首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
1964-2015年气候因子对秦岭地区植物物候的综合影响效应   总被引:4,自引:1,他引:3  
以1964-2015年物候观测数据和逐日气象资料为基础,运用相关分析和PLS回归法,研究了秦岭地区植物物候变化与气候变化的响应关系。结果表明:① 1964-2015年,秦岭地区物候始末期的气候均呈干暖化趋势,且始期的暖化趋势较末期显著,物候突变后(1985年之后)尤为显著。② 就单一因素而言,物候始末期对气温、降水、日照等气候因子的响应程度存在差异,突变前(1985年之前),除物候始期的日均温外,其他气候因子对物候的影响均不显著,但突变后影响显著,始期与末期的日均温每升高1 ℃,始期提前3.0 d,末期推迟12.0 d;始期的累积降水每减少1 mm始期提前1.3 d,末期的每增加1 mm末期推迟1.0 d;始期与末期的日均日照时数每增加1 h,始期提前4.3 d,末期推迟18.3 d。③ 气候因子对物候始末期的影响存在滞后效应,物候始期,气温影响的滞后时效约1~2个月,降水的滞后时效约1~3个月,而日照几乎无滞后效应;物候末期,气温的滞后时效约1~3个月,降水几乎无滞后效应,而日照影响的滞后时效约1~2个月。④ 物候始期与末期均受气温、日照、降水的综合影响,气温是影响物候变化最重要的因素,特别是同期日均温的升高对物候始期的提前及末期的推迟具有主导控制作用。  相似文献   

2.
河西地区近40a来气候变化与风沙活动   总被引:5,自引:3,他引:2  
杨建平  刘连友 《中国沙漠》2001,21(Z1):92-95
利用1951- 1990年14站的年平均气温、降水和大风日数资料,对近40 a来河西地区气候特征作了初步分析。结果表明, 50年代最暖, 60年代最冷, 70年代后气温开始回升但低于50年代的水平。河西地区40 a来是变冷的,全区年平均温度40 a下降了0.21℃,西部下降了0.27℃,东部下降了0.13℃。全区50年代雨量较多, 60年代是近40 a来的最干旱期, 70年代为最湿润期, 80年代又趋于干旱,总体上降水略有增加。最干旱期与最冷期对应,最多雨期并非最高温期,在温度开始回升时降水量最大,雨量与温度的变化并不同步,降水滞后于温度。40 a来河西西部大风日数是增加的,东部是减少的。高温少雨大风日数少,低温少雨大风日数较多,温度开始回升降水达到最大时,大风日数最多。春季大风日数最多,夏季次之,秋冬相差不大。  相似文献   

3.
四川省近50年降水的变化特征及影响   总被引:20,自引:1,他引:19  
利用1961-2008 年四川省133 个气象站逐日降水资料,研究分析了四川省近50 年大气降水的变化特征及影响。研究发现:四川省年均暴雨日数从西到东呈现“增-减-增”的总体变化趋势:甘孜州、凉山州南部、攀枝花等地区年均暴雨日数主要呈弱增加趋势,四川盆地西部、中部呈明显减少趋势,盆地东北部地区则呈较强增加趋势;除了盆地中部、南部部分地区外,四川省其余地区的暴雨强度主要呈增强趋势,其中盆地东北部加强趋势明显。四川盆地西部、中部地区各量级雨日均主要呈减少趋势,无雨日明显增加,年降水减少明显;盆地东北部地区年均暴雨、大雨日数及强度都呈明显增加、增强趋势,此区域年降水量的增加主要是由于大雨、暴雨量的增加导致。近50 年来四川省大气降水的变化形势给不同的区域带来了不同影响:四川盆地西部和中部地区大气降水明显减少,影响到地表径流以及地下水位,导致水资源紧张;川西高原北部阿坝州降水也明显减少,在一定程度上促进了生态环境恶化;而盆地东北部、甘孜州、攀枝花和凉山州等地区暴雨日数和强度的增多、增强导致部分地区洪涝、地质灾害频发。  相似文献   

