首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
近50年黑河流域的冰川变化遥感分析   总被引:2,自引:0,他引:2  
黑河流域作为中国西北地区第二大内陆流域,其景观类型完整、流域规模适中、社会生态环境问题典型,已成为寒区、旱区水文与水资源研究的热点地区。本研究结合1:5 万地形图、Landsat TM/ETM+遥感影像及数字高程模型数据,运用面向对象的图像信息自动提取方法,建立冰川信息提取知识规则,对近50 年黑河流域的冰川变化进行遥感分析。结果表明:(1)20 世纪60 年代黑河流域内的967 条冰川到2010 年左右,减少为800 条冰川,减少数量明显;冰川面积由361.69 km2退缩为231.17 km2,共减少130.51 km2,退缩率为36.08%,平均每条冰川面积退缩0.14 km2。(2)黑河流域冰川分布及变化存在显著的区域差异性,黑河冰川退缩率比北大河大16%左右;冰川末端主要分布在4300~4400 m、4400~4500 m和4500~4600 m海拔区间内。(3)与西部其他山地冰川相比,黑河流域冰川退缩率较高。(4)根据流域内6 个气象站资料分析表明,降水增加对冰川的补给无法弥补气温上升导致的冰川消融所带来的物质损失,是黑河流域冰川普遍萎缩的关键因素。  相似文献   

2.
近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测   总被引:18,自引:2,他引:16  
利用1976、1988和2006年的3期陆地卫星遥感数据,采用面向对象的解译方法并结合专家知识分类规则自动提取珠穆朗玛峰国家自然保护区(以下简称珠峰保护区)3个时期的冰川信息,并利用遥感、地理信息系统和图谱的方法对冰川时空分布特征和变化及其原因与不确定性进行了分析。结果如下:(1)2006年珠峰保护区内冰川面积为2710.17±0.011km2,为研究区总面积的7.41%,主要分布在研究区南部海拔4700~6800m的高山区;(2)1976-2006年,珠峰保护区冰川持续退缩明显,总面积减少501.91±0.035km2,冰湖扩张迅速(净增加36.88±0.035km2);研究区南坡子流域冰川退缩率(16.79%)高于北坡子流域(14.40%);珠峰保护区冰川以退缩为主,退缩冰川主要分布于海拔4700~6400m,退缩区上限海拔为6600~6700m;(3)1976年以来,气温显著上升和降水减少是冰川退缩的关键因素。  相似文献   

3.
1970-2016年冈底斯山冰川变化   总被引:2,自引:0,他引:2  
基于修订后的中国两次冰川编目数据及2015-2016年Landsat OLI遥感影像,对冈底斯山1970-2016年的冰川时空变化特征进行分析,并利用相应时段的气温和降水数据,对冰川变化原因进行探讨,为全面认识冈底斯山在气候变暖背景下冰川的响应规律及区域水资源合理利用提供科学依据。结果表明:① 2015-2016年冈底斯山共有冰川3953条,面积1306.45 km 2,冰储量约58.16 km 3;冰川数量以面积< 0.5 km 2的冰川为主,面积则以介于0.1~5 km 2的冰川为主。② 1970-2016年冈底斯山冰川面积共减少854.05 km 2(-39.53%),冰川面积变化相对速率高达-1.09%/a,消融期气温升高是导致该山区冰川退缩的最主要原因。与中国西部其他山系冰川变化相比,冈底斯山是冰川退缩最为强烈的地区,且近年来冰川退缩呈加快趋势。③ 冈底斯山冰川面积减少主要集中在海拔5600~6100 m之间,海拔6500 m以上区域基本没有变化。除南朝向和东南朝向外,冈底斯山其他朝向冰川数量和面积均呈减少趋势,其中北朝向冰川面积减少最多,西北朝向冰川面积变化最快。④ 冈底斯山冰川面积变化自西向东呈加快趋势,其中东段冰川面积变化相对速率高达-1.72%/a,中段次之(-1.67%/a),西段仅为-0.83%/a。  相似文献   

