首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract:  Recent research has indicated river basin outlets draining linear sections of large, uplifting mountain belts often show a regularity of spacing, transverse to the main structural trend. A morphometric analysis of part of the Ruahine Range, on the North Island was undertaken to test whether drainage regularity may exist in smaller, younger mountain ranges. The ratio, R , of the half-width of the mountain belt, W , and the outlet spacing, S , was used to characterize drainage networks on the eastern side of the range. The spacing ratio for the range of 1.31 is lower than R results from studies of larger mountain belts ( R  = 1.91–2.23). We suggest the cause of this lower ratio is related to eastward migration of the Ruahine drainage divide.  相似文献   

2.
Regular spacing of drainage outlets from linear fault blocks   总被引:3,自引:0,他引:3  
Outlets of river basins located on fault blocks often show a regular spacing. This regularity is most pronounced for fault blocks with linear ridge crests and a constant half-width, measured perpendicular to the ridge crest. The ratio of the half-width of the fault block and the outlet spacing is used in this study to characterize the average shape (or spacing ratio) of 31 sets of drainage basins. These fault-block spacing ratios are compared with similar data from small-scale flume experiments and large-scale mountain belts. Fault-block spacing ratios are much more variable than those measured for mountain belts. Differences between fault-block spacing ratios are attributed to variability in factors influencing the initial spacing of channel heads and subsequent rates of channel incision during the early stages of channel network growth (e.g. initial slope and uplift rate, precipitation, runoff efficiency and substrate erodibility). Widening or narrowing of fault blocks during ongoing faulting will also make spacing ratios more variable. It is enigmatic that some of these factors do not produce similar variability in mountain belt spacing ratios. Flume experiments in which drainage networks were grown on static topography show a strong correlation between spacing ratios and surface gradient. Spacing ratios on fault blocks are unaffected by variations in present-day gradients. Drainage basins on the Wheeler Ridge anticline in central California, which have formed on surfaces progressively uplifted by thrust faulting during the last 14 kyr, demonstrate that outlet spacing is likely to be determined during the early stages of drainage growth. This dependency on initial conditions may explain the lack of correlation between spacing ratios of fault blocks and slopes measured at the present day. Spacing ratios determine the location of sediment supply points to adjacent areas of deposition, and hence strongly influence the spatial scale of lateral facies variations in the proximal parts of sedimentary basins. Spacing ratios may be used to estimate this length scale in ancient sedimentary basins if the width of adjacent topography is known. Spacing ratio variability makes these estimates much less precise for fault blocks than for mountain belts.  相似文献   

3.
It has been observed that the distance between the outlets of transverse basins in orogens is typically half of the distance between the main divide and the range front irrespective of mountain range size or erosional controls. Although it has been suggested that this relationship is the inherent expression of Hack's law, and/or possibly a function of range widening, there are cases of notable deviations from the typical half‐width average spacing. Moreover, it has not been demonstrated that this general relationship is also true for basins in morphologically similar nonorogenic settings, or for those that do not extend to the main drainage divide. These issues are explored by investigating the relationship between basin outlet spacing and the 2‐dimensional geometric properties of drainage basins (basin length, main valley length and basin area) in order to assess whether the basin outlet spacing‐range width ratio is a universal characteristic of fluvial systems. We examined basins spanning two orders of magnitude in area along the southern flank of the Himalayas and the coastal zone of southeast Africa. We found that the spacing between basin outlets (Los) for major transverse basins that drain the main divide (range‐scale basins) is approximately half of the basin length (Lb) for all basins, irrespective of size, in southeast Africa. In the Himalayas, while this ratio was observed for eastern Himalayan basins (a region where the maximum elevations coincided with the main drainage divide), it was only observed in basins shorter than ~30 km in the western and central Himalayas. Our analysis indicates that basin outlet spacing is consistent with Hack's law, apparently because the increase in basin width (represented by outlet spacing) with basin area occurs at a rate similar to the increase in main stream length (Lv) with basin area. It is suggested that most river systems tend towards an approximately diamond‐shaped packing arrangement, and this applies both to the nonorogenic setting of southeast Africa as well as most orogenic settings. However, in the western Himalayas shortening associated with localised rock uplift appears to have occurred at length scales smaller than most the basins examined. As a result rivers in basins longer than ~30 km have been unable to erode in a direction normal to the range front at a sufficiently high rate to sustain this form and have been forced into an alternative, and possibly unstable, packing arrangement.  相似文献   