4.
中国西部雨季特征及高原季风对其影响的研究   总被引:5,自引:0,他引:5  
陈少勇  林纾  王劲松  吴洁 《中国沙漠》2011,30(3):765-773
 利用中国西部269站侯降水资料,对西部的主雨季进行定义,并分析讨论了雨季的空间分布和时间变化特征,结果表明,西部雨季演变是从西北和东南两头开始,相向中部移动,结束期也是如此,两头早中间迟。新疆的主雨季不明显;将西部雨季主要划分为北疆、南疆、高原西部、高原东部、东南区、东北区等6个区。各区降水量逐侯时间变化的分布有3种形态:南疆、高原西部和东南区为单峰型,北疆和高原东部为双峰型,东北区为三峰型。高原东侧和内蒙古西部雨季开始期推迟,结束期提前,雨季有变短趋势,西部其余地方相反,开始期提前,雨季有变长趋势。西部雨季开始期与结束期的年代际变化有同位相振动特征,即两者同时提前或推迟。初步分析了高原季风对西部雨季的影响。  相似文献   

5.
李婷婷  郭增长  马超 《地理研究》2022,41(11):3000-3020
基于1982—2015年GIMMS NDVI 3g V1.0数据、3小时温度、逐日降水和日太阳辐射数据集、数字高程模型、中国植被区划数据及实测物候验证数据,利用季节性植被物候提取法、Theil-Sen median趋势分析法和偏最小二乘回归分析等方法,研究中国第二、三级阶梯地形过渡带植被物候的时空变化规律,探讨植被物候对海拔、经纬度和气候变化的响应。结果表明:① 34 a间过渡带山前植被物候时空变化显著。时间上,植被物候呈返青期(Start Of Season, SOS)提前(-0.3187 d/a, p<0.01)、枯黄期(End Of Season, EOS)推迟(0.1171 d/a, p>0.1)和生长季长度(Length Of Growing Season, LOS)延长(0.4358 d/a, p<0.01)趋势;空间上,按SOS像元的86.24%提前、EOS像元的69.66%推迟和LOS像元的84.42%延长分布。② 34 a间过渡带山前植被物候地带性特征明显。垂直地带性方面,在中低纬度地区的物候始末期受以400 m等高线为界的海拔梯度影响,由平原到山地产生SOS平均提前8d,EOS提前25~36 d的分段式变化;水平地带性方面,低纬度和中高纬度地区的植被物候以35°N(秦岭-淮河一线,中国南北方的分界线)、43.5°N(暖温带落叶阔叶林区与温带草原区的分界)为转折点,由南向北SOS以-0.78 d/°、4.89 d/°和-1.56 d/°分段变化,EOS以-3.96 d/°、-1.85 d/°和0.89 d/°分段变化。③ 34 a间过渡带植被物候受气象因素驱动。对于植被返青期,气温对中纬度地区SOS的影响最大,降水的贡献随着纬度的降低而增大,太阳辐射在中纬度地区的贡献力大于低纬度地区;对于植被枯黄期,中纬度地区对EOS的多因素贡献力为太阳辐射>气温>降水(太阳辐射对草原区无贡献力),低纬度地区贡献力排序与之相反;本研究对宏观地理带中不同植被区划的物候变化认知有学术意义,也为地理因素与气候因素共同影响的植被物候变化提供了新的认识。  相似文献   

