首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elephant grass (Pennisetum purpureum Schum.) is a new fast-growing alternative forage crop. However, salinity is a major concern for its production in the arid south-western United States. This study was conducted in the arid Imperial Valley of Southern California to evaluate salt tolerance of elephant grass. Salinity treatments were created in field plots irrigated with water possessing an electrical conductivity (ECiw) of 1·5, 5, 10, 15, 20, and 25 dS m−1, respectively. Canopy spectral reflectance, temperature, plant height, leaf area index (LAI), chlorophyll-SPAD meter readings, and dry weights were measured over time. Results indicated that canopy reflectance in the near-infrared spectral region was reduced incrementally with increasing levels of salt stress. Canopy temperature increased with increasing salinity, especially at longer times after salinity treatment. Plant height and LAI were reduced with increasing salinity. Biomass accumulation was reduced incrementally with increasing salinity. About 50% yield reduction was found when ECiw increased from 5 to 25 dS m−1. The study shows that elephant grass is sensitive to salt stress, and relatively low salinity must be maintained to achieve a high rate of growth and biomass production.  相似文献   

2.
Variation in growth, physiology and ionic relations patterns of Allenrolfea occidentalis, a perennial halophyte of dry habitats, was studied under field conditions from May 1996 to November 1997. An A. occidentalis community has a characteristic soil pH of 7·3–8·3. During the two years, the population was exposed to great variations in soil salinity, from 29 to 146 dS m−1, and soil moisture, ranging from drought (9·2%) to wet (19%). The salt concentrations were significantly higher in the surface soil layers than in the subsurface layers. Seasonal changes in dry weight are directly related to soil salinity stress. Allenrolfea occidentalis had greater growth and biomass production under saline conditions. Na+and Clions were accumulated in plant tissues in much greater amounts than K+, Ca2+, and Mg2+. Soil salinities were significantly reduced at the end of the growing season. Water potentials of the shoots decreased significantly with increasing salinity. The plant (Fv/Fmratio) was more affected by salinity and irradiation levels during the summer period.  相似文献   

3.
为研究内陆盐沼植物群落的分布对土壤盐分的响应特征,选取鄂尔多斯盐湖盐沼区作为研究区,筛选了肉质耐盐植物群落,苔草植物群落和禾草植物群落3类典型植物群落,开展了土壤含水量、pH、电导率以及Na+,K+,Mg2+,Ca2 +,Cl-、SO42-、CO32-和HCO3-的测定,分析了区内典型植物群落对土壤水盐因子的响应规律。探讨了3类植物群落之间土壤因子含量的差异性;采用相关性分析和CCA分析,评价了3类植物群落多样性及物种分布随土壤因子的变化规律。结果表明,区内3类植物群落中,土壤盐分含量表现为肉质耐盐植物群落最高,苔草植物群落最低,禾草植物群落居中;植物多样性与土壤中含量最高的Na+和SO42-的相关性最显著;植物分布同时受到土壤盐分、水分和pH的显著影响。研究结果可为鄂尔多斯盐湖区土壤盐渍化改良和植被恢复提供理论支撑。  相似文献   

4.
盐角草(Salicornia europaea)对NaCl处理的生理响应   总被引:1,自引:0,他引:1  
用含有NaCl的Hoagland培养液处理盐角草(Salicornia europaea)11d。检测其鲜重,干重,离子含量,电导率,溶解性总固体(TDS)含量,超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性及丙二醛(MDA)浓度。结果表明:随着NaCl浓度的增加,盐角草干重和鲜重呈现先上升后下降的趋势,相对电导率、TDS、SOD、POD、CAT及MDA均呈现先下降后上升的趋势,在NaCl溶液浓度为200mmol·L-1左右时,干重和鲜重的值达到最大,电导率、TDS、SOD、POD、CAT、MDA含量达到最小值;500mmol·L-1和800mmol·L-1时,SOD和CAT活性下降,电导率、TDS、POD、MDA含量则急剧上升。由此说明,一定浓度的NaCl溶液促进了盐角草的生长,200mmol·L-1左右是其生长的最适浓度,500mmol·L-1和800mmol·L-1高盐浓度会对盐角草的膜结构、酶系统等造成不同程度的损伤。盐角草主要将Na+、K+积累在地上部,且随着NaCl处理浓度的增大,Na+含量逐渐增加、K+含量逐渐降低,这可能是盐角草调节细胞内离子平衡对抗盐胁迫的一种适应策略。  相似文献   

