首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
参考作物蒸散量计算方法的比较研究   总被引:48,自引:11,他引:37  
应用FAO Penman-Monteith公式、Priestley-Taylor公式、Makkink公式、Penman公式和FAO-24 Blaney-Criddle公式等5种方法计算了奈曼地区的参考作物蒸散量,对5种方法的计算结果进行了比较研究,结果表明Penman公式和FAO-24 Blaney-Criddle公式得到的参考作物蒸散量与FAO Penman-Monteith模型结果相近,Priestley-Taylor公式和Makkink公式的计算结果偏差较大,导致不同模型计算偏差的原因是5种模型各自选用了不同的辐射项和动力项计算式。  相似文献   

2.
绿洲灌区参考作物蒸散量的测算   总被引:2,自引:1,他引:1  
李玲玲  黄高宝 《中国沙漠》2011,31(1):142-148
参考作物蒸散量(ET0)是计算作物需水量的关键因子,目前计算ET0最准确的方法主要是FAO Penman-Monteith模型,但该模型需要大量的参数而在有些地区难以应用。为了寻求利用有限参数确定ET0的适用方法,将模拟蒸散仪(Simulated ETgage Atmometer)实测ET0值与FAO Penman-Monteith等7种常用的、参数需求不同的模型计算的ET0值进行了比较研究。结果表明:①模拟蒸散仪实测ET0值与FAO Penman-Monteith模型计算结果非常接近,说明绿洲灌区ET0可以用模拟蒸散仪直接测定,若参数齐全也可用FAO Penman-Monteith模型直接计算;②如果有效参数仅可满足Hargreaves模型计算需求,也可用该模型计算ET0,但在精确的灌溉设计和农田水量平衡测算中该模型计算的5—8月值需要降低5.2%;③建立了Jensen-Haise、FAO-17 Penman、FAO-24 Radiation等模型的修正模型,若有效参数仅能满足这些模型的计算需求,就可用这些修正模型准确计算试区ET0;④Makkink模型和Priestley-Taylor模型不能用于试区ET0的准确计算。  相似文献   

3.
华北山区短时段参考作物蒸散量的计算   总被引:15,自引:2,他引:13  
短时段参考作物蒸散量的估算是研究华北山区小尺度范围内的水分循环和转化的重要环节.因受观测条件的限制,北方半湿润半干旱山区短时段参考作物蒸散量的研究相对较少.本文利用FAO Penman-Monteith公式、FAO Penman修正式和Priestley-Taylor公式对华北山区东台沟小流域观测到的4个月的气象数据进行了逐日的参考作物蒸散量计算,结果显示,FAO Penman修正式的计算值比FAO Penman-Monteith公式的计算值平均偏大16%左右,而且经过统计分析,它们具有很好的相关性,即在代表流域内使用FAO Penman修正式计算出参考作物蒸散量之后,再乘以一个折算系数(如0.84),即可得到与FAO Penman-Monteith公式的计算值较为相近的结果;而Priestley-Taylor公式的计算值与FAO Penman-Monteith公式的计算值相比,差异比较显著.分析其原因,我们认为是由于Priestley-Taylor公式没有考虑空气动力项对参考作物蒸散量的影响.因此,如果在华北山区使用Priestley-Taylor公式计算参考作物蒸散量,必须根据季节对公式中的常数项α重新进行修正.本文通过对2003年8月~2004年8月期间逐日计算得到的ET0(P-T)和ET0(P-M)值进行对比分析后,给出了修正后的不同季节的α值,为华北山区计算作物蒸散量提供了依据.  相似文献   

4.
对运用Hargreaves公式计算参考作物蒸散量(ET0)在干旱区的适用性存在不同观点。为了求证Hargreaves公式在极端干旱区塔克拉玛干沙漠腹地的适用性,利用2005-2010年塔克拉玛干沙漠研究站的气象资料,以利用Penman-Monteith公式计算的结果为标准,对利用Hargreaves公式计算的ET0进行了对比分析,并对两种计算结果差异的成因进行了阐释。结果表明:在年时间尺度上,利用Hargreaves公式计算的结果略大于利用Penman-Monteith公式计算的结果,标准差介于32.86~35.00 mm,年参考作物蒸散量计算结果呈现弱变异程度;在月时间尺度上,用两种方法计算的参考作物蒸散量呈现中等变异程度,蒸散量绝对偏差介于-3.26~8.73 mm,相对偏差介于-12.20%~29.02%,除了10月与11月,其余月份相对偏差均保持在10%之内。用两种方法计算的10月与11月份ET0产生差异的最主要原因在于有较高的温度较差。最后,经过对年、月参考作物蒸散量进行t-检验及建立回归方程,表明Hargreaves公式适用于极端干旱的塔克拉玛干沙漠腹地。  相似文献   

