首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In spite of widely documented studies of deforestation rates and land use/cover changes in tropical dry forests in Mexico, relatively little is known about fragmentation patterns in such forests. This study defines the spatial distribution of landforms and land use/cover types the lower Papagayo River basin and examines their influence on fragmentation patterns and biological diversity in a tropical dry forest in that southern Pacific region. The land use/cover map was constructed from aerial photographs, Landsat TM imagery (2000) and fieldwork. Landform units were defined based on altitude, slope, lithology and morphology. Landscape fragmentation parameters were obtained using FRAGSTATS (version 3.3) considering the numbers of patches, mean, minimum and maximum patch size, edge density, total edge and connectivity. Results show tropical dry forest to be remnant vegetation (~11 per cent), characterized by isolation and low connectivity. Land use/cover types have different effects on fragmentation patterns. Agriculture and cattle raising produce similar numbers of patches, but with a different mean size; and human settlements have a scattered distribution pattern. The abandonment of rural agricultural livelihoods has favoured the expansion of secondary tropical dry forest characterized by continuity and high connectivity, which suggests a high regeneration potential from land abandonment. It can be concluded that tropical dry forest fragmentation and recovery at regional scales depend on such landscape attributes as lithology, slope, geomorphology and management.  相似文献   

2.
Tropical forests play a major role in storing large carbon stocks and regulating energy, and water fluxes, but such forest cover is decreasing rapidly in spite of the policy attention on reducing deforestation. High-resolution spatiotemporal maps are unavailable for the forests in majority of the tropical regions in Asia because of the persistent cloud cover and haze cover. Recent advances in radar remote sensing have provided weather-independent data of earth surface, thus offering an opportunity to monitor tropical forest change processes with relatively high spatiotemporal resolutions. In this research, we aim to examine the tropical deforestation process and develop a spatial model to simulate future forest patterns under various scenarios. Riau Province from central Sumatra of Indonesia is selected as the study area; this province has received much attention worldwide because the highest CO2 emission resulting from tropical deforestation has been recorded. Annual time series PALSAR data from 2007 to 2010 were analyzed for forest mapping and detecting land cover changes. A spatial model was calibrated using the Bayesian method. Modeling parameters were customized for the local subregions that allocate deforestation on the basis of their empirical relationships to physical and socioeconomic drivers. The model generated landscape spatial patterns mirrored the possible locations and extent of deforested areas by 2030 and provided time-series crucial information on forest landscape under various scenarios for future landscape management projects. The results suggested that the current deforestation process is in a critical stage where some subregions may face unprecedented stress on primary forest costing rivers and forest ecosystems by the end of 2020. The perspective views of Riau Province generated by the model highlighted the need for forest/environmental planning controls for the conservation of environmentally sensitive areas.  相似文献   

3.
Estimations of the carbon stored in the above-ground biomass are important from traditional, ecological and forestry to contemporary climate and land-use change perspectives. Carbon sequestration and storage is reduced by deforestation and degradation and enhanced by forest regrowth and expansion. Recent studies show that forests are experiencing redistribution at different scales. Regions with steep topographical gradients simultaneously experience these four processes, upon which the final carbon balance in forests depends, but large scale patterns of above-ground carbon changes within forests have generally been overlooked. We developed above-ground carbon maps for 2000 and 2012 in a heterogeneous environment of subtropical Andes to a) explore the patterns of change in relation to biophysical variables and forests types and b) calculate the relative contribution of within forest carbon change and of forest expansion/deforestation to total above-ground carbon balance. Above-ground carbon trends showed spatial variation: biomass losses occurred in dry forests at low-mid elevations, while gains were restricted to higher elevation forests. Within forest changes implied larger changes in carbon stocks (+361976 Mg C) and in an opposite direction than deforestation and reforestation (−56750.16 Mg C), and determined an overall stability in terms of above-ground carbon for the study period. These contrasting patterns of above-ground change may be representative of larger heterogeneous regions such as tropical and subtropical Andes, and highlight the need of explicitly accounting for within forests change in current carbon regional balances.  相似文献   

