首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近50 a博斯腾湖逐年水量收支估算与水平衡分析   总被引:2,自引:0,他引:2       下载免费PDF全文
据博斯腾湖流域1958-2010年期间主要河流开都河、黄水沟、清水河、孔雀河的逐年流量资料,结合焉耆盆地降水、蒸发要素的同期观测资料,对大湖区的逐年水量收支进行计算,并依据水量平衡原理对博湖大湖区残差水量进行了逐年分析。结果表明:(1)1958-2010年期间年均入湖水量14.34×108 m3/a,其中入湖河水约占95%;年均输出水量13.96×108 m3/a,其中大湖区输入孔雀河水量约占43%,湖面蒸发耗水量占57%;湖区年均蓄水量71.57±3.92×108 m3108 m3/a,湖水年均水位为1 047.01±0.94 m;(2)极端水文年度水量平衡分析指出:1986年为最枯年份,入湖河水是多年平均值的62%,而出湖河水量是多年平均值的153%,导致年内湖区水位下降0.94 m;2002年最丰年份入湖河水是多年平均值的2.6倍,致使年内水位上升0.80 m;(3)残差水量逐年“正负”变化指出,湖水与地下水之间存在互补关系,过去53 a间湖水补给地下水的年均水量为0.87×108 m3/a。  相似文献   

2.
20世纪80年代,由于大规模的农业开发等人类活动,导致浓江上游截流,直接影响了洪河国家级自然保护区的水文情势。以别拉洪水文监测站1958~2002年和浓江水文监测站1980~1989年的月径流量和月降水量为基础数据,利用别拉洪站与浓江站的月径流量间的经验关系模型,估算浓江站其他年份的月径流量,得到浓江站多年平均年径流总量为2.31×108m3。浓江站年径流量小波分析结果显示,在1958~1980年期间,浓江站的年径流量变化有准10 a的周期,计算出1958~1980年期间浓江站在丰水年(1962年)、平水年(1965年)和枯水年(1967年)的年径流量和水位,根据河道比降,推算出洪河保护区浓江河段1962年、1965年和1967年所对应水位分别是52.71 m、52.49 m和52.11 m,2012年实测的洪河国家级自然保护区浓江河段的平均水位为51.70 m,与1962年、1965年和1967年的水位相比,2012年的洪河国家级自然保护区浓江河段的水位平均下降了0.74 m。利用数字高程模型,模拟了浓江河不同水位下洪河国家级自然保护区的洪水淹没面积和沼泽蓄水量,结果表明,洪河保护区沼泽蓄水量平均减少了0.51×108m3。这些研究结果可以为保护区湿地恢复提供借鉴。  相似文献   

3.
新疆博斯腾湖水质水量及其演化特征分析   总被引:9,自引:0,他引:9  
于2008年8月对博斯腾湖进行了系统的水质和水量监测,并结合近50 a来气候水文资料,进行了博斯腾湖演化过程和阶段特征分析。结果表明,目前湖泊最大水深为13.9 m,湖泊面积928 km2,蓄水量52.65×108m3,湖水体矿化度平均1.48 g/L。近50 a来,博斯腾湖水质水量经历了3个明显的不同时期。1966年以前,湖泊处于1 048 m以上的高水位,矿化度低,湖泊受人类活动影响弱。第二个时期为1966~1996年,湖泊水位低,矿化度高,其中1987年湖泊水位处于历史低值而矿化度为最高。随后,湖泊水位明显上升、矿化度下降,湖泊扩展水体淡化。第三个时期为1996~2005年,湖泊水位处于历史高值段,矿化度有所下降但不明显。期间,人类活动对湖泊的影响显著,除流域农业用水影响外,城市和工业用水的影响也明显增加。最近几年,湖泊水位快速下降,并于2007年出现历史的低水位,湖泊矿化度也呈现升高趋势,鱼类种群和产量受人类强烈干预。另外,流域社会经济发展带来的城市化和工业化,也导致湖泊污染和富营养化,引起水质进一步恶化,湖泊面临新的生态环境压力。  相似文献   