5.
An experiment was carried out at Nahshala Farm, north west of Al-Ain City, U.A.E. during the 1998–2000 growing seasons, using six halophytes (Batis maritima, Distichlis spicata, Juncus roemerianus, Paspalum vaginatum, Salicornia bigelovii and Spartina alterniflora) and two levels of leaching fraction (0·25 and 0·50) under three irrigation salinity levels (10, 20, and 40 gL−1) in a randomized complete block design arranged in split plots. The purpose of the research was to apply the theory of crop salt tolerance on aboveground yields and agronomic characteristics of halophytes to determine their thresholds for salinity and to determine leaching requirements. The results indicated that the halophyte species tested can grow with minimum reduction in the growth potential at <20 gL−1of mean salinity of soil solution. Leaching fraction (LF) of 0·25 at the highest salinity of irrigation water (40 gL−1) was inadequate to attain the steady-state salt balance during the growth period, although the drainage salinity reached more than 90 g L−1. Furthermore, if the same level of LF is used for longer period, soil salinity under this high salt treatment will continue to rise, and plant growth may deteriorate. Leaching fraction of 0·50 is preferable if salinity of irrigation water was more than 20 gL−1and dry matter production is considered, although the amount of water use will be excessive  相似文献   

6.
General responses to salt stress have been investigated in the halophyte Plantago crassifolia. Seed germination was strongly inhibited by NaCl, although seed viability and germination capacity were not affected by salt pre-treatments. A concentration-dependent inhibition of plant growth was observed in the presence of NaCl, which was accompanied by the accumulation of Na+ ions in the leaves, as determined by cation exchange HPLC. A 20-fold increase of proline content in leaves was observed when plants were treated with 500 m NaCl, suggesting a protective role against high salinity stress for this amino acid, whose possible mechanism of action is discussed.  相似文献   

7.
Three-week old soybean (Glycine max) plants were subjected to a factorial combination of four regimes of soil matric water potential (ψm=−0·03, −0·5, −1·0 and −1·5 MPa), two levels of supplementary Zn (O and 20 mgl−1) and two levels of foliar IAA application (O and 10 mgl−1). Under control conditions (no Zn, no IAA), increasing soil drying progressively retarded shoot and root growth (length and dry mass production), reduced leaf relative water content (RWC) and decreased the contents of chlorophyll (Chl) and shoot soluble sugars (SS), but increased soluble sugar content of roots and lowered osmotic water potential of shoots and roots (osmotic adjustment). Total free amino acid (TAA) content increased in shoots but decreased in roots whereas contents of soluble proteins (SP) decreased in shoots and roots. The effect of water stress was statistically significant (p<0·05) and had a major effect (as indicated by η2values) on leaf RWC, shoot and root dry masses and osmotic potential. Supplementary Zn improved root growth at all levels of stress and shoot growth under severe stress. Improvement of growth was positively correlated with the internal tissue Zn concentrations (r=0·91 and 0·86 for shoot and 0·94 and 0·82 for root length and dry mass respectively). Exogenous IAA raised (p<0·05) RWC, Chl, DM (slightly), root SS, and SP, whereas shoot TAA was lowered. Effects on root TAA and shoot SS were more complex: they were lowered at zero stress and raised under severe stress. IAA and Zn in combination had additive effects on Chl, growth and osmotic potential, but their combined effects on SP and TAA were more complex. It is concluded that the treatment of soybean plants grown under conditions of low soil water potentials and Zn deficiency with Zn and IAA solutions counteracted the deleterious effects of stress, especially at high stress levels, and helped stressed plants to grow successfully under these adverse unfavourable conditions.  相似文献   

8.
通过盆栽试验,研究浓度为300×10-6 mol·kg-1的丁香酚对小麦(Triticum aestivum)间作蚕豆(Vicia faba)、单作小麦和单作蚕豆根系形态的影响,以期探讨通过间作弱化化感抑制作用的可能性和机理,为间作群体的化感物质调控提供理论依据。结果表明:丁香酚对单作小麦和间作蚕豆单株根鲜重、干重、根长都有抑制效应,但对间作小麦和单作蚕豆的单株根鲜重、干重、单株根长有促进效应。具体表现在间作复合群体中,经丁香酚处理后,小麦的单株根鲜重、干重、体积以及根长较单作有明显的增加,同时单株蚕豆根鲜重、干重、体积以及根长较单作显著减少,说明小麦间作蚕豆能有效缓解小麦根际丁香酚的累积,同时产生它感作用,对蚕豆根系生长产生明显的抑制效应。  相似文献   

