首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The trophic status of lakes in New Zealand is, on average, low compared to more densely populated areas of the globe. Despite this, trends of eutrophication are currently widespread due to recent intensification in agriculture. In order to better identify baseline productivity and establish long-term trends in lake trophic status, diatom-based transfer functions for productivity-related parameters were developed. Water quality data and surface sediment diatom assemblages from 53 lakes across the North and South Islands of New Zealand were analysed to determine species responses to the principal environmental gradients in the data set. Repeat sampling of water chemistry over a 12-month period enabled examination of species responses to annual means as well as means calculated for stratified and mixed periods. Variables found to be most strongly correlated with diatom species distributions were chlorophyll a (Chl a), total phosphorus (TP), dissolved reactive phosphorus (DRP), ionic concentration (measured as electrical conductivity (EC)) and pH. These variables were used to develop diatom-based transfer functions using weighted averaging regression and calibration (simple, tolerance down-weighted and with partial least squares algorithm applied). Overall, models derived for stratified means were weaker than those using annual or isothermal means. For specific variables, the models derived for the isothermal mean of EC (WA-tol r2jack = 0.79; RMSEP = 0.15 log10 S cm–1),the annual mean of pH (WA r2jack = 0.72; RMSEP = 0.25 pH units) and the isothermal mean of Chl a (WA r2jack = 0.71; RMSEP = 0.18 log10 mg m–3 Chl a) performed best. The models derived for TP were weak in comparison (for the annual mean of TP: WA r2jack = 0.50; RMSEP = 0.24 log10 mg m–3 TP) and residuals on estimates for this model were correlated with several other water quality variables, suggesting confounding of species responses to TP concentrations. The model derived for the isothermal mean of DRP was relatively strong (WA-tol r2jack = 0.78; RMSEP = 0.17 log10 mg m–3 DRP); however, residual values for this model were also found to be strongly correlated with several other water quality variables. It is concluded that the poor performance of the TP and DRP transfer functions relative to that of the Chl a model reflects the coexistence of nitrogen and phosphorus limitation within the lakes in the data set. In spite of this, the suite of transfer functions developed from the training set is regarded as a valuable addition to palaeolimnological studies in NewZealand.  相似文献   

2.
The relationships between diatoms (Bacillariophyceae) in surface sediments of lakes and summer air temperature, pH and total organic carbon concentration (TOC) were explored along a steep climatic gradient in northern Sweden to provide a tool to infer past climate conditions from sediment cores. The study sites are in an area with low human impact and range from boreal forest to alpine tundra. Canonical correspondence analysis (CCA) constrained to mean July air temperature and pH clearly showed that diatom community composition was different between lakes situated in conifer-, mountain birch- and alpine-vegetation zones. As a consequence, diatoms and multivariate ordination methods can be used to infer past changes in treeline position and dominant forest type. Quantitative inference models were developed to estimate mean July air temperature, pH and TOC from sedimentary diatom assemblages using weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regression. Relationships between diatoms and mean July air temperature were independent of lake-water pH, TOC, alkalinity and maximum depth. The results demonstrated that diatoms in lake sediments can provide useful and independent quantitative information for estimating past changes in mean July air temperature (R2 jack = 0.62, RMSEP = 0.86 °C; R2 and root mean squared error of prediction (RMSEP) based on jack-knifing), pH (R2 jack = 0.61, RMSEP = 0.30) and TOC (R2 jack = 0.49, RMSEP = 1.33 mg l-1). The paper focuses mainly on the relationship between diatom community composition and mean July air temperature, but the relationships to pH and TOC are also discussed.  相似文献   

3.
Diatom-based transfer functions for inferring epilimnetic total phosphorus (TP) have been developed from a data set of 33 southeastern Australian water storages. Regular institutional monitoring of these sites has allowed comparison of models developed from TP data covering different time periods. A model based on mean annual TP performs better than models derived from winter maximum TP, spring minimum TP or TP nearest the time of diatom sampling. A mean annual TP model (WA-PLS 2 component) has a jack-knifed diatom-inferred versus measured TP correlation coefficient (r 2 jack) of 0.69 and a root-mean-square-error of prediction (RMSEP) of 0.246 log10g TP l–1, while alternative models have RMSEP > 0.27. Deletion of two samples with uncharacteristic species composition and environmental conditions improved performance of the mean annual TP model (r 2 jack= 0.74; RMSEP = 0.233 log10g TP l–1). Comparison with other published diatom-TP calibration models indicates that this model performs relatively well, with possible contributing factors including the extensive characterisation of TP (with an average 15 determinations making up the annual mean) and the dominance of planktonic diatoms in most sites. Downcore application of the model will allow the reconstruction of reservoir nutrient histories since commissioning, and thus provide a basis for understanding and management of reservoirs.  相似文献   

