首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
Abstract The age of recent deposits can be determined using an intrinsic characteristic of the lichen ‘population’ growing on their surface. This paper presents a calibrated dating curve based on the gradient of the size‐frequency distribution of yellow‐green Rhizocarpon lichens. The dating potential of this new curve is tested on surfaces of known age in southeast Iceland. This particular size—frequency technique is also compared with the more traditional largest‐lichen approach. The results are very encouraging and suggest that the gradient can be used as an age indicator, at least on deposits formed within the last c. 150 years – and probably within the last c. 400 years – in the maritime subpolar climate of southeast Iceland. Using both lichenometric techniques, revised dates for moraines on two glacier forelands are presented which shed new light on the exact timing of the Little Ice Age glacier maximum in Iceland.  相似文献   

2.
Glaciers in small mountain cirques on South Georgia respond rapidly and sensitively to changes in South Atlantic climate. The timing and rate of their deglaciation can be used to examine the impact that nineteenth- and twentieth-century climate change has had on the glacial dynamics and terrestrial ecosystems of South Georgia. As part of a reconnaissance study in Prince Olav Harbour (POH), South Georgia, we measured the size of lichens ( Rhizocarpon Ram. em Th. Fr. subgenus. Rhizocarpon group) on ice-free moraine ridges around two small mountain cirques. Our aims were twofold: first, to provide age estimates for lichen colonization, and hence, deglaciation of the moraine ridges, and second, to examine the potential of applying lichenometry more widely to provide deglacial age constraints on South Georgia. In the absence of lichen age-size (dating) curves for South Georgia, we use long-term Rhizocarpon lichen growth-rates from recent studies on sub-Antarctic Islands and the western Antarctic Peninsula to calculate likely age estimates. These data suggest ice retreat from the two outermost moraines occurred between the end of the 'Little Ice Age' (post c. 1870) and the early twentieth century on South Georgia. Lichen colonization of the innermost moraines is probably related to glacier retreat during the second half of the twentieth century, which has been linked to a well-defined warming trend since c. 1950. Patterns of possible nineteenth- and twentieth-century glacial retreat identified in POH need to be tested further by establishing species- and site-specific lichen age-size (dating) curves for South Georgia, and by applying lichenometry to other mountain cirques across South Georgia.  相似文献   

3.
Little Ice Age (LIA) moraines along the margins of Skálafellsjökull and Heinabergsjökull, two neighbouring outlet glaciers flowing from the Vatnajökull ice‐cap, have been re‐dated to test the reliability of different lichenometric approaches. During 2003, 12 000 lichens were measured on 40 moraine fragments at Skálafellsjökull and Heinabergsjökull to provide surface age proxies. The results are revealing. Depending on the chosen method of analysis, Skálafellsjökull either reached its LIA maximum in the early 19th century (population gradient) or the late 19th century (average of five largest lichens), whereas the LIA maximum of Heinabergsjökull occurred by the mid‐19th century (population gradient) or late‐19th century (average of 5 largest lichens). Discrepancies (c. 80 years for Skálafellsjökull and c. 40 years for Heinabergsjökull) suggest that the previously cited AD 1887 LIA maxima for both glaciers should be reassessed. Dates predicted by the lichen population gradient method appear to be the most appropriate, as mounting evidence from other geochronological reconstructions and sea‐ice records throughout Iceland tends to support an earlier LIA glacier maximum (late 18th to mid‐19th century) and probably reflects changes in the North Atlantic Oscillation. These revised chronologies shed further light on the precise timing of the Icelandic LIA glacier maximum, whilst improving our understanding of glacier‐climate interactions in the North Atlantic.  相似文献   

4.
This paper presents a critical review of previous lichenometric and lichen growth studies in southern parts of West and East Greenland. These studies include classic work from around Søndre Strømfjord, Sukkertoppen, Sermilik and Angmagssalik. Particular emphasis is placed on those studies examining the role played by climatic continentality on the growth rate of crustose lichens in Greenland. The latter part of the paper presents new data on lichen growth rates from Sermilik, between 2001 and 2006, in 22 different lichen species. Measurements show that different species grow at different rates and growth rates vary from site to site. In this study Rhizocarpon geographicum generally grows slowly (<0.2 mm a−1) while other species such as Pseudephebe minuscula grow more rapidly (1.0 mm a−1) in the same environment. Comparison with other studies shows that taxa-specific growth rates are slightly greater in West than in East Greenland – probably as a result of the slightly more favourable climate and higher precipitation levels. It is suggested that recent climate change, most marked in southern Greenland, will probably result in changed growth curves (over time) for species such as Rhizocarpon geographicum . However, only more precise growth curves and lichenometric dating curves can demonstrate such a phenomenon.  相似文献   