9.
干旱胁迫对不同株型玉米大喇叭口期生长的影响   总被引:3,自引:0,他引:3  
干旱胁迫条件下,在大喇叭口期对2种株型玉米自交系(紧凑株型的廊黄及昌7-2和平展株型的TS141)的形态、生理生化特性进行了研究。结果表明: (1)干旱胁迫导致3个自交系的叶夹角、叶长、叶宽和株高趋于减小,叶向值增大;与廊黄及昌7-2相比,干旱胁迫后, TS141的叶夹角、叶长、叶宽及株高有较大的降低幅度,叶向值有较小的增加幅度。(2)干旱胁迫处理后,3个自交系的地上部鲜重、地下部鲜重、鲜干比、根长和根数都有不同程度的下降;根冠比加大;与TS141相比,廊黄及昌7-2变化的幅度较小;紧凑株型玉米自交系在干旱胁迫下仍能保持较正常的根系形态。(3)干旱胁迫后,3个自交系的相对电导率、丙二醛、脯氨酸、可溶性糖含量、保护酶活性都有不同程度的升高,相对电导率及丙二醛含量在TS141中的上升幅度大于廊黄和昌7-2,而脯氨酸、可溶性糖含量以及保护酶活性在廊黄和昌7-2中上升的幅度大于TS141。(4)干旱胁迫后,3个自交系的雌、雄穗发育都受到不同程度的影响,但廊黄及昌7-2受到的影响小于TS141,花丝数量远远多于TS141。  相似文献   

10.
Selectivity of various types of salt-resistant plants for K over Na   总被引:2,自引:0,他引:2  
Selectivity by whole plants for K+ over Na+ in three types (salt excluding, salt secreting and salt diluting) of salt-resistant plants was investigated. An estimating formula of Selective Absorption (SA) capacity of root systems was derived; the Selective Transport (ST n) capacities between K+ and Na+ by various parts of the three types of plants were compared. The results showed that the SA value of salt-excluding plants were higher than that of salt-secreting and salt-diluting plants, the ST1 (root:stem) value was much higher, indicating that both the capacity of selective absorption and the capacity of selective transport by root systems were strong. In salt-secreting plants, the SA value lay between salt-diluting and salt-excluding plants, while the ST1 value was the lowest, indicating that the majority of Na+ uptake by root systems was transported up to their aerial parts and then the surplus salt was secreted in salt glands. In salt-diluting plants, the SA value was the lowest, indicating that the majority of Na+ taken up by the root systems entered into plant body perhaps to satisfy the requirements for osmotic adjustment and growth, and the ST1 value lay between salt-secreting and salt-excluding plants. These data strongly indicate that the SA and ST1 values reflect the K+ and Na+ selectivity characteristics of salt-resistant plants. Therefore, the various types of salt-resistant plants would be classified by using the values of SA and ST1. We suggest that this provides a way for distinguishing various types of salt-resistant plants. Comparing the ST n values of the six species in our paper, we concluded that the selectivity of transporting K+ over Na+ into the actively photosynthesizing organs and particularly into the developing ears is extremely high. Our conclusion is in accordance with previous results that demonstrate that the capacities of selective transport by different parts of the plant for K+ over Na+ are best quantified by ST n values. The necessity, feasibility and wide-ranging applicability of the formulas for estimating SA and ST n values have been discussed in detail.  相似文献   

11.
Salinity-induced growth and some metabolic changes in three Salsola species   总被引:2,自引:0,他引:2  
Three Salsola species, Salsola dendroides Pall., S. richteri (Moq.) Karel ex Litw. and S. orientalis S.C. Gmel., were compared for their salt tolerance, inorganic ionic accumulation and their biomass production in saline conditions. Seeds were grown on sterilized quartz under five salinity levels in a factorial experimental design, with four replications, in greenhouse conditions.With salinity, Na+ accumulation increased while K+ accumulation decreased. All three species showed positive shoot growth for low levels of salinity. Root growth showed almost the same trend as shoot growth, with minor exceptions. At low levels of salinity, proline accumulated more in S. dendroides plant tissues than in the tissues of the other two species. These results suggest that the proline accumulation is a good index for salinity tolerance. Soluble sugars also increased as a result of salinity.  相似文献   