4.
Drainage networks in linear mountain ranges always display a particular geometrical organisation whereby the spacing between the major drainage basins is on average equal to half the mountain width (distance from the mountain front to the main drainage divide), independent of climate and tectonics. This relationship is valid for mountains having different widths and is thus usually thought to be maintained by drainage reorganisation during mountain belt widening. However, such large‐scale systematic drainage reorganisation has never been evidenced. In this paper, we suggest an alternative explanation, namely that the observed drainage basin relationships are an inherent property of dendritic river networks and that these relationships are established on the undissected, lowland margins outside mountain ranges and are progressively incorporated and quenched into uplifted topography during range widening. Thus, we suggest that the large‐scale geometry of drainage networks in mountain ranges is mainly antecedent to erosion. We propose a model in which the large‐scale drainage geometry is controlled mainly by the geometrical properties of the undissected surfaces (in particular, the ratio of the regional slope to the local slope related to roughness) over which rivers are flowing before uplift, and is therefore independent of climate and tectonics.  相似文献   

5.
Exhumation of the Pyrenean orogen: implications for sediment discharge   总被引:3,自引:1,他引:2  
Morris  Sinclair  & Yell 《Basin Research》1998,10(1):69-85
Apatite fission track analyses of 21 samples from the central and eastern Pyrenees are modelled to generate time–temperature plots for the post 110±10 °C cooling history over the 40–10 Ma time interval. Modelled thermal histories have been converted into exhumation plots through the application of the present-day geothermal gradient in the Pyrenees. The documented geology of the Pyrenees allows us to assume no significant extensional unroofing and subvertical exhumation trajectories, thus enabling exhumation to be translated into erosional denudation. Maps of denudation have been constructed for six, 5-Myr time intervals. Denudation varied with a 20–50-km length scale, and does not appear to have been related to the major structural zones of the mountain belt. Spatially averaged denudation rates for the six time intervals ranged from 34 to 61 mm kyr?1 assuming the present-day geothermal gradient. Maximum rates of 240 mm kyr?1 occurred in the interval 35–30 Ma, in the region of the Querigut-Millas massif. Assuming the denudation resulted primarily from erosion, the denudation maps can be used to calculate sediment discharge through time to the neighbouring foreland basins. Using a series of rectangular drainage basins with a 2:1 aspect ratio (based on modern linear mountain belts) and a location of the main drainage divide based on the mean present-day position, it is possible to evaluate the potential for spatial and temporal variations in sediment discharge as a function of denudation. The results show along-strike variations in sediment discharge between drainage basins of 500%, and temporal variations from individual basins of >300%. A comparison of total sediment discharge per year to the Ebro and Aquitaine basins, assuming a fixed drainage divide, shows that the discharge to the south is likely to have been between 1.5 and 2.8 times greater than to the north.  相似文献   

6.
Drainage networks link erosional landscapes and sedimentary basins in a source‐to‐sink system, controlling the spatial and temporal distribution of sediment flux at the outlets. Variations of accumulation rates in a sedimentary basin have been classically interpreted as changes in erosion rates driven by tectonics and/or climate. We studied the interactions between deformation, rainfall rate and the intrinsic dynamics of drainage basins in an experimental fold‐and‐thrust belt subjected to erosion and sedimentation under constant rainfall and shortening rates. The emergence of thrust sheets at the front of a prism may divert antecedent transverse channels (perpendicular to the structural grain) leading to the formation of longitudinal reaches, later uplifted and incorporated in the prism by the ongoing deformation. In the experiments, transverse incisions appear in the external slopes of the emerging thrust sheets. Headward erosion in these transverse channels results in divide migration and capture of the uplifted longitudinal channels located in the inner parts of the prism, leading to drainage network reorganization and modification of the sediment routing system. We show that the rate of drainage reorganization increases with the rainfall rate. It also increases in a nonlinear way with the rate of uplift. We explain this behaviour by an exponent > 1 on the slope variable in the framework of the stream power erosion model. Our results confirm the view that early longitudinal‐dominated networks are progressively replaced by transverse‐dominated rivers during mountain building. We show that drainage network dynamics modulate the distribution of sedimentary fluxes at the outlets of experimental wedges. We propose that under constant shortening and rainfall rates the drainage network reorganization can also modulate the composition and the spatial distribution of clastic fluxes in foreland basins.  相似文献   