4.
Quantitative inference models for water-chemistry variables are derived from epiphytic diatom assemblages in 186 lentic and mostly shallow freshwaters in lower Belgium (Flanders). When the complete pH range is considered (pH 3.4–9.3), robust transfer functions are obtained for median pH (jack-knifed r 2 = 0.88, RMSEP = 0.38 pH units or 6.4% of the observed range) and dissolved inorganic carbon concentration (jack-knifed r 2 = 0.86, RMSEP = 0.194 log10 mg DIC l−1 or 10.2% of the observed range) by means of weighted-averaging partial least squares regression (WA-PLS). For these variables, the calibration models are as reliable as those based on sedimentary diatom assemblages. Inferences of pH may be improved by combining estimates from epiphytic and sediment assemblages. In circumneutral and alkaline conditions, WA-PLS calibration of maximum or median total phosphorus is possible (log-transformed; jack-knifed r 2 = 0.64 or 0.66 and RMSEP = 14% or 12.3% of the observed range, respectively). It makes little difference if taxa showing no response to TP are taken into consideration or not. These models considerably expand the prospects of using historical herbarium materials to hindcast environmental conditions and also allow more accurate interpretation of current compositional changes in epiphytic communities. Compared to littoral sediment assemblages, fewer water-column variables can be inferred reliably from epiphyton. This probably results from differences between the effective gradients in both habitats, together with lower in situ species diversity and less effective spatial integration (i.e. lower recruitment of phytoplankton) in the epiphyton. A comparison of the HOF response-model types and WA-optima of diatom taxa for epiphytic and sediment assemblages shows that the relationship to individual variables, and in particular to those related to trophic status, may differ with habitat. Thus, the combination of samples from both habitat types in the same calibration model is not recommended. Electronic Supplementary Material Supplementary material is available and is accessible for authorised users in the online version of this article at  相似文献   

5.
Climate in central Asia is dominated by the Asian monsoon. The varying impact of the summer monsoon across the Tibetan (Qinghai-Xizang) Plateau provides a strong gradient in precipitation, resulting in lakes of different salinity. Diatoms have been shown to indicate changes in salinity. Thus, transfer functions for diatoms and salinity or related environmental variables represent an excellent tool for paleoclimatic reconstructions in the Tibetan Plateau. Forty freshwater to hypersaline lakes (salinity: 0.1 to 91.7 g l–1) were investigated in the eastern Tibetan Plateau. The relationship between 120 diatom taxa and conductivity, maximum water depth and major ions were analyzed using an indicator value approach, ordination and taxon response models. Canonical correspondence analysis indicated that conductivity was the most important variable, accounting for 10.8% of the variance in the diatom assemblages. In addition water depth and weathering were influential. Weighted Averaging (WA) and Weighted Averaging Partial Least Square (WA-PLS) regression and calibration models were used to establish diatom-conductivity and water depth transfer functions. An optimal two-component WA-PLS model provided a high jack-knifed coefficient of prediction for conductivity (r2 jack = 0.92), with a moderate root mean squared error of prediction (RMSEPjack = 0.22), a very low mean bias (0.0003), and a moderate maximum bias (0.26). A WA model with tolerance downweighting resulted in a slightly lower r2 jack (0.89) for water depth, with RMSEPjack= 0.26, mean bias = –0.0103 and maximum bias = 0.26.  相似文献   