12.
Reaumuria soongorica is a short woody shrub widely found in semi-arid areas of China. It can survive severe environ- mental stress including high salinity in its natural habitat. Thus, we investigated the involvement of anti-oxidative enzymes, photosynthetic pigments and flavonoid metabolism in the adaptation of R. soongorica to saline environments. R. soon- gorica was treated with 0, 100, 200 and 400 mM NaC1 solutions for 14 days. Soil salt content increased significantly by watering with high content of NaC1 solution, and no variation between 8 and 14 days during treatment. The levels ofpe- roxidation of lipid membranes (measured by malondialdehyde content) and the activities of three antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX)) increased under salt stress. Chlorophyll and carotenoid content decreased with increasing salt content. The ratio of Chl a/Chl b and carotenoid/Chl exhibited sig- nificant increase under 400 mM NaC1. However, total flavonoid and anthocyanin contents and key enzyme activities in the flavonoid pathway including phenylalanine ammonialyase (PAL) and Chalcone isomerase (CHI) decreased under salt stress. These findings possibly suggest that R. soongorica has an adaptation protection mechanism against salt-induced oxidative damage by inducin~ the activity of antioxidant enzymes and maintaining a steady level of carotenoid/Chl.  相似文献   

13.
The seedlings of Halocnermum strobilaceum were cultivated in 0.5% hoagland nutrient solution containing 0.0%, 0.9%, 2.7% and 5.4% of NaCl as well as composite salt (Na+, Ca2+, K+, Si4+) for 20 days; all the contents are in weight ratio. Succulent level, inorganic ions (Na+, K+), organics such as betaine, proline, malondialdehyde, and antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), betaine aldehyde dehydrogenase (BADH) were measured to reveal its salt tolerance mechanism. When the composite salt concentration reaches 5.4%, SOD activity level, and MDA content is five times the control group; when it reaches 2.7%, the succulent level of seedlings, and the content of K+ in roots is nearly two times the NaCl treatment; the dry weight is more than three times the control group; with the NaCl treatment, MDA is three times the contrast; when the salt concentration is 2.7%, POD reaches the maximum. Results indicate that Si4+, K+, and Ca2+ from composite salt in the roots of H. strobilaceum improved the water-holding capacity. The activities of antioxidant enzyme were raised by the accumulation of proline and betaine, which increased the salt tolerance. The absorption of K+ promoted the high ratio of K+/Na+ and alleviated the damage of cell membranes of H. strobilaceum, which is associated with osmotic contents such as betaine and proline.  相似文献   

14.
杨桂山 《地理研究》1992,11(2):68-76
本文通过长江口实测氯度与流量和潮位资料的相关分析,预估了未来河口水质的变化。计算表明,当大通站下泄流量不足13×103m3/s时,未来东线调水及海平面上升,将使长江口南支河段水质严重恶化;三峡水库建成后,枯季1-3月增加下泄水量虽可抵消东线调水的影响,但在水库蓄水的10月遇枯水年分,水质将大幅度下降。  相似文献   

15.
选取适宜于西宁盆地及其周边地区生长的2种优势草本植物垂穗披碱草(Elymus nutans Griseb.)和细茎冰草(Agropyron trachycaulum(Linn.) Gaertn.)作为试验供试种,通过室内种植培育方式,采用浓度梯度分别为50 mmol/L、100 mmol/L、150 mmol/L、200 mmol/L的Na_2SO_4溶液对2种植物进行盐胁迫处理。在盐胁迫试验处理后的第15 d、30 d和45 d,分别测定2种植物单根抗拉力和单根抗拉强度。结果表明:相同盐胁迫浓度时,2种植物单根抗拉力随生长期增长而逐渐增大,单根抗拉强度随生长期增加而逐渐降低;相同生长期,2种植物单根抗拉力随着胁迫液浓度由0 mmol/L增加至200 mmol/L时,表现为逐渐减小趋势;进一步研究表明,在相同胁迫浓度和相同生长期条件下,细茎冰草单根抗拉力和单根抗拉强度分别较垂穗披碱草高0.008~0.025 N和9.646~72.807 MPa;2种草本植物单根抗拉力与根径之间呈指数函数关系;2种草本单根抗拉强度分别随根径的增加而逐渐减小,且均与根径呈幂函数关系。研究成果对于进一步探讨寒旱环境盐胁迫条件下,草本植物根系力学强度特征及其变化规律具有重要理论价值,同时对于有效防治研究区水土流失、浅层滑坡等地质灾害的发生具有实际指导意义。  相似文献   