7.
秦巴山地垂直带谱结构的空间分异对于揭示秦巴山地地域结构复杂性和过渡性、探索中国复杂的生态地理格局具有重要的意义。本文从文献中搜集了秦巴山地33个山地垂直带谱,建立了秦巴山地数字垂直带谱体系,从纬向、经向和坡向3个维度分析了山地垂直带谱的结构、特征、数量、高度以及分布模式。结果表明:① 纬向上从南向北基带由亚热带常绿阔叶林带逐渐转变为暖温带落叶阔叶林带;垂直带结构由复杂逐渐变得简单;优势带由山地针阔混交林和山地常绿落叶阔叶混交林转变为山地落叶阔叶林带;② 经向上山地垂直带结构呈现复杂—简单—复杂的特征;常绿落叶阔叶混交林带和山地落叶阔叶林带的海拔呈现了二次曲线分布模式;山地针阔混交林带的海拔则呈现显著的线性降低趋势;③ 坡向方面,秦岭北坡和南坡基带均为暖温带落叶阔叶林带,但南坡含有常绿成分;大巴山北坡为亚热带常绿落叶阔叶混交林带,大巴山南坡为亚热带常绿阔叶林带;秦岭和大巴山北坡优势带类似,均为山地针阔混交林带或山地落叶阔叶林带,但大巴山南坡具有独特的山地常绿落叶阔叶混交林优势带,这表明了大巴山比秦岭更适合作为暖温带和北亚热带的分界线,但是未来还需使用土壤和气候指标进行系统的分析。  相似文献   

8.
防风林带结构是影响防风效能的主要因素。建立不同宽度、不同株行距林带防风效能与林带后距离之间的统计模型,可以为防风林建设提供指导性意见。通过风洞实验,在11 m·s-1风速下,对4种宽度、5种株行距林带的背风面0~10H(H为林带高度)的风速进行测定,采用曲线参数估计法、傅立叶模型、SSF模型(Sum of Sin Functions),构建了不同结构林带防风效能与林带后距离间的统计模型。结果表明:傅立叶模型拟合不同宽度林带的防风效能与林带后距离的关系效果最优,可决系数(R2)均在98%以上;SSF模型拟合不同株行距林带的防风效能与林带后距离的关系效果最优(R2>0.98)。根据构建的统计模型,风速为11 m·s-1左右时,林带宽度8 m(两行一带)的防风林的防风效能存在明显优势;5种株行距的林带中,株行距为8 m×8 m的防风林带本试验条件下防风效果最好。  相似文献   

9.
Pro- vs. retro-foreland basins   总被引:1,自引:0,他引:1  
Alpine‐type mountain belts formed by continental collision are characterised by a strong cross‐sectional asymmetry driven by the dominant underthrusting of one plate beneath the other. Such mountain belts are flanked on either side by two peripheral foreland basins, one over the underthrust plate and one over the over‐riding plate; these have been termed pro‐ and retro‐foreland basins, respectively. Numerical modelling that incorporates suitable tectonic boundary conditions, and models orogenesis from growth to a steady‐state form (i.e. where accretionary influx equals erosional outflux), predicts contrasting basin development to these two end‐member basin types. Pro‐foreland basins are characterised by: (1) Accelerating tectonic subsidence driven primarily by the translation of the basin fill towards the mountain belt at the convergence rate. (2) Stratigraphic onlap onto the cratonic margin at a rate at least equal to the plate convergence rate. (3) A basin infill that records the most recent development of the mountain belt with a preserved interval determined by the width of the basin divided by the convergence rate. In contrast, retro‐foreland basins are relatively stable, are not translated into the mountain belt once steady‐state is achieved, and are consequently characterised by: (1) A constant tectonic subsidence rate during growth of the thrust wedge, with zero tectonic subsidence during the steady‐state phase (i.e. ongoing accretion‐erosion, but constant load). (2) Relatively little stratigraphic onlap driven only by the growth of the retro‐wedge. (3) A basin fill that records the entire growth phase of the mountain belt, but only a condensed representation of steady‐state conditions. Examples of pro‐foreland basins include the Appalachian foredeep, the west Taiwan foreland basin, the North Alpine Foreland Basin and the Ebro Basin (southern Pyrenees). Examples of retro‐foreland basins include the South Westland Basin (Southern Alps, New Zealand), the Aquitaine Basin (northern Pyrenees), and the Po Basin (southern European Alps). We discuss how this new insight into the variability of collisional foreland basins can be used to better interpret mountain belt evolution and the hydrocarbon potential of these basins types.  相似文献   