6.
1982-2013年青藏高原植被物候变化及气象因素影响   总被引:12,自引:3,他引:9  
根据NDVI3g数据,本文定义了18种植被物候指标研究植被物候变化情况。根据1:100万植被区划,把青藏高原划分为8个植被区分。对物候变化比较显著的区域,采用最高温度、最低温度、平均温度、降水、太阳辐射数据,运用偏最小二乘法回归(PLS)研究物候变化的气候成因。结果表明:① 青藏高原生长季初期物候指标,转折发生在1997-2000年,转折前初期物候指标平均提前2~3 d/10a;青藏高原末期物候指标转折发生在2004-2007年左右,生长季长度物候指标突变发生在2005年左右,转折前末期物候指标平均延迟1~2 d/10a、生长季长度平均延长1~2 d/10a;转折之后生长季初期物候指标推迟趋势的显著性水平仅为0.1,生长季末期物候指标、生长季长度指标趋势不显著。② 高寒草甸与高寒灌木草甸是青藏高原物候变化最剧烈的植被分区。高寒草甸区生长季长度的延长主要是由生长季初期物候指标提前导致的。高寒灌木草甸区生长季长度的延长主要是由于初期物候指标的提前,以及末期物候指标的推迟共同作用导致的。③ 采用PLS进一步分析气象因素对高寒草甸与高寒灌木草甸物候剧烈变化的影响。表明,温度对物候的影响占主导地位,两植被分区均显示上年秋季、冬初温度对生长季初期物候具有正的影响,该时段温度一方面会导致上年末期物候指标推迟,间接推迟生长季开始时间;另一方面高温不利用冬季休眠。除夏季外,其余月份最小温度对植被物候的影响与平均温度、最高温度的影响类似。降水对植被物候的影响不同月份波动较大,上年秋冬季节降水对初期物候指标具有负的影响,春初降水对初期物候指标具有正的影响。8月份限制植被生长季的主要因素是降水,此时降水与末期物候指标模型系数为正。太阳辐射对植被物候的影响主要在夏季与秋初。PLS方法在物候变化研究中具有较好的效果,本文研究结果将会对植被物候模型改进,提供有力的科学依据。  相似文献   

7.
利用中国物候观测网观测数据,新编制了哈尔滨地区1985-2012年的自然历。通过与原自然历(1963-1984年)比较,揭示了近30年以来哈尔滨地区21个植物99个物候期的变化特征,并通过物候期与气温的相关分析探讨了物候变化原因。结果表明:自1985年以来,哈尔滨的春季、夏季、秋季的物候期开始日期提前,冬季开始日期推迟。其中春季(以白榆叶芽膨大期为代表)、夏季(以暴马丁香开花始期为代表)、秋季(以金银忍冬果实成熟期为代表)分别提前了7天、6天和19天,冬季(以胡桃楸落叶末期为代表)推迟了2天。各物候期在春季、夏季、秋季的平均日期相较于原自然历提前了3~11天,在冬季推迟了3天。四季各物候期最早日期均以提前为主,夏冬季物候期最晚日期有所推迟。另外,各季节内部分物候期出现的先后次序发生了变化。近30年该地区气温的升高是物候季节开始日期提前的首要原因。且不同植物和物候期对气温变化的响应敏感性不同可解释物候季节内物候期先后次序的变化。  相似文献   

8.
山地系统作为植被脆弱带及气候转换与变化的敏感区,能直观反映植被对全球环境变化的响应及适应过程.该文基于1982-2015年GIMMS NDVI 3g时间序列数据集,利用TIMESAT 3.3动态阈值法提取六盘山山地植被物候参数,结合气温、降水及光照数据集,利用最小二乘法趋势检验、偏相关分析等方法,研究六盘山山地植被物候分异规律及其对气候变化的响应.结果表明:1)六盘山山地植被生长季始期推迟幅度为11.1 d·km-1,生长季末期提前,导致生长季长度缩短幅度为22.6 d·km-1.2)生长季长度和生长季始期空间格局相似,由西北高海拔地区向东南低海拔地区呈山地垂直地带性规律;生长季中期以36°N为界,呈纬度地带性规律,生长季末期以106°30′E为界,经度地带性变化规律显著.3)气候因子在植被不同生长阶段的主导作用不同,气温对六盘山物候变化影响最显著;3月气温升高促使夏季物候提前,9月降水增加促使秋季物候推迟;6月气温升高与9月降水增加导致耕地生长季中期显著推迟,灌木、林地生长季中期显著提前;生长季始期对3月日间最高气温的负敏感性最强,生长季末期对9月夜间最低气温的正敏感性最强,该结论与植被生长生理特征一致.  相似文献   

