首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 667 毫秒
1.
Small-scale elastic heterogeneities (<5  km) are found in the upper lithosphere underneath the Gräfenberg array, southeast Germany. The results are based on the analysis of broadband recordings of 17 intermediate-depth (201–272  km) events from the Hindu Kush region. The wavefront of the first P arrival and the following 40  s coda are separated into coherent and incoherent (scattered) parts in the frequency range from 0.05 to 5  Hz. The frequency-dependent intensities of the mean and fluctuation wavefields are used to describe the scattering characteristics of the lithosphere underneath the receivers. It is possible to discriminate a weak-fluctuation regime of the wavefield in the frequency range below approximately 1.5–2.5  Hz and a strong-fluctuation regime starting at 2.0–2.5  Hz and continuing to higher frequencies. In order to explain the observed wavefield fluctuations, an approach with seismic scattering at random media-type structures is proposed. The preferred model contains heterogeneities with 3–7 per cent perturbations in seismic velocity and correlation lengths of 0.6–4.8  km in the crust. This is compatible with models from active seismic experiments. Scattering in the lithospheric mantle is not required, but cannot be excluded at weak velocity contrasts (<3 per cent).  相似文献   

2.
The Born approximation is applied to the modelling of the propagation of deeply turning longperiod body waves through heterogeneities in the lowermost mantle. We use an exact Green's function for a spherically symmetric earth model that also satisfies the appropriate boundary conditions at internal boundaries and the surface of the earth. The scattered displacement field is obtained by a numerical quadrature of the product of the Green's function, the exciting wavefield and structural perturbations. We study three examples: scattering of longperiod P waves from a plume rising from the coremantle boundary (CMB), generation of longperiod precursors to PKIKP by strong, localized scatterers at the CMB, and propagation of corediffracted P waves through largescale heterogeneities in D". The main results are as follows: (1) the signals scattered from a realistic plume are small with relative amplitudes of less than 2 per cent at a period of 20 s, rendering plume detection a fairly difficult task; (2) strong heterogeneities at the CMB of appropriate size may produce observable longperiod precursors to PKIKP in spite of the presence of a diffraction from the PKP B caustic; (3) corediffracted P  waves ( P diff) are sensitive to structure in D" far off the geometrical ray path and also far beyond the entry and exit points of the ray into and out of D"; sensitivity kernels exhibit ringshaped patterns of alternating sign reminiscent of Fresnel zones; (4) P diff also shows a nonnegligible sensitivity to shear wave velocity in D"; (5) down to periods of 40 s, the Born approximation is sufficiently accurate to allow waveform modelling of P diff through largescale heterogeneities in D" of up to 5 per cent.  相似文献   

3.
summary . A formulation is given for the seismic-wave scattering by a rough solid—liquid interface, in analogy to results derived for a solid—solid interface and a heterogeneous volume. Using Kennett's approach and the reciprocity theorem, the scattering is formulated as the excitation by an equivalent dislocation. Using interface parameters relevant to the core—mantle boundary (CMB), computational results for several types of body-wave scattering are given and compared to scattering by a heterogeneous volume. In an application to the generation of PKP precursors it is concluded that, whereas some data groups point to heterogeneity (which may not be small) in the lower mantle above CMB, in other cases a rough CMB may be considered equally feasible. Scattering at the source or receiver side of the core by both a slightly rough CMB (radial variations up to a few hundred metres) and a slightly heterogeneous lower mantle (relative variations in physical parameters up to a few per cent) produces the energy level that is observed in most of the PKP precursors; also the relevant scale lengths of variation are about the same ie both mechanisms (10–20 km with possibly somewhat higher values at relatively long epicentral distances).  相似文献   