10.
Morphological scaling relationships between source‐to‐sink segments have been widely explored in modern settings, however, deep‐time systems remain difficult to assess due to limited preservation of drainage basins and difficulty in quantifying complex processes that impact sediment dispersals. Integration of core, well‐logs and 3‐D seismic data across the Dampier Sub‐basin, Northwest Shelf of Australia, enables a complete deep‐time source‐to‐sink study from the footwall (Rankin Platform) catchment to the hanging wall (Kendrew Trough) depositional systems in a Jurassic late syn‐rift succession. Hydrological analysis identifies 24 drainage basins on the J50.0 (Tithonian) erosional surface, which are delimited into six drainage domains confined by NNE‐SSW trending grabens and their horsts, with drainage domain areas ranging between 29 and 156 km2. Drainage outlets of these drainage domains are well preserved along the Rankin Fault System scarp, with cross‐sectional areas ranging from 0.08 to 0.31 km2. Corresponding to the six drainage domains, sedimentological and geomorphological analysis identifies six transverse submarine fan complexes developing in the Kendrew Trough, ranging in areas from 43 to 193 km2. Seismic geomorphological analysis reveals over 90‐km‐long, slightly sinuous axial turbidity channels, developing in the lower topography of the Kendrew Trough which erodes toe parts of transverse submarine fan complexes. Positive scaling relationships exist between drainage outlet spacing and drainage basin length, and drainage outlet cross‐sectional area and drainage basin area, which indicates the geometry of drainage outlets can provide important constraints on source area dimensions in deep‐time source‐to‐sink studies. The broadly negative bias of fan area to drainage basin area ratios indicates net sediment losses in submarine fan complexes caused by axial turbidity current erosion. Source‐to‐sink sediment balance studies must be done with full evaluating of adjacent source‐to‐sink systems to delineate fans and their associated up‐dip drainages, to achieve an accurate tectonic and sedimentologic picture of deep‐time basins.  相似文献   