4.
青藏高原分布着亚洲大陆最大的湖泊群,其湖泊变化对气候变化响应敏感。基于遥感数据的湖泊面积变化不足以反映外流湖对气候变化的响应,需借助湖泊水量平衡过程分析来进一步研究各补给要素的变化。本文利用2015年4月-11月然乌湖水文气象监测数据,通过建立流量—水位关系,依据连续的水位数据重建了观测期内然乌湖主要径流的水文过程线,并结合SRM模型分析了然乌湖的水量平衡过程及季节变化。结果表明,观测期内然乌湖入湖水量约为18.49×108 m3,其中冰川融水约为10.06×108 m3,冰川融水占然乌湖补给的54%以上,湖面降水、湖面蒸发对湖泊水量平衡过程影响微弱。流域降水对湖泊的补给具有明显的季节特征。春季受西风南支扰动影响,然乌湖地区降水量大,降水是春季然乌湖的主要补给源。夏季和早秋由于气温升高,冰川消融量大,冰川融水是湖泊补给的主控因素。在未来气候变暖的条件下,冰川融水将会在湖泊补给中占据更大比例,并可能使得流域内的冰湖水量增加,产生潜在灾害风险。  相似文献   

5.
黄河三角洲清水沟湿地三次生态补水对地下水的影响分析   总被引:2,自引:0,他引:2  
地下水是影响湿地中植物生长发育的重要因素。针对黄河三角洲湿地退化状况,从2010年开始,黄河水利委员会有计划地对湿地生态恢复区进行生态补水。为了研究生态补水对黄河三角洲湿地地下水的影响,利用实测资料,基于Visual MODFLOW建立黄河三角洲地下水流数值模型,着重分析2010年、2011年和2013年补水期间清水沟湿地生态恢复区地下水的动态变化。研究结果表明,清水沟湿地生态恢复区地下水补给来源主要包括降水入渗、河流入渗和湿地地表水体入渗(简称湿地入渗),其中,降水入渗为最主要的补给项,并受年内气象条件影响;在补水总量不变,补水面积扩大的情况下,湿地入渗量增加,2010年、2011年和2013年的湿地入渗量分别为2.80×104m3/d、6.12×104m3/d和9.06×104m3/d;地下水储存量增加明显,三年的增加量分别为1.54×104m3/d、8.18×104m3/d和14.5×104m3/d;生态补水期间,湿地入渗速率不断增加,补水结束后,入渗速率减缓;湿地入渗补给使生态恢复区地下水水位抬升,最终达到稳定,三年湿地生态恢复区的地下水水位分别约抬升0.6 m、0.52 m和0.41 m,补水范围增大,湿地水位降低,补水对湿地内地下水的抬升幅度略有减小;三年的生态补水对湿地周边地下水水位的侧向影响范围分别为约1 000 m、900 m和800 m,补水范围越大,湿地周边地下水的侧向影响范围越小而影响面积越大。相关结论能够为黄河三角洲湿地调水及补水方案优化提供依据。  相似文献   

6.
查干湖湿地水环境演变特征分析   总被引:1,自引:0,他引:1  
查干湖湿地是吉林西部重要的生态屏障,分析其水环境演变特征,可为保障其水环境安全提供科学依据。利用1982~2011年的水位资料和1985~2011年的水质资料分析其水环境演变特征,采用卡尔森指数法和模糊综合评价法对查干湖湿地进行综合营养状态和水质状况评价。结果显示引松工程通水后湿地水位得以恢复并稳定在129.8~130.3 m;20世纪80年代末湿地水环境大幅改善,水体盐碱化、富营养化、有机污染得以缓解,但2006年以来水质碱化和有机污染加剧,水质由Ⅲ类演变为IV类。现阶段农田退水缓解了主湖区的碱化且暂未加剧其水体富营养化。查干湖水受流域陆源排放、湖泊内源释放及水文情势等多重因素的交互作用,呈以磷素为限制的中营养状态,应控制区域生活污水和畜禽粪便的污染以保护其水环境健康。  相似文献   

7.
塔里木河下游生态保护目标和措施   总被引:2,自引:0,他引:2  
针对2000-2009年塔里木河下游10次生态输水后生态环境的变化情况,提出新的生态保护目标:在距河500 m以内以胡杨(Populus euphratica)为主的重点保护带,地下水埋深保持在≤4 m,植被总盖度达到0.4~0.5;500~1 000 m为基本保护带,以柽柳(Tamarix spp.)为主,地下水埋深为4~6 m,植被总覆盖度达到0.3以上;>1 000 m为一般保护带,随着输水累积量增加,地下水埋深达到6~8 m,使现有植被不再退化;沿河两岸1 000 m的植被保护恢复总面积应达到1 028 km2;用水均衡法和潜水蒸散法重新估算的大西海子的下泄水量为2.3×108 m3 ,比原规划减少了1.2×108 m3 ,其中2.0×108 m3为维护生态所用,另外还有0.15×108~0.3×108 m3为向台特玛湖输水的水量;应保持输水连续性,大西海子以下年泄水量不小于0.36×108 m3;为了保证向下游输水,必须加强水资源调控,通过整治源流,使到达干流的水量为44.2×108 m3 ,干流严禁开荒,加强对防护堤修建后生态环境变化的监测,下游采用漫溢漂种增加植被面积。  相似文献   