4.
Split S waves observed at Hockley, Texas from events in the Tonga–Fiji region of the southwest Pacific show predominantly vertically polarized shear-wave ( SV  ) energy arriving earlier than horizontally polarized ( SH ) energy for rays propagating horizontally through D" . After corrections are made for the effects of upper-mantle anisotropy beneath Hockley, a time lag of 1.5 to 2.0  s remains for the furthest events (93.9°–100.6° ), while the time lags of the nearer observations (90.5°–92.9° ) nearly disappear. At closer distances, the S waves from these same events do not penetrate as deeply into the lower mantle, and are not split. These observations suggest that a patch of D" beneath the central Pacific is anisotropic, while the mantle immediately above the patch is isotropic. The thickness of the anisotropic zone appears to be of the order of 100–200  km.
  Observations of shear-wave splitting have previously been made for paths that traverse D" under the Caribbean and under Alaska. SH leads SV , the reverse of the Hockley observations, but in these areas the fact that SV  leads SH in the HKT data shown here suggests a different sort of anisotropy under the central Pacific from that under Alaska and the Caribbean. The case of SH travelling faster than SV  is consistent with transverse isotropy with a vertical axis of symmetry (VTI) and does not require variations with azimuth. The case of SV  leading SH is consistent with transverse isotropy with a horizontal axis of symmetry (HTI), an azimuthally anisotropic medium, and with a VTI medium formed by a hexagonal crystal. Given that (Mg,Fe)SiO3 perovskite appears unlikely to form anisotropic fabrics on a large scale, the presence of anisotropy may point to chemical heterogeneity in the lowermost mantle, possibly due to mantle–core interactions.  相似文献   

5.
Teleseismic P -wave recordings are analysed in the frequency range 0.3–6  Hz to derive structural (statistical) parameters of the lithosphere underneath the French Massif Central. For this we analyse differences in frequency-dependent intensities of the mean wavefield and the fluctuation wavefield. It is possible to discriminate a weak fluctuation regime of the wavefield in the frequency range below 1  Hz and a strong fluctuation regime starting above 1  Hz and continuing to higher frequencies. The observed wavefield fluctuations in the frequency range 0.3–3  Hz can be explained by scattering of the teleseismic P wave front at elastic inhomogeneities in the lithosphere. A statistical distribution of the inhomogeneities is assumed and the concept of random media is applied. The lithospheric structure under the Massif Central can be described as a 70  km thick heterogeneous layer with velocity fluctuations of 3–7 per cent and correlation lengths of the heterogeneities of 1–16  km.  相似文献   

6.
A 3-D P -velocity map of the crust and upper mantle beneath the southeastern part of India has been reconstructed through the inversion of teleseismic traveltimes. Salient geological features in the study region include the Archean Dharwar Craton and Eastern Ghat metamorphic belt (EGMB), and the Proterozoic Cuddapah and Godavari basins. The Krishna–Godavari basin, on the eastern coastal margin, evolved in response to the Indo–Antarctica breakup. A 24-station temporary network provided 1161 traveltimes, which were used to model 3-D P -velocity variation. The velocity model accounts of 80 per cent of the observed data variance. The velocity picture to a depth of 120 km shows two patterns: a high velocity beneath the interior domain (Dharwar craton and Cuddapah basin), and a lower velocity beneath the eastern margin region (EGMB and coastal basin). Across the array velocity variations of 7–10 per cent in the crust (0–40 km) and 3–5 per cent in the uppermost mantle (40–120 km) are observed. At deeper levels (120–210 km) the upper-mantle velocity differences are insignificant among different geological units. The presence of such a low velocity along the eastern margin suggests significantly thin lithosphere (<100 km) beneath it compared to a thick lithosphere (>200 km) beneath the eastern Dharwar craton. Such lithospheric thinning could be a consequence of Indo–Antarctica break-up.  相似文献   

7.
Summary. Two localized regions of velocity heterogeneity in the lower mantle with scale lengths of 1000–2000 km and 2 per cent velocity contrasts are detected and isolated through comparison of S, ScS, P and PcP travel times and amplitudes from deep earthquakes in Peru, Bolivia, Argentina and the Sea of Okhotsk. Comparison of the relative patterns of ScS-S differential travel times and S travel-time residuals across North American WWSSN and CSN stations for the different source regions provides baselines for interpreting which phases have anomalous times. A region of low S and P velocities is located beneath Northern Brazil and Venezuela at depths of 1700–2700 km. This region produces S -wave delays of up to 4 s for signals from deep Argentine events recorded at eastern North American stations. The localized nature of the anomaly is indicated by the narrow bounds in azimuth (15°) and take-off angle (13°) of the arrivals affected by it. The long period S -waves encountering this anomaly generally show 30–100 per cent amplitude enhancement, while the short-period amplitudes show no obvious effect. The second anomaly is a high-velocity region beneath the Caribbean originally detected by Jordan and Lynn, who used travel times from deep Peruvian events. The data from Argentine and Bolivian events presented here constrain the location of the anomaly quite well, and indicate a possible short- and long-period S -wave amplitude diminution associated with it. When the travel-time data are corrected for the estimated effects of these two anomalies, a systematic regional variation in ScS-S station residuals is apparent between stations east of and west of the Rocky Mountains. One possible explanation of this is a long wavelength lateral variation in the shear velocity structure of the lower mantle at depths greater than 2000 km beneath North America.  相似文献   