4.
The subtropical Atlantic Forest is a highly diverse ecosystem in South America and one of the most endangered rain forests in the world. The present study focuses specifically on the Paraguayan part of the tri-national Atlantic Forest. Over the last decades, the Paraguayan Atlantic Forest presented one of the highest deforestation rates in the world, and today, only a small share remains. Hence, forest loss in Paraguay's Atlantic Forest was detected and analysed through remote sensing and GIS methodologies based on Landsat images obtained in 2003 and 2013. The objective of this study was to examine the spatial impact of forest loss in Paraguay's Atlantic Forest over the past decade with a special focus on biodiversity conservation. Classifications results obtained overall accuracies above 83% and revealed that over 6000 km2 of forest was cleared during the study period. The forest landscape and its fragmentation level were characterised through a set of landscape metrics, in particular the proximity analysis which support the identification of forest priority areas for nature conservation and potential biological corridors. In summary, the study revealed that deforestation and fragmentation of the Atlantic Forest area continued, but at a slower pace than that in the previous decade. Protected areas were conserved very effectively; however, forest core areas without any protection status require further attention. Intact forest patches and their connectivity are a crucial prerequisite to biodiversity conservation in a highly fragmented forest area. The combination of different remote sensing and GIS methods provides valuable information for sustainable forest management in the region.  相似文献   

5.
Rapid deforestation is a major problem throughout the tropical world. The conditions and the pace under which societies and economies of the Third World are currently evolving and growing, combined with the specificities of tropical forests, render the latter increasingly vulnerable. Among the major tropical areas of the world, Southeast Asia is perhaps the one where these conditions have had the most impact on the retreat of the forest cover over the last quarter of this century. This is illustrated through the presentation of two maps of the distribution of five basic forest formations in Southeast Asia circa 1970 and circa 1990. The maps are examined and compared, as well as confronted with statistical assessments of deforestation. Finally, the complex causes behind the retreat of the tropical forests as well as the implications of this retreat are briefly discussed.  相似文献   

6.
巴西热带雨林地区森林景观转化及破碎化导致森林生态系统的功能和区域环境发生变化,并引起全球范围内的关注。以欧洲太空局全球土地利用/土地覆被数据和Landsat解译数据为基础,利用热点提取、信息熵、地统计分析模型及轨迹分析的方法探讨不同砍伐阶段森林破碎性的变化特点以及森林破碎化与整个区域景观格局变化的相关性。结果表明:① 热带雨林地区的森林面积迅速减少,其中,Rondonia州、Maton Grosso州和Para州最为典型。② 森林破碎性的变化趋势并非整体性的增加或减少,而是出现明显的局地性特点;③ 森林砍伐的数量与土地系统的信息熵呈正相关,即森林的数量及质量直接决定巴西热带雨林地区的土地系统稳定性。  相似文献   

7.
基于RS和GIS的西双版纳土地覆被动态变化   总被引:9,自引:0,他引:9  
人口增加、经济发展导致滇南热带地区西双版纳土地利用/土地覆被发生显著变化,这些变化对该区的生态环境及生物多样性保护有着重要影响。基于RS和GIS方法,通过对1976、1988和2003年三个时期遥感影像解译分析,试图了解西双版纳近27 a间土地利用/土地覆被时空变化特征及影响因素。结果表明,近27 a间有林地在西双版纳分布最广、占绝对优势,其中以亚热带常绿阔叶林面积最大;但在研究时段内,有林地面积不断减少、呈现破碎化,尤其是热带季节雨林、山地雨林面积减少最为明显和破碎化最为严重。相应,橡胶园、灌木林面积不断扩大并聚集成片,其中橡胶园在1988~2003年间是面积增长最快、最多的地类,其面积扩张主要来源于对热带季节雨林的砍伐。轮歇地面积在1976~1988年是所有地类中增长最快、最多的,在1988~2003年由于向橡胶园转变而大幅度减小。粗放式的刀耕火种和橡胶种植园的不断扩大是主导本区土地利用/土地覆被变化的主要因素,土地利用变化导致了本区生态环境的退化和生物多样性的丢失。  相似文献   