5.
三江源区温性草原蒸散量与主要影响因子的相关分析   总被引:6,自引:0,他引:6  
以小型自动气象站观测资料为基础,采用FAO Penman-Monteith方法估算三江源温性草原参考作物蒸散量,并结合FAO-56的推荐值进行了草地实际蒸散量的计测。结果表明,蒸散量季节动态呈单峰曲线变化趋势,在8月中旬达到年度最高值,平均为1.94 mm\5d-1,年蒸散总量达到 275.36 mm,暖季日蒸散量明显大于冷季。对实际蒸散量与各个主要环境因子的相关性进行了分析,结果可按照相关系数排序:空气温度(T)>太阳辐射(Ra)>空气相对湿度(RH)>风速(u2)。辐射量与实际蒸散量具有较高的线性相关。根据蒸散量与相关环境因子关系分析的结果,建立了适合三江源区域温性草原的蒸散量简化计测公式。  相似文献   

6.
提高湿地蒸散量估算精度对于研究湿地水分和能量平衡以及区域气候特征具有重要意义。利用Penman、FAO Penman-Monteith、Priestley-Taylor、Blaney-Criddle、Hargreaves、Mc-Cloud、Linacre和Makkink模型,模拟三江平原毛苔草(Carex lasiocarpa)沼泽蒸散量。结果表明,采用FAO推荐的作物系数时,各模型模拟蒸散量明显高于涡度相关系统测量值,平均高估92.8%。利用实测数据修正作物系数后,除Makkink模型外,其余模型的模拟精度都明显提高,其中,基于能量平衡的Penman、FAO Penman-Monteith和Priestley-Taylor模型的模拟结果明显优于基于温度的Blaney-Criddle、Hargreaves、Mc Cloud和Linacre模型。在基于能量平衡的蒸散模型中,Priestley-Taylor模型的模拟结果最接近实测值;在基于温度的蒸散模型中,Hargreaves模型的模拟结果最接近实测值。  相似文献   

7.
祁连山中部亚高山草地作物系数估算   总被引:1,自引:1,他引:0  
利用Lysimeter蒸散仪于2011-2014年对祁连山中部黑河上游天涝池流域亚高山草地实际蒸散量进行观测。用FAO Penman-Monteith模型对草地参考蒸散量进行估算,根据草地植被高度结合气象数据,以估算日尺度作物系数,以估算的作物系数与模拟的参考蒸散量计算草地实际蒸散量,并用观测值进行验证。结果表明:FAO改进后的作物系数计算方法适合该区域草地作物系数的计算;以FAO Penman-Monteith模型估算的日蒸散量为0.50~7.26 mm,生长季日均蒸散量有年际变化,2011年 > 2014年 > 2012年 > 2013年。总体来看,土壤蒸发总量年际变化不大,影响蒸散量年际变化的主要部分是植被的蒸腾。  相似文献   

8.
五种潜在蒸散发公式在汉江流域的应用   总被引:9,自引:1,他引:8  
以汉江流域14个测站1960-2009年逐日气象资料为数据源,采用FAO 56 Penman Monteith以及Hargreaves,Blaney Criddle,Thornthwaite,Hamon 4种温度法计算各测站逐日以及逐月潜在蒸散发量,利用反距离加权插值法得到流域面平均年潜在蒸散发量。以FAO 56 Penman Monteith结果为标准,与温度法年潜在蒸散发量计算结果进行对比,修正温度法计算公式的经验系数,分析修正公式在汉江流域的适用性。结果表明:参数修正前温度法计算结果存在较大误差,相对偏差最大可达41.34%。修正后计算结果相对误差明显减小,最大偏差小于0.1%,并显示出较好的变化趋势和峰谷一致性。修正后的Hargreaves公式与FAO 56 Penman Monteith公式相关性最好,相关系数达到0.94,其次为Hamon公式和Thornthwaite公式,最后是Blaney Criddle公式。  相似文献   