8.
P-SH conversion is commonly observed in teleseismic P waves, and is often attributed to dipping interfaces beneath the receiver. Our modelling suggests an alternative explanation in terms of flat-layered anisotropy. We use reflectivity techniques to compute three-component synthetic seismograms in a 1-D anisotropic layered medium. For each layer of the medium, we prescribe values of seismic velocities and hexagonally symmetric anisotropy about a common symmetry axis of arbitrary orientation. A compressional wave in an anisotropic velocity structure suffers conversion to both SV -and SH -polarized shear waves, unless the axis of symmetry is everywhere vertical or the wave travels parallel to all symmetry axes. The P-SV conversion forms the basis of the widely used 'receiver function' technique. The P-SH conversion occurs at interfaces where one or both layers are anisotropic. A tilted axis of symmetry and a dipping interface in isotropic media produce similar amplitudes of both direct ( P ) and converted ( Ps ) phases, leaving the backazimuth variation of the P-Ps delay as the main discriminant. Seismic anisotropy with a tilted symmetry axis leads to complex synthetic seismograms in velocity models composed of just a few flat homogeneous layers. It is possible therefore to model observations of P coda with prominent transverse components with relatively simple 1-D velocity structures. Successful retrieval of salient model characteristics appears possible using multiple realizations of a genetic-algorithm (GA) inversion of P coda from several backazimuths. Using GA inversion, we determine that six P coda recorded at station ARU in central Russia are consistent with models that possess strong (> 10 per cent) anisotropy in the top 5 km and between 30 and 43 km depth. The symmetry axes are tilted, and appear aligned with the seismic anisotropy orientation in the mantle under ARU suggested by SKS splitting.  相似文献   

9.
Surface-wave polarization data and global anisotropic structure   总被引:1,自引:0,他引:1  
In the past few years, seismic tomography has begun to provide detailed images of seismic velocity in the Earth's interior which, for the first time, give direct observational constraints on the mechanisms of heat and mass transfer. The study of surface waves has led to quite detailed maps of upper-mantle structure, and the current global models agree reasonably well down to wavelengths of approximately 2000 km. Usually, the models contain only elastic isotropic structure, which provides an excellent fit to the data in most cases. For example, the variance reduction for minor and major arc phase data in the frequency range 7–15 mHz is typically 65–92 per cent and the data are fit to within 1–2 standard deviations. The fit to great-circle phase data, which are not subject to bias from unknown source or instrument effects, is even better. However, there is clear evidence for seismic anisotropy in various places on the globe. This study demonstrates how much (or little) the fit to the data is improved by including anisotropy in the modelling process. It also illuminates some of the trade-offs between isotropic and anisotropic structure and gives an estimate of how much bias is introduced by neglecting anisotropy. Finally, we show that the addition of polarization data has the potential for improving recovery of anisotropic structure by diminishing the trade-offs between isotropic and anisotropic effects.  相似文献   

10.
According to recent estimates, the continental mid-crust contains 35–40 per cent amphibolites. Heating of the crust by an underlying mantle plume, for example beneath continental rifts, high plateaus, and areas of intraplate volcanic activity, releases water. Dehydration of amphibole-bearing rocks at depths of 20–40  km occurs mainly in the temperature range 650–700 °C, and this releases about 0.4  wt per cent of water.
  Seismic tomography studies of the crust in the Kirgyz Tien Shan Range, where the age of the tectonic activity is less than 30  Ma, revealed a low-velocity zone in the mid-crust. The velocity of P waves was 0.4  km  s1 lower than in normal crust. MT sounding data in the region show the existence of a low-resistivity layer with an average resistivity of about 25  Ω  m at the depth of the low-velocity layer. The spatial correlation of the observed anomalous layers and calculated effect of fluid phase on seismic and electric parameters of rocks suggests the presence of aqueous fluids released by the heating of the mid-crust.  相似文献   