4.
哈尔里克山脉冰川的快速退缩已经影响到吐鲁番坎儿井的水量,先前关于该区冰川研究不够细致,且最新资料报道较为短缺。以哈尔里克山脉冰川为研究对象,基于Landsat TM/ETM+和OLI影像(1992、2002、2010、2016年),通过比值阈值法、目视解译结合GIS技术,提取了该地区四期冰川边界,同时对研究区周边气温、降水以及日照时数进行线性趋势分析,研究其与冰川的响应关系。结果表明:(1)1992-2016年,哈尔里克山脉冰川总体呈现出持续退缩趋势,面积退缩了13.18%,年均退缩率为0.56%,近年来退缩速率有所减缓。(2)近似估算的冰储量在过去25 a间减少了18.33%,冰川物质亏损将对该区短缺的水资源提供了危险的信号。(3)冰川退缩率与冰川规模呈指数函数变化趋势;低海拔区冰川存在明显的末端升高趋势;N和NW向的冰川占明显优势,但N向退缩率最慢。(4)分形理论分析表明该地区冰川未来退缩将趋于一种稳定状态。该区气温和日照时数的显著上升导致其冰川退缩,同时冰川规模、海拔和坡向分布也是冰川变化的重要因素;对比发现该区冰川退缩速率较天山其他区域慢。  相似文献   

5.
基于修订后的祁连山区第一次冰川编目(1956-1983年)和最新发布的第二次冰川编目数据(2005-2010年),对祁连山区冰川变化进行分析。结果表明:1祁连山区现有冰川2684条,面积1597.81±70.30 km2,冰储量约84.48 km3。其中,甘肃省和青海省各有冰川1492条和1192条,面积分别为760.96 km2和836.85 km2。2祁连山区冰川数量和面积分别以面积1.0 km2的冰川和面积介于1~5 km2的冰川为主;冰川平均中值面积海拔为4972.7 m,并自东向西由4483.8 m逐渐上升为5234.1 m。3疏勒河流域冰川面积和冰储量最大,占祁连山冰川总量的31.91%和35.11%;其次是哈尔腾河流域,巴音郭勒河流域冰川面积最小,为2.20 km2;黑河流域是祁连山区冰川平均面积最小的四级流域,冰川平均面积仅0.21 km2。4近50年间祁连山冰川面积和冰储量分别减少420.81 km2(-20.88%)和21.63 km3(-20.26%)。面积1.0 km2的冰川急剧萎缩是该区冰川面积减少的主要原因,海拔4000 m以下山区冰川已完全消失,海拔4350~5100 m区间冰川面积减少量占冰川面积总损失的84.24%。冰川数量和面积在各个朝向均呈减少态势,其中朝北冰川面积减少最多,朝东冰川面积减少最快,而西北朝向冰川变化最为缓慢。5祁连山冰川变化呈现明显的经度地带性分异,东段冰川退缩较快,中西段冰川面积减少较慢。  相似文献   

6.
冀琴  董军  刘睿  肖作林  杨太保 《地理科学》2020,40(3):486-496
采用Landsat TM/ETM+/OLI影像数据,结合比值阈值法与目视解译提取冰川边界,分析了喜马拉雅山冰川在1990-2015年的进退变化。结果表明:近25 a来喜马拉雅山冰川整体呈退缩趋势,冰川面积由23 229.27 km2减少至20 676.17 km2,共减少2 553.10 km2,退缩率为10.99%,研究时段喜马拉雅山冰川加速退缩,尤其是近5 a来,加速退缩的趋势尤为显著。研究区冰川主要分布在海拔4 800~6 200 m范围内,且随着海拔升高冰川分布面积呈先增加后减小趋势,综合分析喜马拉雅山山体海拔特征可知,5 200~5 600 m很可能是研究区的“第二大降水带”。依据山岳冰川分布特征,我们将研究区冰川分为山谷冰川、冰斗冰川、冰斗-山谷冰川、悬冰川和平顶冰川,其中悬冰川的数量最多,山谷冰川的分布面积和平均规模最大。结合研究区周边气象格点数据,同时以12a为滞后期发现,近25a来喜马拉雅山冰川持续退缩很可能是气温升高和降水减少共同作用的结果,且未来十几年内冰川仍可能处于持续退缩的状态。  相似文献   