6.
Physical, chemical, and biological data were collected from a suite of 57 lakes that span an elevational gradient of 1360 m (2115 to 3475 m a.s.l.) in the eastern Sierra Nevada, California, USA as part of a multiproxy study aimed at developing transfer functions from which to infer past drought events. Multivariate statistical techniques, including canonical correspondence analysis (CCA), were used to determine the main environmental variables influencing diatom distributions in the study lakes. Lakewater depth, surface-water temperature, salinity, total Kjeldahl nitrogen, and total phosphorus were important variables in explaining variance in the diatom distributions. Weighted-averaging (WA) and weighted-averaging partial least squares (WA-PLS) were used to develop diatom-based surface-water temperature and salinity inference models. The two best diatom-inference models for surface-water temperature were developed using simple WA and inverse deshrinking. One model covered a larger surface-water temperature gradient (13.7 °C) and performed slightly poorer (r2 = 0.72, RMSE = 1.4 °C, RMSEPjack = 2.1 °C) than a second model, which covered a smaller gradient (9.5 °C) and performed slightly better (r2 = 0.89, RMSE = 0.7 °C, RMSEPjack = 1.5 °C). The best diatom-inference model for salinity was developed using WA-PLS with three components (r2 = 0.96, RMSE = 4.06 mg L–1, RMSEPjack = 11.13 mg L–1). These are presently the only diatom-based inference models for surface-water temperature and salinity developed for the southwestern United States. Application of these models to fossil-diatom assemblages preserved in Sierra Nevada lake sediments offers great potential for reconstructing a high-resolution time-series of Holocene and late Pleistocene climate and drought for California.  相似文献   

7.
Fossil assemblages of chironomid larvae (non-biting midges) preserved in lake sediments are well-established paleothermometers in north-temperate and boreal regions, but their potential for temperature reconstruction in tropical regions has never before been assessed. In this study, we surveyed sub-fossil chironomid assemblages in the surface sediments of 65 lakes and permanent pools in southwestern Uganda (including the Rwenzori Mountains) and central and southern Kenya (including Mount Kenya) to document the modern distribution of African chironomid communities along the regional temperature gradient covered by lakes situated between 489 and 4,575 m above sea level (a.s.l). We then combined these faunal data with linked Surface-Water Temperature (SWTemp: range 2.1–28.1°C) and Mean Annual Air Temperature (MATemp: range 1.1–24.9°C) data to develop inference models for quantitative paleotemperature reconstruction. Here we compare and discuss the performance of models based on different numerical techniques [weighted-averaging (WA), weighted-averaging partial-least-squares (WA-PLS) and a weighted modern analogue technique (WMAT)], and on subsets of lakes with varying gradient lengths of temperature and other environmental variables. All inference models calibrated against MATemp have a high coefficient of determination ( r\textjack2 r_{\text{jack}}^{2}  = 0.81–0.97), low maximum bias (0.84–2.59°C), and low root-mean-squared error of prediction (RMSEP = 0.61–1.50°C). The statistical power of SWTemp models is generally weaker ( r\textjack2 r_{\text{jack}}^{2}  = 0.77–0.95; maximum bias 1.55–3.73°C; RMSEP = 1.39–1.98°C), likely because the surface-water temperature data are spot measurements failing to catch significant daily and seasonal variation. Models based on calibration over the full temperature gradient suffer slightly from the limited number of study sites at intermediate elevation (2,000–3,000 m), and from the presence of morphologically indistinguishable but ecologically distinct taxa. Calibration confined to high-elevation sites (>3,000 m) has poorer error statistics, but is less susceptible to biogeographical and taxonomic complexities. Our results compare favourably with chironomid-based temperature inferences in temperate regions, indicating that chironomid-based temperature reconstruction in tropical Africa can be achieved.  相似文献   