9.
川西高原夏季降水变化特征及其异常年环流形势   总被引:4,自引:0,他引:4  
利用川西高原9个观测站的1960—2006年夏季降水资料分析了川西高原夏季降水的气候变化特征及其与大尺度环流的关系。得到如下主要结论:①1960—2006年,川西高原的夏季降水有微弱增加的趋势。20世纪60年代、80年代和近几年,川西高原夏季降水偏多,70年代和90年代川西高原夏季降水明显偏少。②川西高原夏季降水多雨年和少雨年的环流形势存着明显的差异。高原夏季降水与500 hPa乌拉尔山高压脊、亚洲东北部高压脊、巴尔喀什湖至贝加尔湖之间的低压槽密切相关,还与100 hPa南亚高压的强弱有关。③川西高原多雨年前期春季OLR距平场上,印度洋中部对流偏强,印尼-南海南部地区对流减弱。OLR的变化可以为川西高原夏季降水的预测提供参考依据。  相似文献   

10.
1965-2014年北京西郊地区植物观赏期对气候变化的响应   总被引:1,自引:0,他引:1  
高新月  戴君虎  张明庆 《地理研究》2018,37(12):2420-2432
基于1965-2014年北京地区50种植物物候数据和同期日均温等气象资料,运用相关、回归分析法分析了北京地区绿叶观赏期、观花期和秋叶观赏期(开始日、结束日、时间长度)的变化趋势、变化形式及其对气候变化的响应情况。结果表明:① 北京西郊地区50种植物的绿叶观赏期为4月14日-10月15日,观赏期长度为163~219天。观花期为4月29日-5月17日,观花期长度为6~77天。秋叶观赏期为10月15日-11月14日,观赏期长度为16~41天。② 近50年来,北京西郊地区50种植物的3个观赏期都发生了一定程度的变化。绿叶观赏期开始日提前3.1天/10a,结束日推迟3.6天/10a,观赏期延长6.8天/10a。观花期开始日提前1.6天/10a,结束日提前0.5天/10a,观赏期延长1.2天/10a。秋叶观赏期开始日推迟3.6天/10a,结束日推迟1.1天/10a,观赏期缩短2.5天/10a。③ 绿叶观赏期延长主要表现为开始日提前,结束日推迟。观花期延长主要表现为开始日提前程度大于结束日提前程度,春花植物和夏花植物的观花期延长和缩短的表现形式基本一致。秋叶观赏期缩短主要表现为开始日推迟程度大于结束日推迟程度。④ 春季气温升高1 ℃,绿叶观赏期开始日提前3.9天、结束日推迟5.2天;观花期开始日提前3.4天,结束日提前1.9天。秋季气温升高1 ℃,秋叶观赏期开始日和结束日分别推迟5.2天和2.2天。⑤ 将不同观赏期重叠搭配可营造不同色彩和风格的植被景观,进而设计出不同特色的景观观赏主题。植物观赏期的变化可为园林景观创新设计提供有力参考,为植物观赏活动时间的安排提供科学依据。  相似文献   