7.
纳木错流域冰川和湖泊变化对气候变化的响应   总被引:7,自引:0,他引:7  
利用纳木错流域及其周边地区气象资料、地形图、遥感资料以及野外实地观测资料,对该流域过去37年来气候变化特征以及冰川、湖泊变化过程进行了分析.结果表明,自1970年以来,纳木错区域气温上升趋势明显,其中冬季升温幅度高于夏季;降水量变化冬、夏两季均呈增加趋势,但冬季增加量不显著.在整体升温的背景下,纳木错流域冰川整体呈退缩趋势.1970~2007年间,流域内冰川面积减少37.1 km~2,占流域冰川面积的18.2%,年变化率为-1.0 km~2/a.流域内扎当冰川和拉弄冰川末端GPS观测表明,1970~2008年间冰川末端分别退缩381.8 m和489.5 m,年均退缩量为10.3 m和13.4 m.1970-2007年间,纳木错湖面积增加了72.6 km~2,增加速率为2.0 km~2/a.1970-1991年、1991-2000年和2000-2007年三个阶段的年增加速率不断增大,分别为1.1、2.8、3.4 km~2/a;湖泊水在在夏季升高非常显著,与湖泊面积的扩张是一致的.  相似文献   

8.
以Landsat MSS/TM/ETM+/OLI遥感影像和数字高程模型为数据源,在遥感和地理信息技术支持下,分析了阿尔金山地区1973、1999、2010、2015四期冰川变化特征。研究表明:(1)1973-2015年,冰川总面积共退缩了58.78 km^2,年均退缩率为0.40%·a^(-1),东段退缩速率最快,其次是西段,中段最慢,且冰川退缩速率呈现出先变快后变慢的变化趋势。(2)各个坡向都出现不同程度的退缩,偏南坡比偏北坡冰川退缩严重。(3)冰川面积退缩速率与规模等级呈现反相关关系,小规模冰川退缩速率快。(4)冰川分布随海拔变化呈正态分布,海拔越低退缩速率越快。统计分析气象数据表明,气候变暖是冰川退缩的主要原因,同时地形与冰川规模也影响冰川变化。  相似文献   

9.
近50a祁连山西段大雪山和党河南山的冰川变化   总被引:1,自引:0,他引:1  
以祁连山西段大雪山和党河南山冰川为例,利用1957/1966航摄地形图、1994年Landsat TM遥感影像、2000年ASTER影像、2010年的SPOT5影像及数字高程模型,运用RS和GIS对祁连山西段大雪山和党河南山冰川变化进行研究。结果表明:1957/1966-2010年研究区冰川面积缩小了17.21%,冰储量减小了24.1%。其中,1957-2010年间大雪山冰川面积缩小了16.03%(0.30%/a),平均每条冰川缩小0.133 km~2,末端平均退缩181 m(3.4 m/a),冰储量减小了22.4%;1966-2010年间党河南山冰川面积缩小了18.32%(0.42%/a),平均每条冰川缩小0.111 km~2,末端平均退缩159 m(3.6 m/a),冰储量减小了25.7%。大雪山南北坡冰川面积分别减小了22.82%和15.51%,党河南山南北坡冰川面积分别减小了22.39%和16.76%,总体来看,南坡冰川退缩幅度强于北坡。分析认为,气温上升是研究区冰川退缩的主导因素。与祁连山东、中部冰川变化相比,研究区冰川面积缩小幅度相对较小,这是区域气候差异、冰川规模等因素综合作用的结果。  相似文献   