5.
In Alaska, lichenometry continues to be an important technique for dating late Holocene moraines. Research completed during the 1970s through the early 1990s developed lichen dating curves for five regions in the Arctic and subarctic mountain ranges beyond altitudinal and latitudinal treelines. Although these dating curves are still in use across Alaska, little progress has been made in the past decade in updating or extending them or in developing new curves. Comparison of results from recent moraine-dating studies based on these five lichen dating curves with tree-ring based glacier histories from southern Alaska shows generally good agreement, albeit with greater scatter in the lichen-based ages. Cosmogenic surface-exposure dating of Holocene moraines has the potential to test some of the assumptions of the lichenometric technique and to facilitate the development of a new set of improved lichen dating curves for Alaska.  相似文献   

6.
A lichenometric investigation of the 14 major Neoglacial end moraine sequences formed by the Okstindan Glaciers revealed the presence of a similar ‘Little Ice Age’ sequence, while in four instances, older Neoglacial end moraines occurred outside the former sequence. Using lichenometric and historical data from Okstindan and other Scandinavian glacierized regions, the formation of the ‘Little Ice Age’ and moraines was assigned to the period between A.D. 1920 and an undefined part of the 18th century. The older end moraines could not be lichenometrically dated, though it was evident that they were considerably older than the others. Comparisons of lichenometric data collected using different sampling and lichen measuring methods showed that significantly different results were obtained.  相似文献   

7.
This study presents a growth curve developed from direct and indirect growth rates of Rhizocarpon geographicum lichens from study sites on Mounts Baker, Rainier, Adams, and Hood in the northern Cascade Range of the western USA. Our observations of direct growth rates are based on 31 measurements of 11 lichens growing on different surfaces. This direct growth rate dataset is complemented by indirect growth rates based on measurements of the largest lichen observed on 20 different surfaces over 24–33‐yr periods. The direct and indirect datasets produce statistically indistinguishable mean radial growth rates of 0.48 and 0.50 mm yr?1, respectively. Statistical analysis of zero and first order fits of our growth rate data suggests that lichen growth is best characterized by the average of our mean growth rate (zero order) models at 0.49 mm yr?1. Our revised growth curve for the study area extends the applicable range for dating rock surface in the study area to the seventeenth century, approximately 175 years longer than previous calibrated curves.  相似文献   

8.
Two lichenometric techniques were compared in a study of lichen growth–rate in northern Sweden. The first technique, based on the maximum lichen diameter on glacier moraines, was identical to the technique used in the 1970s, whereas the other utilized the lichen diameter measured on 100 randomly selected boulders. The results indicate that it does not matter which technique is chosen, as long as the technique is used consistently on both the calibration surfaces and the surfaces to be dated. The use of data from both the 1970s and the 2000s increased the number of calibration surfaces available. The new calibration curve indicates that the age of Little Ice Age moraines was underestimated by up to about 30 years in the study conducted in the 1970s.  相似文献   

9.
Two lichenometric techniques were compared in a study of lichen growth–rate in northern Sweden. The first technique, based on the maximum lichen diameter on glacier moraines, was identical to the technique used in the 1970s, whereas the other utilized the lichen diameter measured on 100 randomly selected boulders. The results indicate that it does not matter which technique is chosen, as long as the technique is used consistently on both the calibration surfaces and the surfaces to be dated. The use of data from both the 1970s and the 2000s increased the number of calibration surfaces available. The new calibration curve indicates that the age of Little Ice Age moraines was underestimated by up to about 30 years in the study conducted in the 1970s.  相似文献   