11.
青藏高原夏季夜雨率空间分布及其变化特征   总被引:3,自引:0,他引:3  
选取了1961-2007年青藏高原海拔2000m以上76个气象站夏季(6-9月)逐日地面降水观测资料,分析了青藏高原夏季夜雨率的时空特征,结果表明:1.青藏高原夜雨率具有显著的区域差异性,在西藏中西部夜雨率呈“纬向型”分布,而西藏东部、川西高原至滇北夜雨率则表现为“西北-东南”走向;夜雨率高值中心出现在雅鲁藏布江中段(日喀则地区东北部至拉萨市一带),达到75%以上,同时喜马拉雅山脉南麓可能是夜雨率>70%的另一个高值区域;夜雨率最低值在青海省西北部,仅为33%;2.高原夜雨率具有明显的海拔效应,夜雨率与海拔呈显著的反相关,即海拔越高夜雨率越低,反之亦然;3.高原夜雨率随夏季日期推后呈增大趋势,而年际变化上则表现为明显的下降趋势,20世纪80年代初存在明显的突变现象;4.高原夜雨率与日降水量之间存在一定的关联:当日降水量<1 mm时夜雨率仅为48.8%,此后夜雨率随着日降水量增加而明显增大,特别是降水量在20 mm以下时,夜雨率上升速度最快,上升幅度超过20%;当日降水量为23~40 mm时,夜雨率稳定在70%~76%间,随后又略有波动下降;当日降水量为33 mm时,夜雨率达到极大值,为75.1%.青藏高原夜雨率的空间变化可能受大地形的影响.高原夜雨对农牧业生产有利的同时,也可能会带来诸多自然灾害.因此,深入探讨夜雨率是制定有效防御气象灾害对策的重要依据.  相似文献   

12.
近50年四川盆地汛期极端降水事件的时空演变   总被引:17,自引:4,他引:13  
利用四川盆地1961-2006年145个台站汛期的逐日降水资料,分析了该地区汛期极端降水事件的时空演变特征,结果表明:该地区汛期极端降水事件的发生频次分布与降水量分布差异较大,由西向东呈阶梯状递减趋势;川西高原与四川盆地之间以及盆地东西部之间的反位相变化是川渝地区汛期极端降水事件发生频次最主要的两个空间异常模态:该地区汛期极端降水事件发生频次的空间分布可以分为8个区;分别是四川盆地中部区、东部区、南部区、西部区、川西高原西部区、中部区、川西南山地区和重庆东部区;从长期变化趋势来看,汛期极端降水事件发生频次除在四川盆地西部区和重庆东部区分别呈较弱的减少和增长趋势以外,在其余各区的线性趋势都较为明显,其中四川盆地东部区、川西南山地区、川西高原西部和中部区表现为增长,四川盆地中部和南部区表现为减少;从气候因子分析看,汛期西太平洋副高位置的南北变化、东亚以及南亚季风的强弱变化分别对四川盆地东部区、中部区以及西部区的极端降水事件存在显著影响.  相似文献   

13.
中国近30年气候要素时空变化特征   总被引:21,自引:1,他引:20  
李爽  王羊  李双成 《地理研究》2009,28(6):1593-1605
利用1971~2000年中国603个气象站点逐日平均温度和降水量数据,借助ArcGIS空间分析工具,采用自组织特征映射模型(SOFM),对中国气候变化的时空特征进行分析。研究结果表明:近30年中国气候变化的总体特征以增温为主,增温增湿的地区面积最为广大;季节变化构型也以增温增湿为主,秋季略有异常;从年代际变化来看,1971~1980年间,中国的气候以降温为主,而从1981年开始的20年间,全国的气候变化转为增温占主导。SOFM网络分类结果可以描述为缓增温少降水、剧增温平降水、缓增温缓降水和剧增温剧降水等四种类型。  相似文献   

14.
利用内蒙古46个气象台站1960-2012年逐日降水数据,以表征降水年内分配非均匀特征的降水集中度(PCD)和降水集中期(PCP)指标,分析了内蒙古降水年内时间分配特征及变化趋势。结果表明:(1)近53 a内蒙古PCD平均值为0.70,呈显著减少趋势。PCP平均值为194.65°,呈不显著的提前趋势。(2)PCD高值区在阿拉善高原、锡林郭勒高原东部、呼伦贝尔高平原、大兴安岭以东地区,低值区在大兴安岭北部、乌兰察布高原、鄂尔多斯高原。全区PCP则以192°等值线为界,表现出西晚东早的空间分异格局。(3)PCD普遍呈下降趋势,以呼伦贝尔高平原、乌兰察布高原减小趋势最显著。PCP也以提前趋势为主,贺兰山、乌兰布和沙漠一线以东地区为主要的PCP提前区。(4)各站PCD与年降水量均为正相关,通过显著性检验的站点占到了60.8%。PCP与降水量的相关系数较小,显著相关的地区仅占到全区的34.7%。  相似文献   

