the square of the focal depth. Intensity attenuation pattern in the United States in general can be represented by a unified relation I/I 0= exp [-(0.8999/ h 2+ 0.0014)Δ] where 16km ≤ h ≤ 60km. Intensities were calculated with the help of this equation and a good agreement with the observed intensities were found. A comparative study has also been made between the attenuation relations applicable to India and the United States.  相似文献   

18.
Summary. A method that enables the objective resolution of almost parallel multi-component magnetizations is described and demonstrated. A feature distinguishing this method from others is its simultaneous analysis of demagnetization data from a group of specimens, rather than the analysis of data from one specimen at a time. The only prerequisite is that the specimens are derived from a homogeneous source. Thus for a formation carrying a simple single component magnetization, all specimens from the formation may be simultaneously reduced. For a more complicated two component magnetization it is shown that only specimens from a particular site can be considered homogeneous, and for a complex three component system each sample often requires undivided attention. Thus the workload is proportionally increased to achieve analyses of comparable reliability from data of variable quality.
New pole positions from Mesozoic intrusions of the Sydney Basin, NSW are: from the Marsden Park Breccia pipe 48°S, 127°E ( A 95= 6°); the St Marys Breccia pipe 46°S, 150°E ( A 95= 8°); the Prospect Dolerite 60°S, 142°E ( A 95= 13°) and 53°S, 180°E ( A 95= 6°); and from the Dundas Breccia pipe 58°S, 162°E ( A 95= 36°) and 31°S, 195°E ( A 95= 16°). The last two formations possess multi-component magnetizations. These pole positions are consistent with previous results from south-eastern Australia.  相似文献   

19.
Rocks from the Massif de la Serre in the French Jura (latitude: 47.3°N longitude: 5.6°E) belonging to an ignimbritic assemblage dominated by vitrophyric rhyolites, and whose age of formation is probably Permian (Autunian to Saxonian) have been studied by applying thermal and alternating field demagnetization. the characteristic magnetization has a mean direction derived from 89 samples of D= 170°, I = - 16°, k = 26.2°, α95= 3° and a corresponding north palaeopole at 41°N, 172°E, A 95= 5°. the pole, which is very close to the Permian European poles, can thus be considered as a new contribution. Some samples are found to carry a unique normal polarity magnetization, others carry both normal and reverse polarities. It therefore seems that, similar to Permian series in the USSR, these west European rocks have registered a normal event in the Kiaman interval. From a structural point of view, we may conclude that during the Alpine tectonic phases the Massif de la Serre has not been subjected to substantial rotation.  相似文献   

20.
Summary. One method to determine the depths of sources of anomalies in the Earth's gravity field is to plot log [(2 n + 1) σ n ] versus n where σ n is the n th term in the amplitude spectrum of the Earth's gravitational potential. This procedure assumes that the amplitude spectrum of the anomalous density variations does not vary with n. Such an assumption may not apply to the Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号