10.
One of the major goals of geomorphology is to understand the rate of landscape evolution and the constraints that erosion sets on the longevity of land surfaces. The latter has also turned out to be vital in modern applications of cosmogenic exposure dating and interpretation of lichenometric data from unconsolidated landforms. Because the effects of landform degradation have not been well documented, disagreements exist among researchers regarding the importance of degradation processes in the dating techniques applied to exposures. Here, we show that all existing qualitative data and quantitative markers of landform degradation collectively suggest considerable lowering of the surface of unconsolidated landforms over the typical life span of Quaternary moraines or fault scarps. Degradation is ubiquitous and considerable even on short time scales of hundreds of years on steeply sloping landforms. These conservative analyses are based entirely on field observations of decreasing slope angles of landforms over the typical range of ages in western North America and widely accepted modeling of landscape degradation. We found that the maximum depth of erosion on fault scarps and moraines is on average 34% of the initial height of the scarp and 25% of the final height of the moraine. Although our observations are limited to fault scarps and moraines, the results apply to any sloping unconsolidated landform in the western North America. These results invalidate the prevailing assumption of no or little surface lowering on sloping unconsolidated landforms over the Quaternary Period and affirm that accurate interpretations of lichen ages and cosmogenically dated boulder ages require keen understanding of the ever-present erosion. In our view, the most important results are twofold: 1) to show with a large data set that degradation affects universally all sloping unconsolidated landforms, and 2) to unambiguously show that even conservative estimates of the total lowering of the surface operate at time and depth scales that significantly interfere with cosmogenic exposure and lichen dating.  相似文献   

11.
The endolithic lichen Lecidea auriculata is known to enhance rock surface weathering on the Little Ice Age moraines of the glacier Storbreen in Jotunheimen, central southern Norway. This study demonstrates the reduction in Schmidt hammer Rvalues that followed the rapid colonization by this lichen of pyroxene‐granulite boulders on terrain deglaciated over the last 88 years. In the absence of this lichen, the characteristic mean R‐value of boulder surfaces is 61.0 ± 0.3; where this lichen is present, R‐values are lower by at least 20 units on surfaces exposed for 30–40 years. A similar reduction in rock hardness on rock surfaces without a lichen cover requires about 10 ka. The rapid initial weakening of the rock surfaces is indicative of rates of biological weathering by endolithic lichens that may be two orders of magnitude (200–300 times) faster than rates of physico‐chemical weathering alone. If not avoided, the effects of this type of lichen are likely to negate the effectiveness of the Schmidt hammer and other methods for exposure‐age dating, including cosmogenic‐nuclide dating, in severe alpine and polar periglacial environments. The results also suggest a new method for dating rock surfaces exposed for <50 years.  相似文献   

12.
皖南花山石窟群开凿年代地衣测年及成因   总被引:2,自引:0,他引:2  
据在花山石窟地区古代桥梁、桥垛、牌坊、墓碑、古民居、古房基和石窟洞壁洞口量测出的96个黄绿地图衣最人内切圆直径,测定出花山石窟主要开采年代为距今515~370年即明代中晚期(公元1477~1632年间),石窟岩性与周边地区古建筑岩性的比较以及史料记载和石窟中遗留的古代瓷器残片年代均能证明这一点。鉴于石窟地衣量测工作主要在石窟洞口进行,由此推测石窟深处开采时代可能延续至清代。  相似文献   

13.
Contemporary variants of the lichenometric dating technique depend upon statistical correlations between surface age and maximum lichen sizes, rather than an understanding of lichen biology. To date three terminal moraines of an Alaskan glacier, we used a new lichenometric technique in which surfaces are dated by comparing lichen population distributions with the predictions of ecological demography models with explicit rules for the biological processes that govern lichen populations: colonization, growth, and survival. These rules were inferred from size–frequency distributions of lichens on calibration surfaces, but could be taken directly from biological studies. Working with two lichen taxa, we used multinomial‐based likelihood functions to compare model predictions with measured lichen populations, using only the thalli in the largest 25% of the size distribution. Joint likelihoods that combine the results of both species estimated moraine ages of ad 1938, 1917, and 1816. Ages predicted by Rhizocarpon alone were older than those of P. pubescens. Predicted ages are geologically plausible, and reveal glacier terminus retreat after a Little Ice Age maximum advance around ad 1816, with accelerated retreat starting in the early to mid twentieth century. Importantly, our technique permits calculation of prediction and model uncertainty. We attribute large confidence intervals for some dates to the use of the biologically variable Rhizocarpon subgenus, small sample sizes, and high inferred lichen mortality. We also suggest the need for improvement in demographic models. A primary advantage of our technique is that a process‐based approach to lichenometry will allow direct incorporation of ongoing advances in lichen biology.  相似文献   