8.
Tropical deforestation is widely believed to directly influence the climate at a number of scales. Yet while much has been written about the tropical forest-climate relationship, there is little empirical evidence showing if and how local and regional climates are modified by deforestation. This study presents the results of an analysis of deforestation and climate change in a rain forest in southern Mexico. Records from 18 climate stations in the Selva Lacandona of Chiapas, Mexico were examined and related to an analysis of deforestation based on Landsat images. The area surrounding some stations has been deforested since the stations were established, while the area surroundings others has remained forested. Strong climatic trends were generally evident at the deforested stations, including decreases in the average daily maximum temperature and temperature range. No precipitation changes were observed. A comparison of the results with microclimatic experiments and modeling studies suggests that the climatic impacts of deforestation are overgeneralized at the local scale. Landscape heterogeneity appears to influence the biophysical mechanisms linking tropical forests and climate, and should be explicitly represented in modeling studies.  相似文献   

9.
The detection of vegetation fires using remote sensing has proven useful for highlighting areas undergoing rapid conversion in humid forests, but not in tropical dry forest (TDF). To further understand this relationship, we explored the correlation between MODIS Active Fires and forest cover change at local scales using 3 × 3 km sampling grids in three TDF landscapes in Bolivia; Mexico, and Brazil. Our analysis showed no single overall correlation among sites between the frequency of fires reported by the MODIS Active Fire Mapping product and forest cover change. Also, aggregated patterns of fire occurrence in Brazil and Bolivia did not correspond to areas with high percentage of forest loss, which indicates that the fire/deforestation relationship in TDF is not apparent in a simple fire frequency map. However, statistically significant correlations were found in sampling boxes with 50–60%, 50–70%, 50–95% forest cover at “initial state” of the time series in the Mexican site, Bolivian site and Brazilian site, respectively. Our findings suggest that complex interactions between anthropogenic fire-use, satellite-detected fires, and deforestation in highly fragmented TDF landscapes are difficult to describe at regional scales and might only be possible to analyze using finer resolution sampling grids.  相似文献   

10.
Analyzing temporal changes in forest amount and configuration is paramount to better design future forest management interventions. Such analyses are especially required for tropical biomes, which are usually subject to dynamic and heterogeneous land uses. Recent studies have suggested that many tropical biomes are passing through the process of “forest transition”, i.e. an overall change from forest loss to forest gain. However, this hypothesis remains scarcely tested, due to the difficulty of obtaining detailed, quantitative historical records of forest cover. In this study, we investigate 38 years of land use change in Brazil's Atlantic Forest, a biodiversity hotspot, from 1976 to 2014, using multitemporal datasets from aerial photographs and satellite images. We classified the historical series to produce land use maps and calculated a set of landscape metrics, including total forest cover, patch size, patch shape and patch connectivity. Our results indicated non-linear changes through time in forest loss and gain and also in landscape structure, which can be classified into two distinct periods. The first period (1976–1996) was marked by expressive forest loss and fragmentation, whereas the second (1996–2014) was characterized by a much less intense forest dynamics, with little deforestation being balanced by forest regeneration. We attribute the forest dynamics observed to temporal changes in socioeconomic factors, such as increasing human settlements and changes in environmental protection policies. Our results show that current forests are a heterogeneous mosaic of forests with different ages, and support the hypothesis that forest transition is occurring in Atlantic Forest landscapes.  相似文献   

11.