10.
近期中国天山冰川状况和气候变化   总被引:2,自引:2,他引:0  
据中国冰川目录和天山南北树木年轮年表恢复近500年的气候要素我国天山现代冰川8900条,面积9192.43km~2,冰储量1010.5km~3,主要分布在天山西部5000m以上的高山地带。近30年的天山冰川考察及29年乌鲁木齐河源1号冰川物质平衡:观测资料分析表明,中国天山现代冰川普遍处于退缩阶段。预计2000年气候将出现降水偏多的趋势。  相似文献   

11.
利用1972年MSS,1990、1999年TM和2013年ETM+遥感影像资料作为数据源,通过目视解译结合GIS技术,提取博格达峰地区4期冰川边界,同时对研究区周边气温降水进行趋势分析和周期分析,研究其与冰川的响应关系。结果表明:1 1972~2013年冰川面积退缩了23.79%(占1972年),退缩速率为0.58%/a。1972~1990年冰川退缩较慢,为0.38%/a,近20 a来冰川退缩加剧,达到0.74%/a;2冰川规模越小,退缩越快;3东南坡退缩最快,东坡次之,北坡最慢;4冰川退缩比率随坡度的变化呈正态分布;5研究区处于气温偏高期,降水偏少期,气候变暖是冰川退缩的主要原因;6对比发现该地区与天山其他区域冰川退缩速率相吻合。  相似文献   

12.
叶如藏布流域冰川和冰湖众多,冰川融水是当地重要的淡水资源,是冰湖扩张的重要补给,冰湖溃决是当地潜在的自然灾害,因此分析该区域冰川和冰湖的现状与变化特征具有重要的现实意义。基于Landsat系列遥感影像,分析1990—2020年叶如藏布流域冰川和冰湖的分布与变化特征。结果表明:(1) 近30 a来叶如藏布流域冰川面积整体呈退缩趋势,由1990年167.80 km2退缩到2020年128.92 km2,共退缩38.88 km2,年均退缩率为0.77%·a-1,且研究区冰川主要分布在海拔5800~6400 m之间,集中分布在5°~20°的坡度上。(2) 与冰川变化趋势相反,研究时段冰湖整体表现为扩张趋势,由1990年5.72 km2增加到2020年8.81 km2,30 a共增加3.09 km2,年均增长率为1.80%·a-1。(3) 冰湖主要分布在海拔5000~5600 m范围内,坡度在0~10°分布面积较多,表碛覆盖型冰川与非表碛覆盖型冰川对冰湖有着不同程度的影响。(4) 1990—2017年叶如藏布流域温度与降水波动较大,温度整体呈上升趋势,降水量则波动下降,导致叶如藏布流域的冰川消融,冰湖扩张。通过上述研究以期为叶如藏布流域地区提供详细的冰川和冰湖面积分布与变化特征基础数据,为防灾减灾提供一定的支撑。  相似文献   

13.
以Landsat MSS/TM/ETM+/OLI 遥感影像和数字高程模型为数据源,在遥感和地理信息技术支持下,分析了阿尔金山地区1973、1999、2010、2015 四期冰川变化特征。研究表明:(1)1973-2015 年,冰川总面积共退缩了58.78 km2,年均退缩率为0.40%·a-1,东段退缩速率最快,其次是西段,中段最慢,且冰川退缩速率呈现出先变快后变慢的变化趋势。(2)各个坡向都出现不同程度的退缩,偏南坡比偏北坡冰川退缩严重。(3)冰川面积退缩速率与规模等级呈现反相关关系,小规模冰川退缩速率快。(4)冰川分布随海拔变化呈正态分布,海拔越低退缩速率越快。统计分析气象数据表明,气候变暖是冰川退缩的主要原因,同时地形与冰川规模也影响冰川变化。  相似文献   