14.
The tephrochronology of the last 3000 years has been investigated in soil sections in north Iceland and in a marine sediment core from the north Icelandic shelf, 50 km offshore. Tephra markers, identified with major element geochemical analysis of volcanic glass shards, serve to correlate the marine and terrestrial records. Hekla 3, the largest Holocene tephra marker from the volcano Hekla, in south Iceland, dated to 2980 years BP, is used as the basal unit in the tephra stratigraphy. AMS 14C dating of molluscs in the sediment core shows variable deviation from the tephrochronological age model, indicating that the reservoir age of the seawater mass at the coring site has varied with time. A standard marine reservoir correction of 400 14C years appears to be reasonable at the present day in the coastal and shelf waters around Iceland, which are dominated by the Irminger Current. However, values over 500 years are observed during the last 3000 years. We suggest that the intervals with increased and variable marine reservoir correction reflect incursions of Arctic water masses derived from the East Greenland Current to the area north of Iceland.  相似文献   

15.
The reliability of lichenometric dating is dependent on a good understanding of lichen growth rates. The growth rate of lichens can be determined from direct measurement of growing lichens or indirect methods by measuring lichens growing on surfaces of known age, although there are limitations to both approaches. Radiocarbon (14C) analysis has previously been used in only a handful of studies to determine lichen growth rates of two species from a small area of North America. These studies have produced mixed results; a small amount of carbon turnover appears to occur in one of the species ( Caloplaca spp.) previously investigated introducing uncertainty in the growth rate, while much higher carbon cycling occurred in another ( Rhizocarpon geographicum ), making the 14C approach unsuitable for estimating growth rates in the species most commonly used in lichenometric dating. We investigated the use of bomb-14C analysis to determine the growth rate of a different crustose species ( Pertusaria pseudocorallina ) common to Northern Europe. 14C-based growth rates were considerably higher than growth rates of morphologically similar species based on direct measurement made at locations nearby and elsewhere in the UK. This observation strongly suggests that a degree of carbon turnover probably occurs in Pertusaria pseudocorallina , and that bomb-14C analysis alone cannot be used to determine lichen age or absolute growth rates in this lichen species.  相似文献   

16.
Moraine ridges are commonly used to identify past glacier ice margins and so infer glacier mass balance changes in response to climatic variability. However, differences in the form of past ice margins and post-depositional modification of moraine surfaces can complicate these geomorphic records. As a result, simple relationships, such as distance from current ice margin, or linear alignments, may not necessarily indicate moraines deposited contemporaneously. These disturbances can also modify the size distribution of lichen populations, providing a distinctive signature for surfaces with similar histories and a means of identifying contemporaneous moraine surfaces. In this paper, statistical analysis of lichen size distributions is used to identify moraine surfaces with similar histories from complex suites of Little Ice Age moraine fragments in the proglacial areas of Skálafellsjökull (including Sultartungnajökull) and Heinabergsjökull, southeast Iceland. The analysis is based on a novel use of the goodness-of-fit statistic, Watson's U2 which provides a measure of 'closeness' between two sample distributions. Moraine fragments with similar histories are identified using cluster analysis of the U2 closeness values. The spatial pattern of the clustered moraines suggests three distinct phases of moraine deposition at Skálafellsjökull and Heinabergsjökull, four phases at Sultartungnajökull and a digitate planform margin at Heinabergsjökull. These spatial patterns are corroborated with tephrochronology. The success of the U2 statistical analysis in identifying surfaces with similar histories using lichen size distributions suggests that the technique may be useful in augmenting lichenometric surface dating as well as differentiating between other surfaces that support lichen populations, such as rock avalanche deposits.  相似文献   

17.
A new lichen dating method and new moraine observations enabled us to improve the chronology of glacier advances in the Cordillera Blanca (Peru) during the Little Ice Age (LIA). Our results reveal that an early LIA glacial advance occurred around AD 1330 ± 29. However, a second major glacial advance at the beginning of the 17th century overlapped the earlier stage for most glaciers. Hence, this second glacial stage, dated from AD 1630 ± 27, is considered as the LIA maximum glacial advance in the Cordillera Blanca. During the 17th–18th centuries, at least three glacial advances were recorded synchronously for the different glaciers (AD 1670 ± 24, 1730 ± 21, and 1760 ± 19). The moraines corresponding to the two first stages are close to the one in 1630 suggesting a slow recession of about 18% in the total length of the glacier. From the LIA maximum extent to the beginning of the 20th century, the 24 glaciers have retreated a distance of about 1000 m, corresponding to a reduction of 30% in their length. This rate is comparable to that observed during the 20th century. Estimates of palaeo-Equilibrium Line Altitudes show an increase in altitude of about 100 m from the LIA maximum glacial extension at the beginning of the 17th century to the beginning of the 20th century. Because long time series are not available for precipitation and temperature, this glacial retreat is difficult to explain by past climate changes. However, there is a fair correspondence between changes in glacier length and the δ18O recorded in the Quelccaya ice core at a century timescale. Our current knowledge of tropical glaciers and isotope variations leads us to suggest that this common tropical signal reflects a change from a wet LIA to the drier conditions of today. Finally, a remarkable synchronicity is observed with glacial variations in Bolivia, suggesting a common regional climatic pattern during the LIA.  相似文献   