16.
The structure and function of many Korean ecosystems have been rapidly modified since the 1960s when industrialization of the nation began. Ulsan City was the first in Korea to develop into a major industrial complex. To assess anthropogenic impacts on ecosystems surrounding Ulsan, sediment cores were collected from Mujechi-neup (bog) and Sanggae reservoir of Ulsan, and these cores were 210Pb dated using the CRS model. Physical and chemical characteristics and pollen were analyzed, and the rates of sediment accumulation were calculated. Unsupported 210Pb inventories in Mujechi-neup and the Sanggae reservoir were 18.04 and 16.53 pCi cm–2, and the corresponding 210Pb fluxes were 0.56 and 0.52 pCi cm–2 yr–1, respectively. The overall accumulation rate of dry matter was 0.26 kg m–2 yr–1 since 1852 (14 cm in depth) in Mujechi-neup. In the Sanggae reservoir, the accumulation rates of dry matter were increased from 2.1 in 1965 to 6.0 kg m–2 yr–1 in 1999. Pollen analysis revealed that three pollen zones existed in Mujechi-neup; a Pinus pollen-dominated zone from 0 to 5 cm in depth (1974 year), an Alnus pollen-dominated zone from 5 to 15 cm in depth (1827 year), and a Quercus pollen-dominated zone below 15 cm in depth. The shift from an Alnus dominated zone to a Pinus dominated zone was related to the Korean War between 1951 and 1953 and reforestation activities in the 1970s. In the Sanggae reservoir, there was an increase of Humulus pollen since 1996, an increase of Ambrosia pollen since the 1960s and the decrease of Graminae pollen since 1993 with the expansion of the industrial area. Similar to Mujechi-neup, the Sanggae reservoir also consists of three pollen zones: a Pinus and Typha pollen-dominated zone from 0 to 10 cm in depth (since 1993), a Graminae pollen-dominated zone from 10 to 22 cm in depth (between 1947 and 1993), and a Pinus pollen-dominated zone below 22 cm in depth (before 1947). The increase of Typha and Humulus in the 1990s indicates an increase in the inflow of nutrients into the wetlands. Also, pollen analysis revealed that Ambrosia was introduced in the 1960s during industrialization of the area. The sediment was composed of humic peat in Mujechi-neup and was composed of clay in the Sanggae reservoir. High LOI, P, and low C/N ratio between the depths of 5 to 7 cm in the Sanggae reservoir indicates an increased input of P and N. As a result, the growth of Typha was at its maximum. The total Pb content in Mujechi-neup has been increasing since the 1870s, and its accumulation in the Sanggae reservoir has been increasing since the 1960s. Thus, the history of local-scale disturbances and human activities in the watershed was reconstructed through paleoecological studies in Ulsan.  相似文献   