8.
The Ramsar-listed Coorong lagoon lies at the terminus of the Murray-Darling River system in South Australia. Diatom and foraminifera relationships with water quality were characterised in order to develop diatom- and foraminifera-based models with the potential to infer water column salinity. Seventy-four samples were collected during 2007, a year of continuing drought in the catchment, and of no discharges at the Murray Mouth. The sample sites had a salinity gradient of 1.8–190 g l−1 total dissolved solids. The diatom data set comprised 215 taxa, while there were only eight taxa in the foraminiferal data set. Canonical correspondence analysis of diatom species-environment relationships showed that salinity explained the largest proportion of diatom variance. Hence, a diatom-based salinity transfer function with reasonable predictive power (measured vs. diatom-inferred salinity r jack2 = 0.82; Root Mean Squared Error of Prediction = 16 g l−1) was developed. Application of the transfer function to fossil diatom assemblages from The Coorong suggested that pre-European salinity values were generally >50 g l−1 and that salinity declined following settlement. These results, however, contradict the recent history of The Coorong where there have been substantial lagoon-wide salinity increases. The pre-impact diatom flora has no analogue in the modern data set, highlighting the degree of departure from past conditions. CCA of the foraminiferal data set identified salinity and total nitrogen as the variables with the greatest explanatory power. However, accurate predictive models could not be developed using either variable due to low foraminiferal abundance and species richness. These factors may have been a consequence of diminished foraminiferal recruitment rates over successive years, an artefact of reduced marine water input to The Coorong. Future attempts to generate predictive models from this region would benefit from the inclusion of data from distant locations, since suitable analogue sites do not exist in close proximity. The study has generated useful insights to the apparently broad salinity tolerances for several cosmopolitan diatom and foraminifera species, and has identified a number of diatom and foraminifera taxa that may prove useful in the qualitative interpretation of down-core trends in The Coorong and the lower Murray River region.  相似文献   

9.
Relationships between littoral surface-sediment diatom assemblages and ambient limnological conditions were examined in 186 lentic fresh waters throughout lower Belgium (Flanders). Most of these waters were small, unstratified, alkaline and rich in nutrients. Using weighted-averaging techniques, robust and accurate transfer functions were developed for median pH-values ranging from 3.4 to 9.3 and dissolved inorganic carbon concentrations from <1.6 to 63 mg l−1 (jackknifed r 2≈ 0.87, RMSEP <10% of the observed range), while a less precise model was obtained for sodium (2–571 mg l−1; jackknifed r 2 0.69, RMSEP 9.9% of the range). Restricting the data set to circumneutral and alkaline sites (pH≥6.5) revealed the importance of additional variables, including calcium, silica, chemical oxygen demand and potential gross oxygen production (a proxy for metabolic activity and phytoplankton abundance). Calibration models for these variables were strong enough to be useful (jackknifed r 2 0.57–0.59, RMSEP 13.1–16.4% of the observed range), although estimations should not always be considered entirely independent. Except for the predominant pH gradient, removal of all taxa with a distribution unrelated to the variable of interest improved model performance. In general, such taxa were proportionally represented among taxa classified according to their principal habitat. Application of the present models to diatom assemblages of shallow-water sediments obtained from historical samples and, most importantly, herbarium-macrophyte specimens, will improve hindsight into regional freshwater conditions and add to base-line setting of ecological quality standards in a highly impacted region. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

10.
We analyzed surface-sediment samples collected along transects from three sub-basins of a relatively large (~115 ha), bathymetrically complex lake, in northwest Ontario, Canada, to assess the reproducibility of diatom species habitats and diversity along a water-depth gradient. Transects displayed different orientations with respect to prevailing wind direction and varied in complexity and degree of slope along the lake bottom. Each transect consisted of three replicate samples at a resolution of ~1 m water depth from ~1 to 30 m for the two deep-basin transects and from ~1 to 18 m in the shallower basin. Distinct diatom assemblages were identified in all transects: (1) a near-shore community composed largely of attached life-forms and some motile benthic taxa, (2) a mid-depth community composed largely of motile life-forms and other benthic taxa that are adapted to lower light conditions (e.g. Staurosirella pinnata), and (3) a deep-water community dominated by planktonic taxa. Species richness was highest in the benthic zones (<9 m), with greatest species evenness in the mid-depth zone (~3–9 m). Species richness and evenness were highly correlated across the three transects (r = 0.89–0.93, p < 0.01). Diatom-inferred depth models were developed from the individual transects to assess reproducibility and applicability for down-core analyses using modern analog (MAT) and weighted-averaging (WA-PLS) approaches. Coefficients of determination (r 2) for these models ranged from 0.80 to 0.98, and RMSEP ranged from 1.2 to 4.2 m. The models developed from the transect with the highest resolution sampling, gentlest non-complex slope and shallowest maximum depth were the strongest ( r\textMAT2 = 0.97 r_{\text{MAT}}^{2} = 0.97 ; r\textWA - PLS2 = 0.98 r_{\text{WA - PLS}}^{2} = 0.98 ) and had the lowest RMSEP (MAT = 1.2 m, WA-PLS = 1.3 m). These inference models can be used to infer past fluctuations in the depth of the benthic/planktonic boundary from cores retrieved near this ecotone and provide a sensitive record of the past change in location of the benthic zone. These types of data can be used to assess past variability in droughts and lake levels to better plan for potential future extremes. Such records incorporate more realistic estimates of natural variability than the ~100-year instrumental records currently used by water resource managers.  相似文献   