9.
额济纳绿洲生长季参考作物蒸散发敏感性分析   总被引:1,自引:0,他引:1  
敏感性分析是预测气象变量扰动引起的参考作物蒸散发变化的重要途径。以额济纳绿洲为研究区,运用FAO56 Penman-Monteith模型计算了额济纳绿洲1988—2007年生长季参考作物的日平均蒸散发,并计算其对气温、风速、太阳辐射和相对湿度的敏感系数。结果表明,额济纳绿洲生长季参考作物日平均蒸散发的敏感性系数波动较大;其中,参考作物蒸散发对太阳辐射最为敏感,其次是气温,最后是风速和相对湿度。利用敏感性系数能较好的预测参考作物蒸散发对太阳辐射、气温、风速和相对湿度扰动产生的响应。  相似文献   

10.
验证参考作物蒸散量模拟方法的适用性,对于加强水资源管理和指导生态建设具有重要理论意义和应用价值。根据黄河上游地区50 a来10个站点的逐日气象资料,以FAO推荐的Penman-Monteith(P-M)方法为标准,验证11种参考作物蒸散量计算方法在该区域的适用性。分别在月尺度和年尺度计算了各方法与P-M方法之间的相关性和均方根误差,结果表明:基于辐射的Priestley-Taylor和Makkink方法与P-M方法具有一致性,在黄河上游地区具有较好的应用前景;Priestley-Taylor方法更适宜于在月尺度上计算整个区域的参考作物蒸散量,而Makkink方法在高寒地区的生长季的适用性更强。基于温度的Thornthwaite、McCloud、Blaney-Criddle和Holdridge方法在黄河上游地区的适用性较差,低估了ET0,主要原因是其无法反映研究区域气温低但辐射强的气候特征。  相似文献   

11.
贡嘎山东坡亚高山森林区蒸散力的估算   总被引:3,自引:1,他引:3  
以海螺沟 30 0 0m气象站的观测资料为基础 ,运用Penman公式法 空气饱和差法和桑斯维特公式法 ,计算了贡嘎山东坡亚高山林林的年平均蒸散力 ,其结果为分别为 431 81mm、171 4mm和 44 6 4mm。通过分析蒸散力的影响因素 ,对这三种计算蒸散力的方法作了比较 ,对计算结果存在的差异作了比较合理的解释 ,认为用Penman公式法可以估计出本研究区的蒸散力。同时 ,对蒸散力及其影响因自进行了相关分析 ,指出湿度和风不是速制约研究区蒸散力的主导因子 ,并分析了蒸散力与水面蒸发的关系 ,由此推导出估算蒸散力的简便方程 :PE =6 6 77 0 6 91E60 1 0 75 1ITm 0 0 396Pm。  相似文献   

12.
江苏淮北地区主要作物需水量的初步研究   总被引:4,自引:0,他引:4  
本文结合江苏实际情况,改进了彭曼公式中的系数,加入作物需水系数和土壤供水系数,建立田蒸散量的计算模式,计算出淮北地区主要作物全生育期需水量及时空分布规律,同时,提出了φ20cm小型蒸发器实测蒸发量与标准蒸散量的统计模式,以此作为计算农田实际蒸散量的补充方法。  相似文献   

13.
中国不同气候区域Hargreaves模型的修正   总被引:1,自引:0,他引:1  
在计算参考作物蒸散量的模型中,FAO Penman-Monteith模型计算准确但需要气象参量过多,而Hargreaves模型只需要气温数据却无法保证较高的准确性。为了提高Hargreaves模型在中国不同气候类型条件下的适用性,以FAO Penman-Monteith模拟值为参考,建立了Hargreaves模型的修正系数。CLIMWAT数据库中156个站点的应用表明,修正前R2、RMSE分别为88.1%、3.803mm/d,修正后分别为97.3%、0.233mm/d;北京站多年的应用表明,修正前R2、RMSE分别为94.4%、4.861mm/d,修正后分别为97.2%、0.442mm/d。在此基础上,利用GIS分区运算工具建立了中国不同气候区域的修正系数表。研究结果有助于提高常规气象观测条件下(无风速、辐射观测)不同气候区域参考作物蒸散量的估算精度。  相似文献   

14.
黄土高原陆地表层作物生长季最大可能蒸散量的变化特征   总被引:1,自引:0,他引:1  
基于黄土高原1961~2008年气候资料,应用修订的Penman-Monteith(P-M)模型计算作物生长季最大可能蒸散量,分析其时空分布、异常分布特征和次区域时间演变特征。结果表明:一致性异常分布是黄土高原作物生长季最大可能蒸散量的最主要空间模态。高原西北部区域作物生长季最大可能蒸散量呈显著增加趋势,且发生突变现象;高原东北部区域和高原东南部区域作物生长季最大可能蒸散量呈显著下降的趋势,也发生突变;黄土高原作物生长季最大可能蒸散量的3个空间分区中,3~4a的周期振荡表现得比较显著。  相似文献   