11.
ABSTRACT Fluvial megafans chronicle the evolution of large mountainous drainage networks, providing a record of erosional denudation in adjacent mountain belts. An actualistic investigation of the development of fluvial megafans is presented here by comparing active fluvial megafans in the proximal foreland basin of the central Andes to Tertiary foreland‐basin deposits exposed in the interior of the mountain belt. Modern fluvial megafans of the Chaco Plain of southern Bolivia are large (5800–22 600 km2), fan‐shaped masses of dominantly sand and mud deposited by major transverse rivers (Rio Grande, Rio Parapeti, and Rio Pilcomayo) emanating from the central Andes. The rivers exit the mountain belt and debouch onto the low‐relief Chaco Plain at fixed points along the mountain front. On each fluvial megafan, the presently active channel is straight in plan view and dominated by deposition of mid‐channel and bank‐attached sand bars. Overbank areas are characterized by crevasse‐splay and paludal deposition with minor soil development. However, overbank areas also contain numerous relicts of recently abandoned divergent channels, suggesting a long‐term distributary drainage pattern and frequent channel avulsions. The position of the primary channel on each megafan is highly unstable over short time scales. Fluvial megafans of the Chaco Plain provide a modern analogue for a coarsening‐upward, > 2‐km‐thick succession of Tertiary strata exposed along the Camargo syncline in the Eastern Cordillera of the central Andean fold‐thrust belt, about 200 km west of the modern megafans. Lithofacies of the mid‐Tertiary Camargo Formation include: (1) large channel and small channel deposits interpreted, respectively, as the main river stem on the proximal megafan and distributary channels on the distal megafan; and (2) crevasse‐splay, paludal and palaeosol deposits attributed to sedimentation in overbank areas. A reversal in palaeocurrents in the lowermost Camargo succession and an overall upward coarsening and thickening trend are best explained by progradation of a fluvial megafan during eastward advance of the fold‐thrust belt. In addition, the present‐day drainage network in this area of the Eastern Cordillera is focused into a single outlet point that coincides with the location of the coarsest and thickest strata of the Camargo succession. Thus, the modern drainage network may be inherited from an ancestral mid‐Tertiary drainage network. Persistence and expansion of Andean drainage networks provides the basis for a geometric model of the evolution of drainage networks in advancing fold‐thrust belts and the origin and development of fluvial megafans. The model suggests that fluvial megafans may only develop once a drainage network has reached a particular size, roughly 104 km2– a value based on a review of active fluvial megafans that would be affected by the tectonic, climatic and geomorphologic processes operating in a given mountain belt. Furthermore, once a drainage network has achieved this critical size, the river may have sufficient stream power to prove relatively insensitive to possible geometric changes imparted by growing frontal structures in the fold‐thrust belt.  相似文献   

12.
黄河中游流域地貌形态对流域产沙量的影响   总被引:13,自引:7,他引:13  
卢金发 《地理研究》2002,21(2):171-178
在黄河中游地区 ,选择了 5 0多个面积约 5 0 0~ 2 5 0 0平方公里的水文测站流域 ,分别代表 6种不同自然地理类型 ,在流域沟壑密度、沟间地坡度小于 15°面积百分比等地貌形态指标量计的基础上 ,进行了流域产沙量与地貌形态指标相关分析。结果表明 ,对于不同类型流域 ,流域产沙量随流域地貌的变化遵循不同的响应规律 ,而且视流域其它下垫面环境条件的均一程度 ,其相关程度和响应速率各不相同。受地面物质、植被、地貌发育阶段等流域其它下垫面环境条件的制约 ,除沟壑密度外 ,流域产沙量与流域地貌形态的关系都没有人们以前所预期的好。  相似文献   

13.
A multidisciplinary approach, combining sediment petrographic, palynological and thermochronological techniques, has been used to study the Miocene‐Pliocene sedimentary record of the evolution of the Venezuelan Andes. Samples from the Maracaibo (pro‐wedge) and Barinas (retro‐wedge) foreland basins, proximal to this doubly vergent mountain belt, indicate that fluvial and alluvial‐fan sediments of similar composition were shed to both sides of the Venezuelan Andes. Granitic and gneissic detritus was derived from the core of the mountain belt, whereas sedimentary cover rocks and uplifted foreland basin sediments were recycled from its flanks. Palynological evidence from the Maracaibo and Barinas basins constrains depositional ages of the studied sections from late Miocene to Pliocene. The pollen assemblages from the Maracaibo Basin are indicative of mountain vegetation, implying surface elevations of up to 3500–4000 m in the Venezuelan Andes at this time. Detrital apatite fission‐track (AFT) data were obtained from both stratigraphic sections. In samples from the Maracaibo basin, the youngest AFT grain‐age population has relatively static minimum ages of 5 ± 2 Ma, whereas for the Barinas basin samples AFT minimum ages are 7 ± 2 Ma. With exception of two samples collected from the Eocene Pagüey Formation and from the very base of the Miocene Parángula Formation, no evidence for resetting and track annealing in apatite due to burial heating in the basins was found. This is supported by rock‐eval analyses on organic matter and thermal modelling results. Therefore, for all other samples the detrital AFT ages reflect source area cooling and impose minimum age constraints on sediment deposition. The main phase of surface uplift, topography and relief generation, and erosional exhumation in the Venezuelan Andes occurred during the late Miocene to Pliocene. The Neogene evolution of the Venezuelan Andes bears certain similarities with the evolution of the Eastern Cordillera in Colombia, although they are not driven by exactly the same underlying geodynamic processes. The progressive development of the two mountain belts is seen in the context of collision of the Panama arc with northwestern South America and the closure of the Panama seaway in Miocene times, as well as contemporaneous movement of the Caribbean plate to the east and clock‐wise rotation of the Maracaibo block.  相似文献   