11.
Cladocera as indicators of trophic state in Irish lakes   总被引:1,自引:0,他引:1  
We examined the impact of lake trophic state on the taxonomic and functional structure of cladoceran communities and the role of nutrient loading in structuring both cladoceran and diatom communities. Surface sediment assemblages from 33 Irish lakes were analysed along a gradient of total phosphorus concentration (TP; 4.0–142.3 μg l−1), using a variety of statistical approaches including ordination, calibration and variance partitioning. Ordination showed that the taxonomic structure of the cladoceran community displayed the strongest response to changes in lake trophic state, among 17 measured environmental variables. Trophic state variables chlorophyll-a and TP explained about 20% of the variance in both cladoceran and diatom assemblages from a set of 31 lakes. Procrustes analysis also showed significant concordance in the structure of cladoceran and diatom communities (P < 0.001). Thus, lake trophic state affects the taxonomic structure of both primary and secondary producers in our study lakes. We also found a significant decrease in relative abundance of taxa associated with both macrophytes and sediments, or sediments only, along the TP gradient (r = −0.49, P = 0.006, n = 30), as well as an increase in the proportion of the planktonic group (r = 0.43, P = 0.017, n = 30). This suggests that cladoceran community structure may also be shaped by lake trophic state indirectly, by affecting habitat properties. We found no relationship between lake trophic state and the relative abundance of each of three cladoceran groups that display different body size. We compared community structure between bottom and top sediment samples in cores from six Irish lakes. Results revealed similar trajectories of nutrient enrichment over time, as well as a strong shift in cladoceran functional structure in most systems. This study confirms that Cladocera remains in lake sediments are reliable indicators of lake trophic state. This study also highlights the fact that taxonomic and functional structure should both be considered to account for the multiple factors that shape cladoceran communities.  相似文献   

12.
Taihu Lake is the third largest freshwater lake in China and has been experiencing eutrophication problems for several decades. Diatoms in short sediment cores from three bays in northern Taihu Lake were studied in addition to 1-year of seasonal phytoplankton samples in order to evaluate the rate and magnitude of nutrient enrichment. The dominant species found in the phytoplankton samples appeared in high percentages in the surface sediment samples, suggesting that the latter faithfully record the modern diatom flora. The diatom preservation status varied among the three cores, while in all cores the preservation deteriorated with sediment depth. Due to the superior diatom preservation in the core from Mashan Bay, the fossil diatom record of this core and an established diatom total phosphorus (TP) transfer function were used to reconstruct the nutrient history of Taihu Lake. Diatom assemblages changed from Aulacoseira-dominated to other eutrophic planktonic species, such as Stephanodiscus minutulus, Cyclostephanos tholiformis, Cyclotella atomus, C. meneghiniana and S. hantzschii in ca. 1980. Diatom-inferred TP concentrations exhibited little change prior to 1980, with values around 50 μg/l. However, after 1980 TP concentrations increased significantly and remained in excess of 100 μg/l, reflecting eutrophication of Taihu Lake. Comparison with TP measurements in the water column from 1988 to 2004, as well as the analogue analysis among fossil and modern samples, demonstrates that the diatom-TP inference model can reliably hindcast past TP concentrations. Therefore, the baseline TP value of about 50 μg/l, can be used as a restoration target for Taihu Lake. However, due to the complexity of this very large, shallow aquatic ecosystem, caution should be exercised when employing the diatom record to track eutrophication. Further studies on the mechanism of diatom distribution, evolution and preservation are recommended for Taihu Lake.  相似文献   