18.
Certain species of crustose lichens have concentrically zoned margins which probably represent yearly growth rings. These marginal growth rings offer an alternative method of studying annual growth fluctuations, establishing growth rate–size curves, and determining the age of thalli for certain crustose species. Hence, marginal growth rings represent a potentially valuable, unexploited, tool in lichenometry. In a preliminary study, we measured the widths of the successive marginal rings in 25 thalli of Ochrolechia parella (L.) Massal., growing at a maritime site in north Wales. Mean ring widths of all thalli varied from a minimum of 1.02 mm (the outermost ring) to a maximum of 2.06 mm (the third ring from the margin). There is some suggestion that marginal ring width and thallus size are positively correlated; and hence that growth rates increase in larger thalli in this small population. In a further study on recently exposed bedrock adjacent to Breiðarlon, SE Iceland, we examined the potential for using marginal growth rings to estimate thallus age of a lichen tentatively identified as a Rhizocarpon (possibly R. concentricum (Davies) Beltram.) and thus confirm the timing of surface exposure ( c. 50 years). Collectively, these results suggest: 1) the measurement of marginal rings is a possible alternative method of studying the growth of crustose lichens; 2) O. parella may grow differently to other crustose species, exhibiting a rapidly increasing radial growth rate in thalli >40 mm; 3) where lichens with marginal rings grow on recently exposed surfaces (<60 yrs), minimum age estimates can be made using growth rings as an in situ indication of lichen growth rate; 4) it is suggested that this phenomenon could provide a valuable, previously unexploited, in situ lichenometric-dating tool in areas lacking calibration control.  相似文献   

19.
Matthews, J. A. Families of lichenometric dating curves from the Storbreen gletschervorfeld, Jotunheimen, Norway. Norsk geogr. Tidsskr. 28, 215–235.

Lichenometric dating, based on Rhizocarpon geographicum, is applied to the establishment of an areal chronology for deglaciation of the Storbreen gletschervorfeld, central southern Norway. A simple approach permitting many lichenometry curves to be constructed in the same area is adopted, each curve differing in the number of sites per surface or the number of lichens per site employed in its construction. Nine lichenometry curves of exponential form are constructed from largest lichens on four past glacier margins of known age, and the age of four margins of unknown age predicted. Median predicted ages are 1811, 1833, 1854 and 1871 and all predictions fall within an overall range of 17 years, 10 years, 10 years and 7 years respectively. The reproducibility of the predicted ages, together with independent supporting evidence, suggests that families of lichenometry curves allow considerable confidence to be placed in the lichenometric dates and are a promising addition to lichenometric dating technique in general.  相似文献   

20.
The recently observed recession of glaciers on King George Island is associated with decades of climate warming in the Antarctic Peninsula region. However, with only 60 years of glaciological observations in the study area ages of the oldest moraines are still uncertain. The goal of the study was to estimate ages of lichen colonization on the oldest moraines of the Ecology and White Eagle Glaciers on King George Island and on the Principal Cone of Penguin Island volcano. The first lichenometric studies on these islands from the late 1970s used rates that had about four to five times slower Rhizocarpon growth rates. We re‐examined the sites and measured 996 thalli diameters to establish the surface ages. To estimate the age we used (1) long‐term Rhizocarpon lichen group growth rates established by authors using data from a previous lichenometric study on King George Island, and (2) previous data of lichen growth rates from other sub‐Antarctic islands. Our results suggest growth rates between 0.5 and 0.8 mm yr–1. According to these rates the ages of the oldest moraine ridges are of the Little Ice Age and were colonized at the beginning of the twentieth century. The mid‐twentieth century age of lichen colonization on the historically active Penguin Island volcano might support the date of the last eruption reported by whalers in the end of the nineteenth and the beginning of the twentieth century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号