8.
1958—2012年博斯腾湖水位变化驱动力   总被引:3,自引:0,他引:3  
利用1958—2012年博斯腾湖流域水文、气象与社会经济资料序列,采用灰色关联法分析了博斯腾湖水位变化特征及其影响因素。结果表明:(1)在过去半个多世纪,博斯腾湖水位经历了下降、上升、再下降3个阶段,各阶段内各驱动因素的权重不同;(2)博斯腾湖水位变化主要是入湖流量、降水及气温波动等自然因素和耕地面积、灌溉面积、灌溉引水量及灌溉净耗水量等人为因素共同作用的结果,特别是入湖流量变化是博斯腾湖水位升降的主要影响因素。1958—1987年,开都河处于偏枯年份,博斯腾湖水位呈缓慢下降的趋势,水位从1958年的1 048.00m下降至1987年的1 045.03m,平均水位为1 047.20m,这期间自然因素对水位的影响较大;1988—2002年,开都河处于丰水年,入湖水量较多,博斯腾湖水位呈快速上升趋势,水位从1988年的1 045.21m上升至2002年的1 048.60m,平均水位为1 046.80m,这期间人类活动对水位的影响开始增强,但自然因素对水位的影响仍强于人类活动对水位的影响;2003—2012年,入湖水量减少,博斯腾湖水位又呈急剧下降趋势,水位从2003年的1 048.55m下降至2012年的1 045.68m,这期间人类活动对水位的影响呈显著增加趋势;(3)1958—2012年博斯腾湖水位变化的主要驱动因素总体呈自然因素向人类活动的变化趋势。  相似文献   

9.
从黑河下游地下水波动带水文循环出发,确定影响地下水变化的重要补给排泄项,根据水文地质结构对研究区水力传导系数和给水度进行确定,并获得研究区参数分区.通过运行FEFL-LOW模型,得到任意时段研究区地下水水头的空间分布.利用观测数据对模拟结果验证并进行参数调整.结果表明:(1)15个观测点平均误差约为0.59 m,最小平均误差为0.18 m,最大平均误差1.09 m;(2)地下水的空间变化为以东西河为中心向两侧加深,研究区南部岩石山地和北部东西居延海之间地下水位较深,其它区域地下水位在1~4 m之间;(3)从模拟初始(1990年),研究区每年水量都处于一种负均衡状态,2000年之后略有改观,2003年出现了正均衡.但不同区域地下水年际变化的趋势不同,研究区内上下游的水位有上升趋势,而中游绿洲区水位以下降趋势为主.  相似文献   

10.
基于主成分分析法的博斯腾湖水位变化驱动力研究*   总被引:1,自引:0,他引:1  
利用1958~2010年博斯腾湖流域水文、气象与社会经济资料,采用相关分析法与主成分分析法,分析了博斯腾湖水位动态变化情况及其驱动机理。结果表明,1)博斯腾湖水位从1958年的1 048.0 m下降至2010年的1 045.75 m,净下降2.25 m。水位变化经历了波动式下降(1958~1987年)→急剧上升(1988~2002年)→急剧下降(2003~2010年)的变化过程;2)博斯腾湖水位变化主要是由入湖流量、降水与气温波动等自然因素和耕地面积与人口的增加等人为因素共同作用的结果,特别是入湖流量变化是湖面水位升降的主要影响因子。研究结果能为干早区湖泊水资源的合理利用和生态环境的保护提供科学依据。  相似文献   