11.
Upper mantle shear structure of North America   总被引:5,自引:0,他引:5  
Summary. The waveforms and travel times of S and SS phases in the range 10°–60° have been used to derive upper mantle shear velocity structures for two distinct tectonic provinces in North America. Data from earthquakes on the East Pacific Rise recorded at stations in western North America were used to derive a tectonic upper mantle model. Events on the north-west coast of North America and earthquakes off the coast of Greenland provided the data to investigate the upper mantle under the Canadian shield. All branches from the triplications due to velocity jumps near 400 and 660 km were observed in both areas. Using synthetic seismograms to model these observations placed tight constraints on heterogeneity in the upper mantle and on the details of its structure. SS–S travel-time differences of 30 s along with consistent differences in waveforms between the two data sets require substantial heterogeneity to at least 350 km depth. Velocities in the upper 170 km of the shield are about 10 per cent higher than in the tectonic area. At 250 km depth the shield velocities are still greater by about 4.5 per cent and they gradually merge near 400 km. Below 400 km no evidence for heterogeneity was found. The two models both have first-order discontinuities of 4.5 per cent at 405 km and 7.5 per cent at 695 km. Both models also have lids with lower velocities beneath. In the western model the lid is very thin and of relatively low velocity. In the shield the lid is 170 km thick with very high elocity (4.78 km s-1); below it the velocity decreases to about 4.65 km s-1. Aside from these features the models are relatively smooth, the major difference between them being a larger gradient in the tectonic region from 200 to 400 km.  相似文献   

12.
Summary. Results from several recent studies suggest that there are lateral heterogeneities of up to a few per cent in the lowermost 150–200 km of the mantle (Bullen's D " region). Inferred anomaly sizes span the range from less than 50 km to greater than 1000 km.
In this study differences in the velocity structure among regions at the base of the mantle were inferred from an analysis of amplitude ratios of PKPAB and PKPDF for given earthquake-station pairs at distances greater than 155° (Sacks, Snoke & Beach). We distinguish two kinds of regions: A (anomalous) regions in which the mean, median and spread in AB/DF amplitude ratios are significantly higher (> 50 per cent) than for a reference radial earth model and N (normal) regions in which the distribution of the amplitude ratios is as expected.
The AB branch has near-grazing incidence to the core and therefore maximum sensitivity to velocity structure compared to the near-normal incident DF phases. Using an iterative, forward-modelling approach, we have determined general characteristics of the velocity structure for regions at the base of the mantle which can produce amplitude-ratio distributions similar to those for an A region. Agreement between model and data is obtained over the period range from 0.5 s to greater than 10 s using a laterally heterogeneous model for the D " region. the model consists of cells which are 200 km in lateral extent with velocity variations of up to ±1 per cent. This structure is modulated by a region-wide (1000km) perturbation which increases smoothly from zero at the edges of the region to a negative 1 per cent at the centre. Small cells (∼40 km) cannot produce anomalously large amplitude, long-period AB arrivals, and larger cells (∼1000km) cannot match the observed scatter. the ∼200 km scale anomalies could be small-scale convection cells confined to the D " region.  相似文献   

13.
Teleseismic P waves passing through low-wave-speed bodies in the mantle are refracted, causing anomalies in their propagation directions that can be measured by seismometer arrays. Waves from earthquakes in the eastern Pacific and western North America arriving at the NORSAR array in Norway and at seismic stations in Scotland pass beneath the Iceland region at depths of ∼ 1000–2000 km. Waves arriving at NORSAR have anomalous arrival azimuths consistent with a low-wave-speed body at a depth of ∼ 1500 km beneath the Iceland–Faeroe ridge with a maximum diameter of ∼250 km and a maximum wave-speed contrast of ∼ 1.5 per cent. This agrees well with whole-mantle tomography results, which image a low-wave-speed body at this location with a diameter of ∼ 500 km and a wave-speed anomaly of ∼ 0.5 per cent, bearing in mind that whole-mantle tomography, because of its limited resolution, broadens and weakens small anomalies. The observations cannot resolve the location of the body, and the anomaly could be caused in whole or in part by larger bodies farther away, for example by a body imaged beneath Greenland by whole-mantle tomography.  相似文献   