15.
近40a来长江流域≥10℃积温的时空变化特征   总被引:3,自引:0,他引:3  
时光训  丁明军 《热带地理》2016,36(4):682-691
基于1970―2013 年长江流域131 个气象站点的日平均气温数据,采用气候倾向率、累积距平、M-K 检验及滑动T 检验等方法分析了该区≥10℃积温的时空变化特征。结果表明:1)突变时间较早的区域主要有嘉陵江流域,中游干流区,太湖流域和下游干流区(1997 年);而岷江、沱江流域,鄱阳湖流域和洞庭湖流域较晚(2001年);长江源头的金沙江流域最晚(2002 年)。2)在区域尺度上,1970 年以来,北亚热带、中亚热带和高原气候区日平均气温≥10℃积温的初日分别以-1.25、-1.39、-0.8 d/10 a 提前,终日分别以1.52、1.43、1.47 d/10 a 推后,持续日数以2.97、2.92、4.62 d/10 a 幅度延长。积温总体上分别以113.5、88.8、77.3℃/10 a 增加。3)≥10℃积温的年际变化存在明显的空间差异,积温增加幅度较大的地区主要集中在汉中―奉节―五峰―吉首―武冈―道县以东的长江中下游地区以及四川盆地、云贵高原、青海高原的个别站点。  相似文献   

16.
基于西北地区东部1961-2015年54个台站汛期(5~9月)逐日降水资料,通过表征时间分配特征的参数-降水集中度和集中期,对西北地区东部5~9月逐旬降水的季节内非均匀性分布特征进行分析,结果表明:西北地区东部5~9月降水集中度和集中期的平均空间分布存在明显差异,从集中度来看,其东北部降水较集中,西南部较分散,而集中期主要在7月中旬到8月上旬,相比较甘肃陇东地区集中期较晚;从降水集中度与集中期的异常特征来看,第一模态均表现为全区一致性,第二模态均表现西北和东南反向变化特征,而集中度第三模态表现为东北和西南反向变化特征,集中期第三模态表现为东西反向变化特征;从降水集中度与集中期的变化趋势来看,近50 a来降水集中度越来越小,而降水集中期越来越早;另外从汛期降水量同同期降水集中度与集中期的关系来看,其与两者均存在正相关,其中集中度与降水的显著相关区在内蒙古西部以及陕西和宁夏北部,而集中期与降水的显著相关区在陕西和甘肃南部。另外利用前期大气环流指数对降水集中度和集中期建立的预报模型具有一定的预测能力,从而为西北东部汛期降水的季节内非均匀性分布特征的短期气候预测提供参考依据。  相似文献   

17.
中国典型山地无现代冰川作用区冰川平衡线高度的确定对于过去环境变化研究具有重要的科学意义。选取青藏高原边缘17个山体的28个气象站气温与降水数据,采用确定的最大降水带与经验曲线关系法 (简称MPC,下同)、确定的最大降水带与统计公式法 (MPF) 和实际气象站降水与经验公式法 (WPF),恢复了17个山地的现代理论冰川平衡线高度,并对比了三种方法的适用性;综合分析了三种方法的原理、参数选取、计算过程以及误差来源;详细讨论了冰川平衡线处气温与降水关系式、气象站的海拔高度、气温垂直递减率、降水梯度对计算现代冰川平衡线的影响。提出了无现代冰川区的现代理论冰川平衡线计算的综合因子法 (ZYZ)。  相似文献   