15.
渭干河灌区参考作物潜在腾发量的计算及相关分析   总被引:5,自引:1,他引:5  
利用Penman公式,根据位于渭干河灌区内的库车、沙雅、新和三县气象站1992~1996年气象观测资料,计算了参考作物潜在腾发量并建立了参考作物潜在蒸发量与其它气象要素的经验关系。根据这些经验关系进行参考作物潜在腾发量的估算,其结果可供该地区作物耗水量等研究时参照使用。  相似文献   

16.
当观测资料的数据量少而又存在多个相互影响或关联的变量时,常用的灰色预测模型GM(1,1)不能全面考虑多个变量。为此,采用自适应MGM(1,n)模型—多变量灰色预测模型,较好地解决了这一问题。针对一些地区气象数据较少甚至缺失的情况,以内蒙古正蓝旗的气象资料用Penman-Monteith计算的参考作物蒸散量(ET0)为研究对象,运用灰色系统理论建立MGM(1,3)模型,模拟预测参考作物蒸散量变化规律,并与GM(1,1)模型和BP神经网络模型比较,结果表明MGM(1,3)模型有较好的预测效果。  相似文献   

17.
湿地蒸散测算方法进展   总被引:3,自引:0,他引:3  
湿地是地球上三大生态系统之一 ,蒸散是湿地生态系统的重要水文特征 ,是能量和水分的主要消耗途径 ,因此研究湿地蒸散对分析湿地水量平衡、热量平衡以及水资源估算等都具有十分重要的意义。通过总结国内外湿地蒸散量的测算方法 ,如Thornthwaite公式、Penman Monteith模型、Prestley Taylor模型、三江平原沼泽湿地蒸散经验模型、涡度相关法和遥感方法等 ,提出在湿地特定的自然条件下 ,经验模型法在湿地蒸散中的应用要比在其它陆地生态系统蒸散研究中的应用更为准确。  相似文献   

18.
陈仲全 《中国沙漠》1985,5(3):15-19
本文提出并验算了在甘肃干旱、半干旱地区,用拜伦公式和Em=4.8t公式计算蒸散的实用性,提出通过蒸散计算灌溉定额的公式和绿洲灌溉定额分配模式:估计了现状灌溉定额的亏损值,对制定合理灌溉定额,充分开发利用水资源有重要意义。  相似文献   

19.
阿克苏河流域气候变化对潜在蒸散量影响分析   总被引:13,自引:1,他引:12  
张守红  刘苏峡  莫兴国  舒畅  孙杨  张春 《地理学报》2010,65(11):1363-1370
蒸散发是水文过程的关键环节,研究气候因子对潜在蒸散发的影响,有助于深入认识水文过程对气候变化的响应。本文基于阿克苏河流域1960-2007 年逐日气象资料和Penman-Monteith公式,估算并分析参考作物蒸散量(RET) 时空变化特征,并用多元回归方法定量区分气候因子变化对RET 变化的贡献率。研究发现流域RET 空间差异明显,东部平原区平均年RET 为1100mm左右,是西部山区的近2 倍;东南部绿洲区的RET显著减少,而西部变化复杂。RET变化趋势的季节差异也很显著,以夏季变幅最大,是年变化的主要贡献者。高海拔地区相对湿度对RET变化影响最大,其它区域的风速变化对RET变化的贡献率最高。库车和乌恰站的风速变化对RET变化的贡献率大于50%,是RET变化的主导因素。  相似文献   

20.
以亚热带季风区的典型流域——闽江流域为研究区域,根据Penman-Monteith(P-M)公式和双作物系数法,计算了闽江流域内8个气象观测站点的实际蒸散量,并评估了GLDAS-Noah实际蒸散产品在闽江流域的适用性。在此基础上,基于GLDAS-Noah实际蒸散发数据,解读了2000—2019年闽江流域的实际蒸散量的变化特征。结果表明:① GLDAS-Noah实际蒸散发数据在闽江流域的适用性较好(R2>0.9,NSE>0.8);② 2000年以来闽江流域的实际蒸散发呈增加趋势(3.86 mm/a,P < 0.01),且存在显著的季节差异,表现为冬季和春季的增加速率要大于夏季和秋季;③ 闽江流域冬季和春季蒸散发增加与气温密切相关,冬季蒸散发与冬季气温呈微弱正相关( R = 0.27),春季蒸散发的增加与春季升温密切相关(R = 0.79)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号