13.
We explored the possibility of using artificial neural networks (ANN) to develop quantitative inference models in paleolimnology. ANNs are dynamic computer systems able to learn the relations between input and output data. We developed ANN models to infer pH from fossil diatom assemblages using a calibration data set of 76 lakes in Quebec. We evaluated the predictive power of these models in comparison with the two most commonly methods used in paleolimnology: Weighted Averaging (WA) and Weighted Averaging Partial Least Squares (WA-PLS). Results show that the relationship between species assemblages and environmental variables of interest can be modelled by a 3-layer back-propagation network, with apparent R2 and RMSE of 0.9 and 0.24 pH units, respectively. Leave-one-out cross-validation was used to access the reliabilities of the WA, WA-PLS and ANN models. Validation results show that the ANN model (R2 jackknife = 0.63, RMSEjackknife = 0.45, mean bias = 0.14, maximum bias = 1.13) gives a better predictive power than the WA model (R2 jackknife = 0.56, RMSEjackknife = 0.5, mean bias = –0.09, maximum bias = –1.07) or WA-PLS model (R2 jackknife = 0.58, RMSEjackknife = 0.48, mean bias = –0.15, maximum bias = –1.08). We also evaluated whether the removal of certain taxa according to their tolerance changed the performance of the models. Overall, we found that the removal of taxa with high tolerances for pH improved the predictive power of WA-PLS models whereas the removal of low tolerance taxa lowered its performance. However, ANN models were generally much less affected by the removal of taxa of either low or high pH tolerance. Moreover, the best model was obtained by averaging the predictions of WA-PLS and ANN models. This implies that the two modelling approaches capture and extract complementary information from diatom assemblages. We suggest that future modelling efforts might achieve better results using analogous multi-model strategies.  相似文献   

14.
A knowledge of pre-disturbance conditions is important for setting realistic restoration targets for lakes. For European waters this is now a requirement of the European Council Water Framework Directive where ecological status must be assessed based on the degree to which present day conditions deviate from reference conditions. Here, we employ palaeolimnological techniques, principally inferences of total phosphorus from diatom assemblages (DI-TP) and classification of diatom composition data from the time slice in sediment cores dated to ~1850 AD, to define chemical and ecological reference conditions, respectively, for a range of UK lake types. The DI-TP results from 169 sites indicate that reference TP values for low alkalinity lakes are typically <10 μg L−1 and in many cases <5 μg L−1, whilst those for medium and high alkalinity lakes are in the range 10–30 and 20–40 μg L−1, respectively. Within the latter two alkalinity types, the deeper waters (>3 m mean depth) generally had lower reference TP concentrations than the shallow sites. A small group of shallow marl lakes had concentrations of ~30 μg L−1. Cluster analysis of diatom composition data from 106 lakes where the key pressure of interest was eutrophication identified three clusters, each associated with particular lake types, suggesting that the typology has ecological relevance, although poor cross matching of the diatom groups and the lake typology at type boundaries highlights the value of a site-specific approach to defining reference conditions. Finally the floristic difference between the reference and present day (surface sample) diatom assemblages of each site was estimated using the squared chord distance dissimilarity coefficient. Only 25 of the 106 lakes experienced insignificant change and the findings indicate that eutrophication has impacted all lake types with >50% of sites exhibiting significant floristic change. The study illustrates the role of the sediment record in determining both chemical and ecological reference conditions, and assessing deviation from the latter. Whilst restoration targets may require modification in the future to account for climate induced alterations, the long temporal perspective offered by palaeolimnology ensures that such changes are assessed against a sound baseline.  相似文献   