18.
近30年来青海省风蚀气候侵蚀力时空差异及驱动力分析   总被引:3,自引:0,他引:3  
青藏高原气候寒冷、多大风,冻融、风化和风蚀作用强烈,易发生土壤风蚀。气候对土壤风蚀的影响可用风蚀气候因子指数(C)度量。基于联合国粮农组织(FAO)提出的C计算方法,根据1984-2013年间连续完整的青海省气象站地面观测数据,应用地理加权回归模型(GWR)、重心及其转移模型,并结合本文定义的有效敏感性指数、有效影响面积等指标,得到全省风蚀气候侵蚀力及其影响因子的时空分布及其演化规律,并对其驱动力和机理进行了初步分析。结果表明:30年来,全省风蚀气候侵蚀力总体特征是西北高东南低并呈下降趋势,风蚀气候侵蚀力强的区域明显向西南扩展,20世纪80年代是柴达木盆地,90年代扩展到青南高原西北部边缘,21世纪基本涵盖了青南高原的西部;风速是影响风蚀气候侵蚀力的主导因子,其有效敏感区重心从柴达木盆地西南部边缘,移动到海拔较高的青南高原西部地区,这与高原近地面气旋系统中心总体移动趋势相反;其次是气温,其有效敏感区重心从海拔较低的青海省中部地区向海拔较高的青南高原移动,这与青南高原地区的海拔梯度式增温规律有关,即从高原边缘向高原腹地升温,且海拔越高,增温越快;降水主要影响柴达木盆地的侵蚀力,其有效敏感区重心向东南扩展,这可能与高原夏季风进退有关。研究结果可为青藏高原土壤风蚀灾害的预防、评估以及预测提供区域性差异化的技术支持与理论指导,也可为青藏高原乃至全球生源要素(C、N、P、S等)循环的大尺度驱动力研究提供新的研究视角。  相似文献   

19.
The net accumulation record of ice core is one of the most reliable indicators for reconstructing precipitation changes in high mountains. A 20.12 m ice core was drilled in 2006 from the accumulation zone of Laohugou Glacier No.12 in the northeastern Tibetan Plateau, China. We obtained the precipitation from the ice core net accumulation during 1960-2006, and found out the relationship between Laohugou ice core record and other data from surrounding sites of the northeastern Tibetan Plateau. Results showed that during 1960-2006, the precipitation in the high mountains showed firstly an increasing trend, while during 1980 to 2006 it showed an obvious decreasing trend. Reconstructed precipitation change in the Laohugou glacier basin was consistent with the measured data from the nearby weather stations in the lower mountain of Subei, and the correlation coefficient was 0.619 (P<0.001). However, the precipitation in the high mountain was about 3 times more than that of the lower mountain. The precipitation in Laohugou Glacier No.12 of the western Qilian Mountains corresponded well to the net accumulation of Dunde ice core during the same period, tree-ring reconstructed precipitation, the measured data of multiple meteorological stations in the northeastern Tibetan Plateau, and also the changes of adjacent PDSI drought index. Precipitation changes of the Laohugou glacier basin and other sites of the northeastern Tibetan Plateau had significantly positive correlation with ENSO, which implied that the regional alpine precipitation change was very likely to be influenced by ENSO.  相似文献   

20.
近34 a青藏高原年降水变化及其分区   总被引:11,自引:6,他引:11  
 对高原地区34 a(1971—2004年)82站共13 883 d的逐日降水量资料进行了统计,用REOF方法进行了分区,并讨论了趋势变化。青藏高原地区属季风降水区,在东亚季风、印度季风、高原季风和西风带系统的影响下,降水的局部特征显著。近34 a来高原上的降水量整体呈增加趋势,从20世纪70年代到90年代初期降水变化不大,90年代中后期开始明显增加,尤其是近3 a增加明显。青藏高原干旱地区降水完全取决于夏季降水量,并且降水的相对变率大。从青藏高原地区年降水的分区情况来看,西藏及四川的西南部降水增加最明显,每10 a增加幅度为54.5 mm,其次是青海的柴达木盆地和青海湖地区及甘肃的河西走廊地区。而青海的东部及三江源地区,祁连山区,四川的西北部地区呈减少趋势。高原上高海拔地区的降水在减少,而低海拔地区在增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号