14.
天山数字垂直带谱体系与研究   总被引:3,自引:1,他引:3  
张百平  谭娅  莫申国 《山地学报》2004,22(2):184-192
对6个全国性山地垂直带谱体系进行评述。认为区域性的数字垂直带谱的详细研究也是建立中国山地垂直带信息图谱的重要一环。只有通过这样的工作,才能进一步发现问题和解决问题,才能逐步趋于完成山地垂直带谱集大成的工作。分析了天山垂直带谱形成的因素,建立了包括北坡、南坡、西部伊犁谷地、天山腹地(巴音布鲁克盆地)的天山数字垂直带谱体系,分析了各垂直带的特点,总结了垂直带谱的区域分异规律。  相似文献   

15.
A numerical study was undertaken to investigate non linearity and the potential for self-organized criticality (SOC) in the evolution of river basins. Twenty-three simulations were carried out, using the authors' CAESAR landscape evolution model, in which the magnitude of storm events, variability of storm events, sediment heterogeneity, sources of sediment supply, and catchment morphology are systematically varied to evaluate their importance as possible drivers for non linear behavior and SOC.Temporal fluctuations in simulated sediment yield show notable non linear behavior. Storm magnitude and occurrence of landslides appear to have little impact on variability of the sediment yield, when compared to the impacts of sediment heterogeneity, rainfall variability and catchment morphology. Particularly, it appears that the non linearity of sediment yields results from the manner in which the catchment processes the variable rainfall, rather than just the rainfall variability itself.The variations in sediment yield show a power law magnitude–frequency distribution, which is a possible, but inconclusive, indicator of SOC. However, several other, more qualitative arguments can be made to support the case for SOC in these simulations. Specifically, we identify the nature of the critical state and suggest two cascade mechanisms by which the system can organize itself around this critical state. Combined, these arguments indicate that simulated evolution of river basins indeed exhibits SOC, at least with respect to sediment yield. The critical state appears to be an indicator of the connectivity of the drainage network. Thus, the simulations indicate that, unlike traditional SOC systems, the critical state of the system can vary in time, as sudden changes in drainage network connectivity may result in sudden changes in the SOC behavior of the system.  相似文献   

16.
陕北黄土高原沟道小流域形态特征分析   总被引:4,自引:1,他引:3  
陈浩 《地理研究》1986,5(1):82-92
本文就黄土高原不同地貌类型区的小流域进行了形态量计分析。并以河网密度为地表切割程度指标,建立了河网密度与流域形态要素的复相关方程式。  相似文献   

17.
Piggyback basins developed at the mountain fronts of collisional orogens can act as important, and transient, sediment stores along major river systems. It is not clear, however, how the storage and release of sediment in piggyback basins affects the sediment flux and evolution of downstream river reaches. Here, we investigate the timing and volumes of sediment storage and release in the Dehra Dun, a piggyback basin developed along the Himalayan mountain front in northwestern India. Based on OSL dating, we show evidence for three major phases of aggradation in the dun, bracketed at ca. 41–33 ka, 34–21 ka and 23–10 ka, each accompanied by progradation of sediment fans into the dun. Each of these phases was followed by backfilling and (apparently) rapid fan‐head incision, leading to abandonment of the depositional unit and a basinward shift of the active depocentre. Excavation of dun sediment after the second and third phases of aggradation produced time‐averaged sediment discharges that were ca. 1–2% of the modern suspended‐sediment discharges of the Ganga and Yamuna rivers that traverse the margins of the dun; this sediment was derived from catchment areas that together comprise 1.5% of the drainage area of these rivers. Comparison of the timing of dun storage and release with upstream and downstream records of incision and aggradation in the Ganga show that sediment storage in the dun generally coincides with periods of widespread hinterland aggradation but that late stages of dun aggradation, and especially times of dun sediment excavation, coincide with major periods of sediment export to the Ganga Basin. The dun thus acts to amplify temporal variations in hinterland sediment supply or transport capacity. This conceptual model appears to explain morphological features of other major river systems along the Himalayan front, including the Gandak and Kosi Rivers, and may be important for understanding sediment flux variations in other collisional mountain belts.  相似文献   