15.
We propose a palaeolimnological method for inferring past total phosphorus (TP) concentrations in lake water from spectrophotometrically-measured sedimentary pigments, particularly total carotenoids (TC). Our approach is based on a highly significant statistical correlation (P < 0.0001) between pigment concentrations (total carotenoids) in the surface sediment of 28 Italian lakes (subalpine, large, deep, shallow, volcanic) and TP concentrations measured in these lakes at overturn when the core was collected. A transfer function was developed from this “training” set, and used to estimate past TP concentrations from pigment concentrations in sediment cores. The results generally agreed with TP values as measured by long-term water quality monitoring programs. Contrasting results were obtained by a comparison with diatom-inferred TP. While the diatom model showed a tendency to overestimate TP values higher than 100 μg l−1, the pigment model correctly estimated TP in lakes when TP was <100 μg l−1, but not when lakes were rich in macrophytes. In fact, lakes with extensive populations of aquatic submersed macrophytes and epiphytes are outliers in terms of the TC versus TP relationship. The root mean square error of prediction of the pigment model is lower than those derived from certain diatom—based inference models. The predicted and residual values are not related to the estimated values and their average is not statistically different from zero. Errors were estimated via a ‘leave-one-out’ re-sampling technique. The proposed method permits rapid and relatively inexpensive determination of reference trophic conditions.  相似文献   

16.
Lake eutrophication is a problem in many areas of Ontario, although the history of nutrient enrichment is poorly documented. The aim of this study was to construct a diatom-based transfer function to infer past phosphorus levels in Ontario lakes using paleolimnological analyses. The relationship between diatom assemblages and limnological conditions was explored from a survey of diatoms preserved in the surface sediments of 64 Southern Ontario lakes, spanning a total phosphorus gradient of 0.004 to 0.054 mg L-1. Over 420 diatom taxa were identified, 98 of which were sufficiently common to be considered in statistical analyses. Canonical correspondence analysis (CCA) determined that pH, ammonium, aluminum, spring total phosphorus (TP), strontium, total nitrogen (TN), maximum depth (MaxZ), chlorophyll a (Chla) and mean depth were significant variables in explaining the variance in the diatom species data. The environmental optima of common diatom taxa for the limnologically important variables (TP, pH, TN, MaxZ, Chla) were calculated using weighted averaging (WA) regression and calibration techniques, and transfer functions were generated. The diatom inference model for spring TP provided a robust reconstructive relationship (r2 = 0.637; RMSE = 0.007 mg L-1; r2 boot = 0.466; RMSEboot = 0.010 mg L-1). Other variables, including pH (r2 = 0.702; RMSE = 0.208; r2 boot = 0.485; RMSEboot = 0.234), TN (r2 = 0.574; RMSE = 0.0899 mg L-1; r2 boot = 0.380; RMSEboot = 0.127 mg L-1) and MaxZ (r2 = 0.554; RMSE = 1.05 m; r2 boot = 0.380; RMSEboot = 1.490 m), were also strong, indicating that they may also be reconstructed from fossil diatom communities. This study shows that it is possible to reliably infer lakewater TP and other limnological variables in alkaline Southern Ontario lakes using the WA technique. This method has the potential to aid rehabilitation programs, as it can provide water quality managers with the means to estimate pre-enrichment phosphorus concentrations and an indication of the onset and development of nutrient enrichment in a lake.  相似文献   

17.
Arctic aquatic systems are considered to be especially sensitive to anthropogenic disturbance, which can have cascading effects on biological communities as aquatic food-web structure is altered. Bio-indicators that respond to major limnological changes can be used to detect and infer major environmental change, such as climate warming, with the use of paleolimnological techniques. A multi-proxy approach was used to quantify recent environmental changes at Baker Lake, Nunavut, Arctic Canada. Analyses of fossilized remains of chironomids and diatoms were conducted on a sediment core of 20 cm in length sampled at 0.5-cm intervals. A new surface sediment training set of subfossil chironomid assemblages from 65 lakes across the eastern Canadian Arctic generated a robust (r jack2 = 0.79) surface water paleotemperature transfer function. The transfer function was applied to stratigraphic intervals from the Baker Lake sediment core to generate a paleotemperature reconstruction of sub-decadal resolution. The surface water temperature reconstruction inferred a 2°C increase in mid-summer surface water temperature for Baker Lake over the last 60 years, which was corroborated by the local instrumental record spanning the period of 1950–2007 AD. The chironomid record shows a recent decline of several cold-water taxa and appearance of warm-water indicators. This shift in community structure began circa 1906 AD, and intensified after 1940 AD. The corresponding fossil diatom record showed an increase in small planktonic Cyclotella taxa over the past 60 years, intensifying in the last 5 years, which also suggests a warmer climate and longer ice-free periods. The shifts in the diatom assemblages began later than the shifts in the chironomid assemblages, and were of lower magnitude, reflecting differences in the mechanisms in which these two indicators respond to environmental change.  相似文献   