17.
The natural abundance15N/14N method was used to estimate the influence of silvicultural and P fertilization treatments on N accretion, N2fixation and N partitioning among tissues in a mature mesquiteProsopis glandulosavar.glandulosastand in Texas. The silvicultural treatments consisted of understory removal, herbicide treatment of brushy resprouts, thinning trees to single stems and 100 kg ha−1P fertilization. The trees had a mean basal diameter of 17·8 cm with 8 to 35 cm range. The stand was slow growing with the increase in dry matter ranging from 0·465 Mg ha−1year−1to 0·701 Mg ha−1year−1for the 8 years after the treatments were applied. N accretion after 8 years ranged from 3·1 kg ha−1year−1to 4·4 kg ha−1year−1.Due to the range in δ15N of the leaves, twigs, branches and trunk, we used the weighted (by biomass) average δ15N per tree in calculations of the percent N derived from N2fixation (%Ndfa). There was considerable variability in δ15N of the reference plants, i.e. from 3·3 to 5·9. In contrast there was low variability in the background δ15N of nearby soils (7·0±1·0). As the total above-ground biomass δ15N of a grass grown outside the influence of mesquite (7·8±0·58) had the same δ15N as the soil (7·5±1·0), we used the grass outside the influence of mesquite and the weighted tree mean δ15N to calculate % of N derived from N2fixation.The decrease in intraspecific competition by thinning multistemed trees to single stemmed trees was the only treatment that significantly (p= 0·0001) increased growth. Interspecific competition, i.e. understory removal, did not increase growth. There were no significant differences in total N production or N fixation among treatment means. The most striking result was the highly positive correlation between tree δ15N and total N per tree and biomass per tree (R2= 0·90,F= 164·4, df. = 18, mean square error (MSE) = 0·155,p= 0·0001). This implies that the younger trees colonizing infertile soils relied more heavily on N2fixation than larger trees which accumulated 1200 kg ha−1more N under their canopies. The percentage N derived from N2fixation ranged from 63 to 73% in the various treatments. Despite the high percentage of N derived from N2fixation, the N2fixation of the stand was very low, i.e. 1·98 to 2·80 kg N ha−1year−1, due to the low growth of the stand. We believe that comparisons of the whole tree weighted δ15N to background soil δ15N provides a more reasonable approach to estimate % N2fixation than comparisons of leaves of fixers and reference plants.  相似文献   

18.
In the Ebinur region of Western Dzungaria, strong wind flows from Dzungarian Gate predetermine the widespread development of deflation processes. As a result of human-induced desiccation of Lake Ebinur, a new source of the loose material—the dry lakebed—has formed, which has intensified dust storms in this region. Annual dynamics of the frequency and intensity of dust storms and the amount and chemical composition of salts in the eolian material deposited in the area have been studied. The frequency of dust storms and the intensity of dust and salt deposition regularly decrease with an increase in the distance from the dry lake bottom (playa). The amount of dust deposition ranges from 600 (near the lake) to 70 (100–200 km from the lake) g/m2/a. The amount of salts precipitating with dust is mainly from 14 to 27 g/m2/a; the maximum registered amount of salt deposition is 77 g/m2/a. As shown in our study, the farther from the lake, the higher the portion of sulfate and calcium and the smaller the portion of chloride and sodium ions in the composition of salts.  相似文献   

19.
20.
Soil salinity is a major abiotic stress influencing plant productivity worldwide. Schinopsis quebracho colorado is one of the most important woody species in the Gran Chaco, an arid and salt-prone subtropical biome of South America. To gain a better understanding of the physiological mechanisms that allow plant establishment under salt conditions, germination and seedling growth of S. quebracho colorado were examined under treatment with a range of NaCl solutions (germination: 0–300 mmol l−1 NaCl; seedling growth: 0–200 mmol l−1 NaCl). The aim was to test the hypothesis that S. quebracho colorado is a glycophite that shows different salt tolerance responses with development stage. Proline content, total soluble carbohydrates and Na+, K+ and Cl concentrations in leaves and roots of seedlings, and the chlorophyll concentration and relative water content of leaves were measured. Germination was not affected by 100 mmol l−1 NaCl, but decreased at a concentration of 200 mmol l−1. At 300 mmol l−1 NaCl, germination did not occur. Seedling growth decreased drastically with increasing salinity. An increase in NaCl from 0 to 100 mmol l−1 also significantly reduced the leaf relative water content by 22% and increased the proline concentration by 60% in roots. In contrast, total soluble carbohydrates were not significantly affected by salinity. Seedlings showed a sodium exclusion capacity, and there was an inverse correlation between Cl concentration and the total chlorophyll concentration. S. quebracho colorado was more tolerant to salinity during germination than in the seedling phase. The results suggest that this increased tolerance during germination might, in part, be the result of lower sensitivity to high tissue Na+ concentrations. The significant increment of proline in the roots suggests the positive role of this amino acid as a compatible solute in balancing the accumulation of Na+ and Cl as a result of salinity. These results help clarify the physiological mechanisms that allow establishment of S. quebracho colorado on salt-affected soils in arid and semi-arid Gran Chaco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号