18.
青藏高原植被垂直带与气候因子的空间关系   总被引:7,自引:1,他引:6  
集成了青藏高原气候区149个山地植被垂直带数据,利用国家基本气象台站自建站以来到2001年的地面观测日气象数据,计算了地面的温暖(WI)、寒冷(CI)、湿润(MI)、吉良龙夫(Kira)干湿指数、干燥度(Idm)等水热指数,运用GIS的空间分析模块,模拟了青藏高原水热条件的空间分布形势,探讨山地植被垂直带谱分布规律与制约因子的定量指标.结果表明:在高原的东北部、西北边缘,以荒漠、荒漠草原、山地森林、山地草原、灌丛、草甸为组合的半干旱、干旱结构向高原腹地以高寒草原、高山草甸、荒漠带组合的高寒干旱带谱结构的变化;东南、南部边缘,以温暖湿润为特征的以森林带为优势带谱组合结构逐渐向寒冷的高原中心变化;高原的地势效应,致使的水热形势旱现从中央向边缘变化的趋势是致使青藏高原植被垂直带谱分布的重要原因.  相似文献   

19.
姚永慧  张百平  谭靖  韩芳 《地理研究》2009,28(6):1633-1643
长江上游包括青藏高原东南部、秦巴山地、四川盆地与云贵高原部分地区,在地理、地貌、气候、生物多样性方面都表现得极为复杂和丰富多彩,在世界山地中也占有举足轻重的位置。特别是复杂多样的山地垂直带谱更是欧亚大陆乃至世界山地垂直带研究中至关重要的组成部分。在地学信息图谱和数字山地垂直带体系的基础上,本文系统地收集和分析了长江上游共50个山地垂直带谱所体现的空间规律,河源区、横断山区、秦巴山区及贵州高原的垂直带谱类型多样并各具特色,且在经度和纬度方向又具有统一的分布规律,如雪线、林线、针叶林及阔叶林等的分布界线变化规律比较符合二次曲线规律,验证了大陆尺度上山地垂直带二次曲线模式假说。另外,山地垂直带分布规律又具有尺度效应,中小尺度上地形的影响作用表现得极为显著。  相似文献   

20.
This paper used five years (2001-2006) time series of MODIS NDVI images with a 1-km spatial resolution to produce a land cover map of Qinghai Province in China. A classi-fication approach for different land cover types with special emphasis on vegetation, espe-cially on sparse vegetation, was developed which synthesized Decision Tree Classification, Supervised Classification and Unsupervised Classification. The spatial distribution and dy-namic change of vegetation cover in Qinghai from 2001 to 2006 were analyzed based on the land cover classification map and five grade elevation belts derived from Qinghai DEM. The result shows that vegetation cover in Qinghai in recent five years has been some improved and the area of vegetation was increased from 370,047 km2 in 2001 to 374,576 km2 in 2006. Meanwhile, vegetation cover ratio was increased by 0.63%. Vegetation cover ratio in high mountain belt is the largest (67.92%) among the five grade elevation belts in Qinghai Prov-ince. The second largest vegetation cover ratio is in middle mountain belt (61.80%). Next, in the order of the decreasing vegetation cover ratio, the remaining grades are extreme high mountain belt (38.98%), low mountain belt (25.55%) and flat region belt (15.46%). The area of middle density grassland in high mountain belt is the biggest (94,003 km2), and vegetation cover ratio of dense grassland in middle mountain belt is the highest (32.62%), and the in-creased area of dense grassland in high mountain belt is the greatest (1280 km2). In recent five years the conversion from sparse grass to middle density grass in high mountain belt has been the largest vegetation cover variation and the converted area is 15931 km2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号