11.
会仙喀斯特湿地分布于漓江流域和柳江流域的分水岭地带。该湿地仅由地下水补给,地下水水位对维持该湿地生态系统起着决定性的作用。2019年,在会仙湿地具有代表性的6个水位观测点(4个地下水水位观测点,2个地表水水位观测点),利用压力传导型水位计,自动记录了一个水文年的地下水和地表水水位。研究结果表明,雨季与枯季会仙湿地的地下水水位存在明显差异,地下水水位的变化幅度最大可达2.5 m;核心区的地下水分水岭具有可移动性,在雨季降水量增加时,其向东移动,在雨季降水量减小和枯季水位下降时,其向西移动;暴雨过后,地下水和地表水水位都迅速回落至暴雨前的水平,地表水体和会仙湿地地下水系统都没有起到储蓄洪水的作用;枯水期地下水水位继续下降,并且低于149 m,导致枯水期会仙湿地严重萎缩;在枯水期,通过外部输水补给,保持会仙湿地的地下水水位不低于149 m,是减缓该湿地退化的关键措施。  相似文献   

12.
在野外水分动态监测的基础上,采用美国盐土实验室开发的SPAC模型,对黄河三角洲湿地土壤水分运移规律进行了模拟。通过情景模拟,在0.5 m、0.75 m、1 m、1.25 m、1.5 m、1.75 m、2 m、2.5 m和3 m地下水埋深时,观察距离地表10 cm、30 cm和60 cm深度处土壤含水率的变化,获得了黄河三角洲湿地的地下水安全水位(1m)、敏感水位(1.25 m)和警戒水位(3 m);分别计算了黄河三角洲湿地在春季、夏季和秋季满足地下水水位达到敏感水位和警戒水位时的高、中和低目标等级的生态缺水量。研究结果显示,黄河三角洲湿地在1.25 m和3 m地下水埋深条件下的中目标生态缺水量分别为0.91×108m3和3.20×108m3,夏季的缺水量大于春季和秋季,主要是由于夏季的蒸发量最大,远远大于夏季降水量,土壤中的水分流失量最快。  相似文献   

13.
塔里木河下游生态输水对地下水补给量研究   总被引:1,自引:0,他引:1  
《干旱区地理》2021,44(3):670-680
地下水对干旱区荒漠生态系统的维持至关重要,生态输水对地下水的补给量及影响范围是评估输水成效的要素之一,对于准确理解地下水循环特征至关重要。基于2000—2020年塔里木河下游生态输水过程中的地下水监测数据,拟合输水前后地下水水面线方程,结合水均衡原理,对塔里木河下游近20 a生态输水过程中的地下水埋深时空变化、地下水补给量以及输水期地下水最大影响范围进行了估算与分析。结果表明:(1)塔里木河下游实施生态输水后,地下水位呈明显抬升趋势,抬升幅度具时空差异性,在英苏、喀尔达依和阿拉干断面分别抬升了3.01 m、2.87 m、5.75 m;前10 a输水对地下水位抬升作用明显小于后10 a;(2)塔里木河下游近20 a的输水对地下水的总补给量为30.6×10~8m~3(占输水总量的36.2%),包气带补给40.1×10~8m~3(47.5%),入台特玛湖水量为11.7×10~8m~3(13.8%);(3)塔里木河下游前10 a的输水对地下水补给量(61.6%)大于后10 a(25.2%),主要归因于输水量增大,地下水埋深减小引起土壤含水量饱和差减小;(4)塔里木河下游输水期地下水的最大影响范围具有较大的波动,与输水前地下水埋深和输水量正相关;近10 a,英苏、喀尔达依、阿拉干、依干不及麻断面,输水期地下水单侧影响范围高达1075 m、2326 m、1623 m、856 m。  相似文献   

14.
鄱阳湖水文特征动态变化遥感监测   总被引:5,自引:0,他引:5  
孙芳蒂  马荣华 《地理学报》2020,75(3):544-557
鄱阳湖是中国第一大淡水湖,对鄱阳湖的水文变化进行持续监测可以为流域内生态环境变化提供基础数据,有利于研究其与长江和流域内河流的交互关系,更好地服务于陆面过程模式和水资源管理。本文利用卫星测高数据反演的鄱阳湖水位数据与MODIS数据结合,对鄱阳湖2000—2015年的水位、水域面积和水量变化进行研究,并通过水量平衡模型,推导出了同期长江—鄱阳湖的水量交互。研究发现,2000—2015年鄱阳湖面积呈现波动性变化,最大水域面积为3600 km 2,是最小水域面积482 km 2的7.5倍。2004年、2007年、2009年和2011年水域面积比较低,2012年后形势好转。每年1月、2月、12月份是鄱阳湖干季,水域面积低至500 km 2,湖口处水位可低至4.71 m,湖面从南往北倾斜,南北水位差异达2.59 m。相对于2000—2015年最低水量,干季时湖泊水量平均增加量为3 km 3。每年6—9月份是鄱阳湖的湿季,水域面积一般大于2670 km 2,水位高于15 m,南北水位差异不大,相对于2000—2015年最低水量,湿季时湖泊水量平均增加量为12 km 3。2000—2015年鄱阳湖流入长江的水量范围为-7~40.66 km 3,每年有93.33%的时间水流从鄱阳湖流入长江。流入长江的水量多少具有明显的季节性,通常5月、6月流入长江的水量高于7月、8月,主要因为7月、8月长江中上游降水增加,长江干流来水增多,对鄱阳湖湖水倒灌有一定的顶托作用。  相似文献   