Tropical deforestation is widely believed to directly influence the climate at a number of scales. Yet while much has been written about the tropical forest-climate relationship, there is little empirical evidence showing if and how local and regional climates are modified by deforestation. This study presents the results of an analysis of deforestation and climate change in a rain forest in southern Mexico. Records from 18 climate stations in the Selva Lacandona of Chiapas, Mexico were examined and related to an analysis of deforestation based on Landsat images. The area surrounding some stations has been deforested since the stations were established, while the area surroundings others has remained forested. Strong climatic trends were generally evident at the deforested stations, including decreases in the average daily maximum temperature and temperature range. No precipitation changes were observed. A comparison of the results with microclimatic experiments and modeling studies suggests that the climatic impacts of deforestation are overgeneralized at the local scale. Landscape heterogeneity appears to influence the biophysical mechanisms linking tropical forests and climate, and should be explicitly represented in modeling studies.  相似文献   

12.
Understanding and analysis of drivers of land-use and -cover change (LUCC) is a requisite to reduce and manage impacts and consequences of LUCC. The aim of the present study is to analyze drivers of LUCC in Southern Mexico and to see how these are used by different conceptual and methodological approaches for generating transition potential maps and how this influences the effectiveness to produce reliable LUCC models. Spatial factors were tested for their relation to main LUCC processes, and their importance as drivers for the periods 1993–2002 and 2002–2007 was evaluated by hierarchical partitioning analysis and logistic regression models. Tested variables included environmental and biophysical variables, location measures of infrastructure and of existing land use, fragmentation, and demographic and social variables. The most important factors show a marked persistence over time: deforestation is mainly driven by the distance of existing land uses; degradation and regeneration by the distance of existing disturbed forests. Nevertheless, the overall number of important factors decreases slightly for the second period. These drivers were used to produce transition potential maps calibrated with the 1993–2002 data by two different approaches: (1) weights of evidence (WoE) to represent the probabilities of dominant change processes, namely deforestation, forest degradation, and forest regeneration for temperate and tropical forests and (2) logistic RM that show the suitability regarding the different land-use and -cover (LUC) classes. Validation of the transition potential maps with the 2002–2007 data indicates a low precision with large differences between LUCC processes and methods. Areas of change evaluated by difference in potential showed that WoE produce transition potential maps that are more accurate for predicting LUCC than those produced with RM. Relative operating characteristic (ROC) statistics show that transition potential models based on RM do usually better predict areas of no change, but the difference is rather small. The poor performance of maps based on RM could be attributed to their too general representation of suitability for certain LUC classes when the goal is modeling complex LUCC and the LUC classes participate in several transitions. The application of a multimodel approach enables to better understand the relations of drivers to LUCC and the evaluation of model calibration based on spatial explanatory factors. This improved understanding of the capacity of LUCC models to produce accurate predictions is important for making better informed policy assessments and management recommendations to reduce deforestation.  相似文献   

13.
Hawai‘ian honeycreepers have undergone widespread extinction and population declines due to human disturbances, including habitat fragmentation, introduced predatory mammals, alien competitors, and introduced avian diseases. The Hawai‘i ‘amakihi (Hemignathus virens) is one of seven extant Hawai‘ian honeycreepers that, like all other native honey‐creepers, vanished from the low‐elevation native forests on the island of Hawai‘i due to these disturbances. But recent observations indicate that ‘amakihi have begun to recolonize low‐elevation forests in eastern Hawai‘i. In this article we discuss the current abundance of Hawai‘ian ‘amakihi in a suburban habitat on the island of Hawai‘i. We also examine the ‘amakihi's relative preference for native or exotic vegetation. Recolonization in low‐elevation habitats underscores the importance of the remaining native forests. However, concurrent with this recolonization, eastern Hawai‘i is undergoing a residential building boom that has resulted in increased deforestation and forest fragmentation. Thus the future of honeycreepers is uncertain, given the widespread environmental changes taking place in eastern Hawai‘i.  相似文献   

14.
Shifting cultivation is often blamed for deforestation in tropical upland areas. Based on a case study of three villages in northern Lao PDR, this paper combines household surveys with a remote sensing based analysis of forest cover, covering the period 1989–1999, in order to analyse changes in shifting cultivation practices and livelihood strategies and the impact of these on deforestation. Due to population pressure and relocation of villages, easily accessed land is increasingly scarce and fallow periods have been shortened during the 1990s. A net annual deforestation of about 1% was found in the area during the study period. This deforestation rate reflects shorter fallow periods in secondary forests rather than encroachment on mature forests, which are not used for cultivation by the farmers in the three villages. Farmers rate scarce labour as a major constraint on shifting cultivation; nonetheless, a tendency towards lower labour input with shorter fallow periods is observed, contradicting conventional intensification theory. Livelihoods are diversifying through the establishment of plantations, cultivation of wet rice and adoption of animal husbandry, but given the socio-economic conditions in the area, shifting cultivation is likely to remain the most suitable farming system in the near future.  相似文献   