14.
冰川     
P343 .6 2003010146祁连山西段小冰期以来的冰川变化研究二Glacier vanationsinee the maximum of the Little Iee Ageln the western QilianMountains,Nbrthwest China巾』时银,沈永平…//冰川冻土一2002,24(3)一227一233 根据航空摄影相片、地形图、遥感影像数据,分析了祁连山西段自小冰期至1990年的冰川变化,得出该地区在小冰期至1956年间冰力!减小幅度为16.9%,冰川储量减小了14、1%;1956一1990年间冰川仍以退缩为主,此时段冰川面积和储量减小量占1956年时相应量的10.3%和9.3%.分析认为冰川退缩主要与1956一1966年时段气温偏高、降水…  相似文献   

15.
中亚天山山区冰雪变化及其对区域水资源的影响   总被引:8,自引:2,他引:6  
邓海军  陈亚宁 《地理学报》2018,73(7):1309-1323
冰川和积雪是构成山区固体水库的主体,对区域水资源稳定性具有调节功能,但深受气候变化的影响。以中亚天山为研究区域,基于长时间序列的观测数据,分别从冰川、积雪、水储量、径流等方面进行分析,并选取阿克苏河、开都河及乌鲁木齐河3个典型流域,研究天山山区冰雪变化对流域水资源的影响。结果表明:① 冰川退缩速率与面积的函数关系为fx) = -0.53×x-0.15R2 = 0.42,RMSE = 0.086),说明小型冰川对气候变化的响应更为敏感。同时,中低海拔区域的冰川退缩速率大于高海拔区域;② 2003-2015年天山山区水储量的递减速率为-0.7±1.53 cm/a,天山中部区域的递减速率最大,这一结果与该区域冰川急剧退缩相吻合;③ 近半个多世纪以来,冰雪融水径流增加是这3个典型流域径流量增加的主要原因,其中阿克苏河增幅最大(达0.4×108 m3/a)。但自20世纪90年代中期以来,3个流域的径流量都呈减少趋势,与流域内冰川面积减少、厚度变薄及平衡线海拔升高的关系密切。研究结果揭示了气候变化驱动下的山区固态水体储量变化对流域水资源的影响机制,以期为流域水资源管理提供有价值的决策参考。  相似文献   

16.
根据美国国家冰雪数据中心(NSIDC)发布的2012年全球冰川分布数据等资料,选取青藏高原冰川分布较集中的地区作为研究区,利用1995年、2005年和2015年3个时期Landsat TM/ETM+/OLI遥感影像数据和研究区附近气象站的气象资料,综合利用"3S"技术和统计分析方法等,研究3个时期研究区内湖泊面积与数量及其变化,从气候要素变化与冰川退缩角度分析其驱动因素。研究结果表明,3个时期研究区冰川补给型湖泊整体呈扩张态势,1995年、2005年和2015年的冰川补给型湖泊面积分别为10700.5 km~2、11910.7 km~2和12518.3 km~2;与1995年相比,2005年的湖泊数量增加了2 041个,与2005年相比,2015年的湖泊数量增加了21个;分布在研究区各流域中的冰川补给型湖泊变化状况不同,分布在羌塘高原上的湖泊扩张幅度大,分布在柴达木盆地中的湖泊呈缓慢扩张态势,分布在研究区南部雅鲁藏布江流域中的湖泊相对稳定,还有一些湖泊在萎缩。随着海拔的增加,研究区中的湖泊数量和面积都呈现类似正态分布的特征。1995~2015年期间,冰川退缩和气温上升是导致青藏高原冰川补给型湖泊面积和数量变化的主要原因。  相似文献   