15.
中全新世以来查干淖尔古湖面波动   总被引:1,自引:0,他引:1  
刘美萍  哈斯 《中国沙漠》2015,(2):306-312
内陆湖泊水位变化是对区域气候和水文变化的一种响应,古湖岸堤是过去湖泊水位变化的最直接证据。野外考察发现内蒙古高原查干淖尔湖周围存在海拔为1 026、1 023m和1 018m的3级古湖岸堤。根据光释光定年,其形成年代分别是6.83±0.37、4.26±0.29ka BP和2.42±0.15ka BP。利用DEM模型恢复得到的对应时期古湖面积分别是270、230km2和120km2。在6.83~4.26ka BP时段,查干淖尔古湖高湖面稳定在1 023~1 026m,比现代湖面约高7m,该时段气候相对湿润,4.26ka BP以来湖面持续下降,与区域性甚至全球性气候变化有着深刻的关系。  相似文献   

16.
三环泡滞洪区对洪水的调蓄空间主要由滞洪区内的自然泡沼、周边围堤形成的防洪库容即显性空间和滞洪区湿地草根层、沼泽土壤或泥炭层中的孔隙所组成的隐性空间3部分组成。分析了三环泡滞洪区当前的水文情势的变化趋势及驱动力,结果表明,必须重视滞洪区在非汛期间的水量调控,有效维持滞洪区湿地土壤层的蓄洪能力,应确保不少于5000hm2水面,在冰冻季节湿地水深应大于2.0m,防止湿地水域生物因连底冻出现死亡;应调整三环泡滞洪区周边的农业产业结构,防止依赖开采地下水进行灌溉的水稻田继续发展;宜在三环泡滞洪区出口狼豁子处设计一个生态闸门,使其能有效调控三环泡滞洪区内的水位和泥沙平衡。经计算,三环泡滞洪区十年一遇滞洪区库容为2.43×108m3,入库流量为520m3/s,而泄量为154m3/s,经调蓄减少为366m3/s;地下水补充量达2070×104~3495×104m3,可以使周边258~349km2区域的地下水位回升1.0m,表明其对七星河和挠力河流域地表径流和地下水位的调节功能相当明显。  相似文献   

17.
莫莫格湿地主要生态服务功能动态评价   总被引:1,自引:0,他引:1  
以地处吉林省西部的莫莫格国家级自然保护区为研究区,选择白鹤(Grus leucogeranus)栖息地承载力、蓄洪和固碳3个湿地主要生态服务功能,对该保护区湿地在2002年、2008年和2013年的主要生态服务功能动态变化进行评价。利用研究区土壤、植被、水文以及白鹤分布等图文数据,结合室内土壤有机碳含量和持水量测试结果,利用Neu法、热量法、蓄洪和固碳等公式对3个湿地生态服务功能进行定量计算。研究结果表明,2002年、2008年和2013年,该保护区白鹤栖息地容纳白鹤的数量为28 400只、2 468只和4904只;食物容纳白鹤的数量分别为24×104只、2.1×104只和4.3×104只;水体蓄洪量分别为12.35×108m3、11.12×108m3和8.62×108m3;植物固碳量分别为30×104t、17×104t和20×104t。2002~2008年间,莫莫格国家级自然保护区湿地生态系统的3个主要生态服务功能随湿地的退化而逐渐减弱;2008~2013年间,其3个主要生态服务功能有所恢复,说明湿地保护工作开展得当,湿地退化速度减缓。  相似文献   