15.
Central America's tropical forests have been felled more rapidly than those of any other world region during the latter half of the twentieth century. During this time, nearly half of Guatemala's forests were eliminated. Most of this deforestation has been concentrated in the northern department of Petén. The remaining forests in Petén are now mainly concentrated in the Maya Biosphere Reserve (MBR), the heart of the largest lowland tropical forest in Central America. The pace, magnitude, and geography of this trend is of critical importance to forest conservation and rural development efforts. This article examines socioeconomic, political, demographic, and ecological factors behind settler land use and forest clearing among 241 farm households in the Sierra de Lacandón National Park (SLNP), a core conservation zone of the MBR. Some of the factors positively related to forest clearing were household size, Q'eqchí Maya ethnicity, land owned in the previous residence, farm size, land title, and the cropping of velvet bean as a soil amendment. Education, off‐farm employment, and farm distance to a road were negatively related to farm‐level deforestation.  相似文献   

16.
The extent of tropical deforestation is now being tracked by actors in the nongovernmental, academic, private and government sectors using several different sources of satellite imagery. This paper presents an overview of the satellite systems that can be used for operational forest monitoring in the tropics and examines some recent trends in their use. It also reviews various satellite-based studies to map moist tropical forests and draws upon lessons learned from land cover mapping projects in several countries and regions. The case of Indonesia, examined as a nation undergoing rapid conversion of forest to other land uses, is contrasted with Brazil where satellite-based deforestation monitoring is fully operational. In Indonesia, the paper argues, the creation of a national monitoring system for tropical forest conversion is needed to create a source of transparent, reliable information on forest cover and condition. Such a system is likely to succeed if based on multitemporal, moderate-resolution optical data such as imagery provided by MODIS (Moderate Resolution Imaging Spectrometer). When MODIS images are complemented by radar and fine-resolution imagery from sensors such as IKONOS and QuickBird, areas of abrupt change can be identified and the causes potentially discerned. Thus, satellite imagery at multiple temporal and spatial resolutions can effectively increase transparency in the forestry sector by revealing the rate and extent of deforestation on an annual basis and identifying potential areas of illegal logging.  相似文献   

17.
Tropical forests have been recognized as having global conservation importance. However, they are being rapidly destroyed in many regions of the world. Regular monitoring of forests is necessary for an adaptive management approach and the successful implementation of ecosystem management. The present study analyses the temporal changes in forest ecosystem structure in tribal dominated Malkangiri district of Orissa, India, during 1973–2004 period based on digitized forest cover maps using geographic information system (GIS) and interpretation of satellite data. Three satellite images Landsat MSS (1973), Landsat TM (1990) and IRS P6 LISS III (2004) were used to determine changes. Six land cover types were delineated which includes dense forest, open forest, scrub land, agriculture, barren land and water body. Different forest types were also demarcated within forest class for better understanding the degradation pattern in each forest types. The results showed that there was a net decrease of 475.7 km2 forest cover (rate of deforestation = 2.34) from 1973 to 1990 and 402.3 km2 (rate of deforestation = 2.27) from 1990 to 2004. Forest cover has changed over time depending on a few factors such as large-scale deforestation, shifting cultivation, dam and road construction, unregulated management actions, and social pressure. A significant increase of 1222.8 km2 agriculture area (1973–2004) clearly indicated the conversion of forest cover to agricultural land. These alterations had resulted in significant environmental consequences, including decline in forest cover, soil erosion, and loss of biodiversity. There is an urgent need for rational management of the remaining forest for it to be able to survive beyond next decades. Particular attention must be paid to tropical forests, which are rapidly being deforested.  相似文献   

18.