17.
1978-2015年喀喇昆仑山克勒青河流域冰川变化的遥感监测   总被引:1,自引:1,他引:0  
本文采用1978、1991、2001和2015年的Landsat MSS、TM、ETM+和OLI遥感影像,通过遥感图像计算机辅助分类和目视解译等方法提取冰川边界,分析喀喇昆仑山克勒青河流域冰川在1978-2015年间的进退变化。结果表明:1978-2015年间研究区冰川面积由1821.70 km2减少至1675.92 km2,减少145.78 km2,占1978年冰川总面积的8.00%;冰川消融率较低,在气候变暖的背景下反而呈现出退缩速率由快变慢的趋势。研究区东南向冰川退缩率明显高于西北向,冰川退缩率随冰川规模的增大而减小。研究区内有27处冰川在1978-2015年间发生过特殊的前进现象,面积与长度显著增加。其中,木斯塔冰川西侧冰川末端在1996-1998年间前进速度为904 m/a,乔戈里冰川东侧冰川末端在2007-2009年间前进速度为446 m/a,5Y654D0097冰川末端在1978-1990年间前进速度为238 m/a,初步判定这三条冰川为跃动冰川。以10 a为滞后期分析研究区周边气象站点资料发现:研究区气温持续升高,降水量以1981年为分界点呈现“先减后增”趋势是冰川退缩速率减慢的原因之一;此外,亚大陆型冰川性质、巨大山势条件和高山冷储作用,也可能是冰川退缩幅度较小的原因。  相似文献   

18.
近40年来天山东段冰川变化及其对气候的响应   总被引:10,自引:3,他引:7  
利用经1959/1961年航片校正的地形图、1972年航片和1992年TM、2001年ETM+遥感影像,通过遥感图像处理和人工目视解译,分析了天山东段哈尔里克山区1959/1961-2001年的冰川变化.结果表明,1959/1961-2001年冰川面积和储量减少量分别占1959/1961年的11.4%和12.3%.其中,20世纪50年代末到70年代初,冰川退缩幅度大,冰川面积和储量年减少率分别约为0.51%和0.508%,20世纪70年代初到90年代初,退缩大幅减缓,冰川面积和储量年减少率为0.1%和0.13%,90年代以后退缩速度又有加剧趋势,冰川面积和储量年减少率增加到0.31%和0.34%.对流域气象站气候资料分析发现,1959/1961-1972年的冰川面积减少率大,主要与1959-1966年时段气温偏高、而降水偏少有关.升温幅度的增大是影响20世纪90年代初以来研究区冰川退缩加剧的根本原因.  相似文献   

19.
玉龙喀什河源区32年来冰川变化遥感监测   总被引:36,自引:4,他引:32  
根据航空相片、地形图、遥感影像数据分析了玉龙喀什河源区的冰川变化,结果表明,1970~2001年本区冰川总体上以稳定冰川的数量占多数,但由于部分冰川的退缩使得整个研究区的冰川表现为萎缩的趋势。1970~1989年冰川规模有扩大的趋势,冰川面积、储量分别增加了1.4 km2、0.4781 km3,约占1970年研究区相应总量的0.12%、0.19%;而1989~2001年的冰川面积、储量分别比1970年减少了0.5%、0.4%,是西北干旱区冰川面积变化幅度最小的区域。分析认为该区域1970~1989年冰川扩大可能与该地区的冰川对20世纪60年代末温度降低、降水量增加有10~20年滞后响应有关;1989~2001年冰川退缩,主要受温度快速上升影响,而丰富的降水对冰川退缩起到缓冲的作用。  相似文献   

20.
在全球性气候变暖的背景下,冰川退缩已成为人类面临的重大环境问题。海螺沟冰川是我国典型的季风海洋性冰川,也是世界范围内最完整的山岳冰川,具有高度的观赏性、科研性。据观察,近百年来该冰川表现出持续退缩的状态,保护已迫在眉睫。从规模、结构及分布3个方面论述了海螺沟冰川的地质特征,并探讨了冰川的形成和物质平衡的条件。根据温度、海拔以及表面覆盖物质成份3项对冰川退缩起主要作用的因子,针对海螺沟冰川退缩的严峻现状和冰川地质遗迹开发和保护的具体情况,给出5条进一步防范冰川退缩的措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号