18.
塔里木河干流输水运行对河流生态功效的分析   总被引:14,自引:8,他引:6  
塔里木河干流在2005年阿拉尔站的年径流量为57.18×108 m3,属丰水年,上、中、下游耗水量分别为31.63×108m3、18.93×108 m3、7.206×108 m3.1960-2004年新渠满站水文断面河床总淤积厚度达120 cm,由于河床淤积,洪水漫溢不断增大,导致上游段耗水量呈不断增加趋势.2005年实施了第七次生态输水,向下游"绿色走廊"输水2.80×108m3.从2000-2005年向塔里木河下游绿色走廊应急输水,共七次累计输水时间900天,前期主要利用开都-孔雀河处在丰水期的有利时机,后期靠塔里木河流域综合治理成果和上游三源流的水量增加.总计从博斯腾湖和干流调水25.06×108m3,自大西海子水库泄洪闸向塔里木河最下游河道输水量达20.40×108m3.2005年水头连续五次到达台特玛湖,不仅使塔里木河下游绿色走廊生态条件得到了改善,而且也使干流两侧胡杨林生态林草得到较快的恢复,并使塔里木河干流全程流水的受损河流生态系统得到了修复.塔里木河干流区域林草面积142.1×104hm2,其中上游段46.8×104hm2,约占干流林草总面积的33.0%,位居第二,中游段81.1×104hm2,占总面积的57.1%,位居第一,而下游段14.1×104hm2,占总面积的9.9%,位居第三.结果显示,塔里木河干流上游、中游的植被面积与水量消耗极不协调.2001-2005年上游消耗水量均超过了塔里木河干流初始水权比例下的分配额度.为了保障塔里木河干流实现永久输水和维护其区域生态功能,建议急需对上游河段采取河道整治和疏浚等工程措施,进一步调整干流上、中、下游区水量泄放比例,才能使得塔里木河的综合治理实现生态河流目标.  相似文献   

19.
《地理研究》2012,31(3)
以历史文献、图件及1951~2009年长系水沙等资料为依据,对比分析洞庭湖形态与水沙过程的互动响应,结果表明:由于湖泊形态与水沙过程存在着相互作用的关系,近60年间,水沙过程以多种形式改变湖泊形态特征值,如湖盆结构破碎、解体,水深变浅以及湖面﹑湖容依次减少1840km2及130×108 m3;同时湖泊形态特征值改变也引起水沙特性变异,在1951~2002年间湖盆蓄水量呈明显的增减波动,但同流量下汛期水位普遍抬高1.2~1.90m,西﹑南﹑东洞庭湖水位变幅依次增大1.61m、1.39m和1.35m,各主要水文站前5位最高洪水位排序的年份均出现在湖面积(容积)历史最低值,泥沙淤积率为70%以上;2003年6月三峡水库蓄水及"退田还湖"后,高、中水位下湖盆调蓄量有所减少,城陵矶丰、枯水位分别降低1.12m及0.35m,西湖区与东南湖区的泥沙输出比均呈增大趋势,泥沙淤积率减至35.9%。其互动响应机制,可概化为泥沙淤积循环→湖盆结构破碎、解体,湖面湖容缩小→水沙特性异变→改变湖泊形态→水沙特性变异的互动响应动态演进模式。  相似文献   

20.
基于生态恢复的塔里木河干流生态需水量预测   总被引:1,自引:0,他引:1  
以2005年为现状年,用定额法、潜水蒸发法和地下水储量变化法估算出塔里木河干流的生态需水量,其结果分别为33.89×108 m3、23.97×108 m3和33.07×108 m3,通过分析得到现状年合理的生态需水量为30.31×108 m3.并根据阿克苏、沙雅、库车、轮台、库尔勒、尉犁和铁干里克7个气象站1995-2004年的月平均蒸发量,采用阿维里扬诺夫公式和群克水均衡场公式对塔里木河干流天然植被的月潜水蒸发量进行计算,在此基础上计算月生态需水量.通过分析发现,植被生长期(4-10月)的生态需水量占全年生态需水量的86%,尤其是植被生长旺盛时期的5-8月的生态需水量占全年的59%.根据制定的生态恢复方案,用定额法和潜水蒸发法预测3个目标年的生态需水量,将两者计算结果加以算术平均,得到2010、2015及2020年合理的生态需水量分别为31.88×108 m3、34.08×108 m3及36.84×108 m3,为塔里木河流域的水资源优化配置提供科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号