Habitat fragmentation edge effects on riverine fish could have implications for stream fish populations and their management. We examined effects of forest fragmentation on banded kokopu and longfin eels in New Zealand. Banded kokopu prefer small shaded streams with bouldery substrates and instream cover, whereas longfin eels are found in a variety of habitats. We hypothesized that the densities of banded kokopu would be higher in forested than grassland streams, and the densities would be lower around forest margins. We sampled pools in streams flowing from native podocarp/broad-leaf forests into grassland using Gee–Minnow traps. Pools were sampled longitudinally on each stream from >50 m into the forest to >50 m downstream from the forest margin in open grassland. Banded kokopu densities were higher in interior habitat ?50 m into forests than in grassland streams. Fish caught in grassland pools were smaller than in forested pools. Longfin eels were caught in all streams, but numbers and sizes were similar in habitats; thus not likely to generate the pattern observed for banded kokopu. We found that terrestrial habitat fragmentation can impact stream fish populations by decreasing their occupancy of habitats in the vicinity of the boundary between different terrestrial habitats.  相似文献   

19.
Arid and semi-arid forests and woodlands (hereafter called «dryland forests»), in spite of their ecological and social importance, have received little attention in land change studies. Growing evidence shows that these forests have been receding at very high rates in many places, suggesting a need for a better understanding of the processes and causes of dryland forest degradation. Changes in the extent of dryland forests are debated in part because estimates of forest and woodland areas in drylands are uncertain. Causal explanations of the degradation tend to draw on the literature on desertification and tropical deforestation, and to emphasize either local or remote, and either social or biophysical drivers. This study contributes to a better understanding of dryland forest degradation as a basis for conservation policies. Firstly, we argue that monitoring arid and semi-arid forests and woodlands using area estimates may lead to an underestimation of the severity of change because tree density change often exceeds area change. Secondly, we argue that the analysis of degradation processes in these multifunctional landscapes should integrate both local and remote, and both social and biophysical factors. We use a case study of degradation in the argania woodlands in semi-arid to arid Southwest Morocco to test these two claims. We used gridded tree counts on aerial photographs and satellite images to estimate forest change between 1970 and 2007, and we tested several possible causes of change on the basis of original socio-economic field surveys and climatic and topographic data. We found that forest density declined by 44.5% during this period, a figure that is significantly underestimated if forest area change is used as a measure of degradation. Increasing aridity and, to a lesser extent, fuelwood extraction were related to forest decline. No effect of grazing by local livestock was found.  相似文献   

20.
Tropical forests have been recognized as having global conservation importance. However,they are being rapidly destroyed in many regions of the world. Regular monitoring of forests is necessary for an adaptive management approach and the successful implementation of ecosystem management. The present study analyses the temporal changes in forest ecosystem structure in tribal dominated Malkangiri district of Orissa,India,during 1973-2004 period based on digitized forest cover maps using geographic information system (GIS) and interpretation of satellite data. Three satellite images Landsat MSS (1973),Landsat TM (1990) and IRS P6 LISS III (2004) were used to determine changes. Six land cover types were delineated which includes dense forest,open forest,scrub land,agriculture,barren land and water body. Different forest types were also demarcated within forest class for better understanding the degradation pattern in each forest types. The results showed that there was a net decrease of 475.7 km2 forest cover (rate of deforestation = 2.34) from 1973 to 1990 and 402.3 km2 (rate of deforestation = 2.27) from 1990 to 2004. Forest cover has changed over time depending on a few factors such as large-scale deforestation,shifting cultivation,dam and road construction,unregulated management actions,and social pressure. A significant increase of 1222.8 km2 agriculture area (1973-2004) clearly indicated the conversion of forest cover to agricultural land. These alterations had resulted in significant environmental consequences,including decline in forest cover,soil erosion,and loss of biodiversity. There is an urgent need for rational management of the remaining forest for it to be able to survive beyond next decades. Particular attention must be paid to tropical forests,which are rapidly being deforested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号