14.
We have analysed the fundamental mode of Love and Rayleigh waves generated by 12 earthquakes located in the mid-Atlantic ridge and Jan Mayen fracture zone. Using the multiple filter analysis technique, we isolated the Rayleigh and Love wave group velocities for periods between 10 and 50  s. The surface wave propagation paths were divided into five groups, and average group velocities calculated for each group. The average group velocities were inverted and produced shear wave velocity models that correspond to a quasi-continental oceanic structure in the Greenland–Norwegian Sea region. Although resolution is poor at shallow depth, we obtained crustal thickness values of about 18  km in the Norwegian Sea area and 9  km in the region between Svalbard and Iceland. The abnormally thick crust in the Norwegian Sea area is ascribed to magmatic underplating and the thermal blanketing effect of sedimentary layers. Maximum crustal shear velocities vary between 3.5 and 3.9  km  s−1 for most paths. An average lithospheric thickness of 60  km was observed, which is lower than expected for oceanic-type structure of similar age. We also observed low shear wave velocities in the lower crust and upper mantle. We suggest that high heat flow extending to depths of about 30  km beneath the surface can account for the thin lithosphere and observed low velocities. Anisotropy coefficients of 1–5 per cent in the shallow layers and >7 per cent in the upper mantle point to the existence of polarization anisotropy in the region.  相似文献   

15.
Using the viscoelastic correspondence principle, we utilize the surface coseismic spheroidal deformation fields (i.e. vertical displacements, potential perturbations and gravity changes) of SNREI earth models caused by four typical types of point dislocation, derived by Sun & Okubo (1993 ), to deduce the fundamental formulas for spheroidal fields relevant to viscoelastic earth models. In computations, we employ a strike-slip dislocation on a vertical plane buried at the bottom of the lithosphere to estimate the maximal viscous relaxation responses to this kind of source that possibly exist on the surface of the earth. We take the seismic moment as 1022  N  m, which is characteristic of an average large earthquake. The numerical results demonstrate that, if we take the viscosity as 1019  Pa  s in the asthenosphere, and 1021  Pa  s in the other mantle layers, the rates of surface vertical displacements and gravity changes within about 2.5° for the 10 postseismic years are respectively 1.5–8.1  cm  yr−1 and 4.0–14.9  μgal  yr−1 : the viscous relaxation for this mantle viscosity profile proceeds much faster than for a constant mantle viscosity of 1021  Pa  s.  相似文献   

16.
Seismic imaging of the laterally varying D" region beneath the Cocos Plate   总被引:1,自引:0,他引:1  
We use an axisymmetric, spherical Earth finite difference algorithm to model SH -wave propagation through cross-sections of laterally varying lower mantle models beneath the Cocos Plate derived from recent data analyses. Synthetic seismograms with dominant periods as short as 4 s are computed for several models: (1) a D" reflector 264 km above the core–mantle boundary with laterally varying S -wave velocity increases of 0.9–2.6 per cent, based on localized structures from a 1-D double-array stacking method; (2) an undulating D" reflector with large topography and uniform velocity increase obtained using a 3-D migration method and (3) cross-sections through the 3-D mantle S -wave velocity tomography model TXBW. We apply double-array stacking to assess model predictions of data. Of the models explored, the S -wave tomography model TXBW displays the best overall agreement with data. The undulating reflector produces a double Scd arrival that may be useful in future studies for distinguishing between D" volumetric heterogeneity and D" discontinuity topography. Synthetics for the laterally varying models show waveform variability not observed in 1-D model predictions. It is challenging to predict 3-D structure based on localized 1-D models when lateral structural variations are on the order of a few wavelengths of the energy used, particularly for the grazing geometry of our data. Iterative approaches of computing synthetic seismograms and adjusting model characteristics by considering path integral effects are necessary to accurately model fine-scale D" structure.  相似文献   

17.
Shear wave splitting measurements from S arrivals of local earthquakes recorded at the Incorporated Research Institutions for Seismology (IRIS) broadband sensor SNZO are used to determine a basic anisotropic structure for the subduction zone in the Wellington region. With the use of high-frequency filters, fast anisotropic polarization ( φ ) and splitting time ( δt ) measurements typical of crustal anisotropy are evident, but the larger splitting expected from the mantle is often not resolved. The small splitting seen agrees well with the results of previous studies concerning shallow crustal anisotropy. With the use of lower-frequency filters, measurements more consistent with mantle anisotropy are made. Anisotropy of 4.4 ± 0.9 per cent with a fast polarization of 29° ± 38° is calculated for the subducting slab, from 20 to 70  km depth. Using this result in addition to the results of previous studies, a model is proposed. The model requires a frequency-dependent anisotropy of less than 1.4 per cent when measured with a period of ~2  s to be present in the sub-slab mantle.
Separate from this population, a band of events in northern Cook Strait with an 86° ± 10° fast polarization is seen. This is at about 40° from the strike of the Hikurangi margin, and suggests a source of shear strain 40° removed from that found in the majority of the region. The cause of this is probably a deformation in the subducting slab in this region, as it moves towards a greater incline to the south.  相似文献   