18.
The selection of a reliable inference model is a crucial step in developing ecologically sound reconstructions of environmental variables in the past. We compared intra- and inter-regional regression-based models, and an inter-regional Modern Analogue Technique (MAT) model in their ability to infer lakewater pH from scaled chrysophyte assemblages. The performance of each model was assessed by examining cross-validated coefficients of determination and prediction errors, and through reconstructing the pH of 50 modern and fossil samples in south-central Ontario, Canada. Using the intra- and inter-regional data sets, we found little difference in the ability of the regression-based models to infer present-day pH. Partial Least Squares (PLS) regression, Weighted Averaging (WA), and Weighted Averaging Partial Least Squares (WA-PLS) inference models showed similar values for jack-knifed coefficients of determination (r2 jack), root mean squared errors of prediction (RMSEPjack), and mean and maximum biases. Based on an analogue matching approach, the inferred values from 48 fossil sediment samples suggested that the intra-regional model did not provide reliable reconstructions for approximately half of the fossil samples. However, inferences from the inter-regional MAT and regression-based models were found to have appropriate analogues and thus considered to be more reliable.  相似文献   

19.
Subfossil zooplankton assemblages (Cladocera 22 taxa, Rotifera 1 taxon) were identified from the surface sediments of 36 shallow (median depth = 0.7 m) Danish coastal brackish lakes differing in epilimnic salinity (SAL, range 0.2–17.4), summer-mean total phosphorus (TP, 27–327 g l–1) and total nitrogen (TN, 0.850–2.629 mg l–1), as well as in submerged macrophyte coverage and planktivorous fish density (PL-CPUE). Cladoceran species richness declined significantly with increasing SAL, TP and TN, while no significant correlation was found to either PL-CPUE, macrophyte coverage or lake surface area. Bonferroni-adjusted forward selection within canonical correspondence analysis (CCA) showed that 22.1% of the variation in zooplankton data was explained by PL-CPUE, SAL and TP uniquely; each variable explaining an almost equally significant amount of variation in the zooplankton data. Predictive models to infer PL-CPUE, SAL and TP were developed using variance weighted-averaging (WA) procedures. Almost similar values of boot-strapped coefficient of determination (r2boot-strapped 0.22–0.38) were produced by the WA inference models of PL-CPUE, SAL and TP, while the inference models of TP produced the lowest boot-strapped root-mean-squared-error of prediction (RMSEPboot-strapped 0.29–0.36 log(TP + 1), g l–1). Yet, zooplankton TP and SAL optima (WA) were strongly correlated (r2 = 0.46), while PL-CPUE optima (WA) were independent of both TP and SAL optima, indicating that only the PL-CPUE inference models are suitable for making reconstructions.  相似文献   

20.
A diatom transfer function to infer epilimnetic total phosphorus (TP) concentration was derived using surface sediment diatom data from 68 medium-sized (10–1000 ha) lakes in Southern Finland. Publicly available monitoring records were used in lake selection to avoid gradients caused by pH and humic substances. Constrained and partially constrained ordinations indicated that TP was an important variable influencing diatom assemblages. A long floristic gradient in relation to TP was also apparent and therefore an inference model was developed for TP using unimodal-based regression and calibration methods. The final model included 61 lakes with epilimnetic TP concentrations between 3 and 89 g P l–1, measured during the autumnal circulation period. It has a jackknifed-estimated root mean squared error of prediction of 0.16 log g P l–1, a maximum bias of 0.28 log g P l–1, and an r2 jack of 0.76.The model was tested in the presently eutrophic Lake Valkjärvi (epilimnetic [TP] 60–85 g P l–1), located in Southern Finland. It successfully predicted the measured autumnal epilimnetic TP concentration for the past twenty years and the changes in inferred [TP] reflected disturbances known to have occurred before that time. The diatom-based inferences show that Lake Valkjärvi was oligo-mesotrophic as late as the 1930's and has become eutrophic because of nutrient inputs from agriculture and, especially, municipalities. However, epilimnetic TP concentration has not increased further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号