18.
Summary. A novel method is proposed for retrieving the 3-D orientation of axes of symmetry of near-source anisotropy by a non-linear inversion of observed radiation patterns of seismic displacement spectra of Rayleigh waves.
If faulting is generated within an anisotropic source region, body force equivalents for the faulting are in general not a double couple but the sum of three orthogonal dipole forces (Kosevich; Kawasaki & Tanimoto). As a result of the third dipole force, radiation patterns of Rayleigh waves are deformed, the deformation amounting to several per cent of those for an isotropic source medium. The non-linear inversion is carried out to find the optimum fault plane solutions giving the minimum square residual between observed and theoretical radiation patterns in some period range. In order to remove effects of heterogeneity along propagation paths, a pair-event scheme is involved in the inversion, which denotes taking spectral amplitude ratios and differential phases of the seismic displacement spectra of the pair-events having close hypocentres and different fault plane solutions. The uniqueness of the fault plane solutions of the non-linear inversion is afforded a proof by the Monte-Carlo experiment.
The non-linear inversion is repeated for some possible types of symmetry of the near-source orthotropic anisotropy due to the preferred orientation of olivine crystals as mantle materials. Square residuals thus obtained are compared with each other to see which orientation gives the minimum.
The method is applied to pair-events which occurred in the anomalous mantle beneath the Mid-Atlantic Ridge. This leads to a discovery that one type of symmetry of the preferred orientations with a -, b - and c-axes aligned vertical, parallel to and perpendicular to the trend (N11E) of the ridge axis, respectively, is most likely existing in the anomalous mantle.  相似文献   

19.
We present a 3-D radially anisotropic S velocity model of the whole mantle (SAW642AN), obtained using a large three component surface and body waveform data set and an iterative inversion for structure and source parameters based on Non-linear Asymptotic Coupling Theory (NACT). The model is parametrized in level 4 spherical splines, which have a spacing of ∼ 8°. The model shows a link between mantle flow and anisotropy in a variety of depth ranges. In the uppermost mantle, we confirm observations of regions with   VSH > VSV   starting at ∼80 km under oceanic regions and ∼200 km under stable continental lithosphere, suggesting horizontal flow beneath the lithosphere. We also observe a   VSV > VSH   signature at ∼150–300 km depth beneath major ridge systems with amplitude correlated with spreading rate for fast-spreading segments. In the transition zone (400–700 km depth), regions of subducted slab material are associated with   VSV > VSH   , while the ridge signal decreases. While the mid-mantle has lower amplitude anisotropy (<1 per cent), we also confirm the observation of radially symmetric   VSH > VSV   in the lowermost 300 km, which appears to be a robust conclusion, despite an error in our previous paper which has been corrected here. The 3-D deviations from this signature are associated with the large-scale low-velocity superplumes under the central Pacific and Africa, suggesting that   VSH > VSV   is generated in the predominant horizontal flow of a mechanical boundary layer, with a change in signature related to transition to upwelling at the superplumes.  相似文献   

20.
The seafloor topography of a slow-spreading ridge shows a number of well-documented regularities at the ridge segment scale as the result of the complex interplay between ridge-axis magmatic and tectonic processes. This paper describes the results of a detailed analysis of the seafloor topography of the Mid-Atlantic Ridge near the Atlantis transform, where marine gravity data provide independent, although non-unique, constraints on subseafloor density structure. Using a combined topography and gravity data set, we identified the specific contributions of subseafloor density structure to the seafloor topography. We show that the observed along-axis deepening (0.3–0.8 km) from the midpoint of a ridge segment towards the non-transform offsets in the study area can be explained by the vertical deflection of a zero-age plate in response to along-axis crustal thickness variations. However, this effect can only account for 50–60 per cent of the observed 1.5–1.7 km deepening towards the Atlantis transform, suggesting the presence of significant stresses in the lithosphere near a transform. Results of plate flexural calculations also predict a more elevated rift flank at the inside corner of the ridge–transform intersection than at the conjugate outside corner. Such an asymmetry in rift flank topography is calculated to be greatest near a transform fault with a significant volume of deep transform valley and when adjacent plates across the transform fault are mechanically decoupled or only weakly coupled. Together these results illustrate the complex interplay between various tectonic processes at a slow-spreading ridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号